
Armin	Ronacher's	Thoughts	and	Writings

blog	 archive	 tags	 projects	 talks	 about

UCS	vs	UTF-8	as
Internal	String
Encoding
written	on	Thursday,	January	9,	2014

Unicode	is	a	fascinating	mess.	It's	fascinating	in	many	ways,
but	one	of	the	most	interesting	one	is	how	well	it	works	given
the	complexity.	It's	easily	forgotten	when	working	with	Unicode
that	even	though	the	Unicode	Consortium	actively	develops	the
Unicode	standard	there	is	a	colorful	history	behind	it.	Besides
Unicode	that	everybody	knows,	there	is	also	the	Universal
Character	Set	as	defined	by	ISO	10646.

Nowadays	Unicode	and	ISO's	UCS	are	for	most	practical
purposes	the	same	thing	with	a	slightly	different	name.	This
however	was	not	always	the	case	and	in	the	beginning	those
were	different	undertakings.	The	reason	this	is	still	somewhat
relevant	information,	is	because	in	some	ways	history	still
shines	through.

I'm	not	going	to	talk	about	all	the	history	of	Unicode	here,	many
people	have	been	doing	this	before.	In	case	you	are	curious,
here	are	some	links	that	might	be	of	interest:

Unicode	and	ISO/IEC	10646
Early	Years	of	Unicode
Universal	Character	Set

However	there	are	some	basics	that	are	important	to	know
even	today	to	get	an	understanding	of	why	things	work	in
certain	ways.	When	Unicode	and	ISO	10646	were	not	the	same
thing	yet,	they	had	different	ideas	of	how	things	should	work.
This	can	still	be	seen	today	in	the	encoding	names.	UCS2	and
UCS4	are	2	and	4	byte	encodings	for	the	Universal	Character
Set	(UCS).	The	UTF	formats	came	later	and	until	today	they
stand	both	for	Unicode	Transformation	Format	as	well	as	UCS
Transformation	Format.

UTFs
Unicode	started	out	early	as	a	16bit	encoding	roughly
equivalent	to	the	now	deprecated	UCS2	encoding.	When	it
became	clear	that	Unicode	needed	more	than	~16bit	of
characters	the	hope	for	having	a	fixed	length	encoding	was	not
particularly	high	any	more.

The	ISO	group	already	previously	developed	an	encoding	for
their	standard	to	map	the	many	characters	that	was	ASCII
compatible.	The	format	was	called	UTF-1	but	had	some	serious
problems	such	as	the	lack	of	self	synchronization.	If	you	were
presented	with	a	potentially	truncated	or	destroyed	steam	of
data	you	might	have	received	garbage	unless	you	knew	what
data	was	there	in	the	string	before.

In	1992	UTF-8	was	created	(so	a	few	years	before	Unicode	2.0)
and	nowadays	it's	probably	the	most	popular	encoding	for	data
exchange.	UTF-8	supports	an	astonishing	80%	of	the	internet.
UTF-8	is	very	pragmatic	but	not	just	that,	it's	also	very	reliable.

When	the	Unicode	consortium	gave	up	on	UCS-2	because	it
was	no	longer	possible	to	support	all	of	Unicode	as	a	fixed
length	encoding	with	just	16	bits	per	unit	two	things	had	to
happen:	they	needed	to	introduce	a	variable	length	encoding
with	16	bit	unit	sizes	and	they	had	to	reduce	the	total	number
of	code	points	that	can	ever	be	addressed	to	find	a	way	to
make	UTF-16	get	the	same	characteristics	as	UTF-8.	Namely	it
was	necessary	that	if	the	stream	of	data	was	corrupted,	you
would	not	be	presented	with	potentially	misleading	characters.
For	instance	if	a	character	did	not	fit	into	a	single	16	bit	unit
and	needed	a	second	one,	it	was	necessary	that	everything
continues	working.	If	the	first	one	was	lost	in	transmission	the
second	one	is	actually	an	invalid	character	that	can	be	ignored
and	not	accidentally	taken	for	a	wrong	character.

In	order	to	achieve	that	they	came	up	with	the	concept	of
surrogate	pairs	to	encode	characters	if	they	don't	fit	into	~16
bit.	Essentially	UTF-16	is	now	defined	as	an	encoding	that	is
either	2	or	4	bytes	long	but	never	more	than	that.	The	way	this
works	is	that	65.536	characters	fit	into	just	one	unit.	If	a
character	is	outside	of	that	range	it	gets	split	up	into	two	units
of	16	bits	each	and	the	data	is	mangled	in	a	way	that	makes
them	uniquely	distinct.	If	you	would	look	at	one	of	the	two
surrogates	in	the	pair	separately	without	the	knowledge	of	the
other,	it	would	become	apparently	that	this	is	in	incomplete
character.	For	this	trick	to	work	the	range	D800	to	DBFF	are
reserved	for	the	trail	surrogates	and	DC00	to	DF00	for	the	lead
ones.	As	an	end	result	the	total	range	of	what	can	be	encoded
by	UTF-16	is	the	lowest	of	all	UTF	formats.

UTF-32	is	the	same	as	the	old	UCS-4	encoding	and	remains
fixed	width.	Why	can	this	remain	fixed	width?	As	UTF-16	is	now
the	format	that	can	encode	the	least	amount	of	characters	it	set



the	limit	for	all	formats.	It	was	defined	that	1,112,064	was	the
total	number	of	code	points	that	will	ever	be	defined	by	either
Unicode	or	ISO	10646.	Since	Unicode	is	now	only	defined	from
0	to	10FFFF	UTF-32	sounds	a	bit	like	a	pointless	encoding	now
as	it's	32	bit	wide,	but	only	ever	about	21	bits	are	used	which
makes	this	very	wasteful.

While	UTF-8	is	defined	all	the	way	up	to	31	bit	it	now	can	not
practically	grow	past	4	byte	which	means	that	the	worst	case	of
all	formats	is	the	same:

	
UTF-
8

UTF-
16

UTF-
32

Highest	code	point 10FFFF 10FFFF 10FFFF
Code	unit	size 8	bit 16	bit 32	bit
Byte	order	dependent no yes yes
Fewest	bytes	per	character 1 2 4
Most	bytes	per	character 4 4 4

I	have	noticed	that	seems	to	surprise	people	because	the
assumption	is	that	the	worst	case	of	UTF-8	would	be	more	than
4	bytes.	This	would	have	been	been	theoretically	correct	if	UTF-
16	would	not	exist	and	Unicode	would	have	received	more	than
1,112,064	characters.

Which	One	To	Pick?
Out	of	all	the	choices	UTF-8	immediately	looks	like	the	best	one.
UTF-32	is	clearly	out	when	it	comes	to	memory	consumption	as
you	will	be	wasting	about	40%	or	memory.	UTF-8	is	also	not
byte	order	dependent	which	is	an	immediate	win,	but	it	also
works	with	C	strings	(so	is	backwards	compatible)	and	worst
case	it	only	wastes	as	much	memory	as	all	the	other	formats.

Upon	further	introspection	it	however	becomes	clear	that
depending	on	the	language	of	the	text	stored,	UTF-16	will
become	more	space	efficient.	For	instance	for	Japanese	text
UTF-16	will	be	more	space	efficient	than	UTF-8	as	many
characters	are	on	the	basic	plane	and	with	that	will	only	require
a	single	UTF-16	code	point	whereas	they	are	high	enough	up	in
the	range	that	they	will	require	3	bytes	for	UTF-8.

This	however	is	not	the	case	when	Japanese	text	is	mixed	with
ASCII	control	structures.	For	instance	XML	or	HTML	documents
include	enough	in-line	control	data	that	is	in	the	ASCII	range
that	UTF-8	becomes	more	efficient	as	a	format	compared	to
UTF-16	(before	compression).	For	instance	the	front	page	of	the
Japanese	Wikipedia	is	92KB	in	UTF-8	and	166KB	in	UTF-16.

For	text	UTF-8	has	clearly	won.	The	only	times	I	see	a	UTF-16
document	fly	by	is	when	I	get	something	a	Windows	user
accidentally	created	with	Notepad	which	apparently	sometimes
stores	as	UTF-16.

Internal	Encodings
However	the	question	is	not	so	easy	when	working	with
Unicode	internally	and	there	have	been	different	opinions	on
this	issue.	The	most	prominent	approaches	for	this	have	been
UTF-8	and	UTF-16.	UTF-16	is	the	encoding	of	choice	for	Java,
C#	and	Objective	C	(as	well	as	the	Windows	API).	The	nice
property	of	UTF-16	is	that	it	allows	you	to	be	sloppy	as	the	vast
majority	of	data	you	will	be	presented	with	is	probably	in	the
basic	plane.	This	means	that	operations	like	strlen()	will	both
return	the	number	of	code	units	as	well	as	the	number	of
characters.

For	a	really	long	time	there	did	not	seem	to	be	much	of	a
contest	to	using	UTF-16	as	internal	encoding.	For	a	long	time
the	only	programming	language	(besides	lots	of	C	code)	that
used	UTF-8	as	internal	encoding	seemed	to	be	Perl.	Now
however	Ruby,	Go	as	well	as	Rust	have	decided	on	using	UTF-
8.	While	Ruby	can	work	with	lots	of	internal	string	encodings,
UTF-8	is	the	one	you	find	most	commonly.

The	Value	of	Constant
Access
So	why	was	UTF-16	so	popular?

UTF-16's	biggest	selling	point	was	usually	that	it's	possible	to
address	characters	directly.	That	would	actually	be	fine,	if
programming	languages	would	provide	a	data	type	with	at
least	21	bit	of	precision	to	hold	a	whole	Unicode	character
though.	C#	and	Java	unfortunately	do	not	support	that.	That
Java	does	not	provide	it	makes	sense	to	some	degree
considering	the	age	of	the	language	and	how	the	string	is
exposed.	That	C#	does	not	support	it	is	unfortunate	however.

Rust	and	Go	for	instance	have	this	better	sorted	out.	While	they
do	use	UTF-8	as	internal	string	encoding	and	expose	this	to	the
user,	they	provide	32	bit	data	types	(called	rune	in	Go	and	char
in	rust).	In	both	programming	languages	you	can	iterate	in
actual	Unicode	characters	over	the	whole	string.	In	many	cases
this	is	plenty	because	parsing	for	instance	usually	only	needs	to
look	at	one	or	two	characters	at	the	time.

In	many	ways	the	question	is	how	valuable	constant	time



addressing	of	a	single	character	in	strings	is.	I	think	this	is
something	that	is	almost	impossible	to	answer	because
depending	on	if	that's	possible	or	not,	the	typical	algorithms
look	different.

What	Rust	and	Go	gain	from	having	UTF-8	strings	is	that	they
are	very	efficient	when	they	need	to	juggle	with	bytes	next	to
textual	content.	For	instance	many	wire	protocols	like	HTTP	are
based	on	ASCII	metadata.	While	HTTP	is	technically	latin1,	it's
very	rare	that	you	will	actually	encounter	a	genuine	latin1
header.	It's	in	fact,	much	more	common,	that	people	will	not	be
aware	of	the	latin1	part	of	the	specification	and	put	UTF-8	data
in	a	header.

To	take	Rust	as	an	example,	parsing	protocols	is	very	efficient
because	in	many	cases	a	parsing	step	becomes	a	simple
memcpy.	The	reason	for	this	is	that	so	much	data	out	there	is
UTF-8.	After	copying	of	the	data	you	just	need	to	do	a	basic
check	afterwards	if	the	UTF-8	is	not	invalid,	which	can	be	nicely
optimized.	In	contrast	to	that	UTF-16	is	a	trickier	because	you
need	to	figure	out	the	length	of	the	buffer	through	an	initial
scan	and	then	a	second	one	to	decode	the	data.	Or	you	do	it	in
one	go	and	overallocate.

Go	even	gets	away	with	using	completely	unchecked	UTF-8
strings.	In	Rust	it's	impossible	to	construct	a	string	in	safe	code
with	invalid	UTF-8	characters.	Go	on	the	other	hand	lets	you
happily	mix	random	bytes	into	your	string,	but	all	IO	operations
are	required	to	ensure	that	the	data	is	valid.	While	this	sounds
pretty	terrible	it's	actually	not	too	bad.	I	do	prefer	Rust's
approach	though	which	still	gives	you	the	nice	handling	of
bytes	and	strings	that	Go	provides,	but	errors	stay	somewhat
contained	as	you	can	expect	a	string	to	be	valid.

Rethinking	Internal
Formats?
For	a	really	long	time	it	looked	like	nobody	would	challenge	the
idea	of	using	UTF-16	as	internal	string	format	but	that	seems	to
change	now.	On	one	hand	some	languages	are	exploring	using
UTF-8	internally,	on	the	other	hand	we	have	Python	3	which
explores	the	idea	of	switching	between	latin1,	UCS-2	and	UTF-
32	on	a	string-by-string	basis.

The	Python	3	trick	sounded	quite	good	on	the	paper	but	I
noticed	that	there	are	some	practical	downsides.	For	instance
Emojis	are	outside	of	the	basic	plane	which	means	that	Python
needs	to	represent	them	as	UTF-32	internally.	With	how	lots	of
template	engines	are	currently	structured	that	can	cause	some
interesting	characteristics.	Jinja2	for	instance	currently	renders
in	Unicode	and	then	has	a	separate	encoding	step.	If	you	would
build	a	github	comment	page	and	an	Emoji	would	be	in	the
comments	then	whole	your	response	upgrades	to	UTF-32	just
because	of	a	single	character.	In	corner	cases	like	this	it	might
be	interesting	to	use	the	streaming	interface	of	Jinja2	to	encode
chunk	by	chunk	to	UTF-8	to	avoid	the	extra	cost	of	a	more
expensive	internal	string.

As	someone	who	works	a	lot	at	the	byte	<->	Unicode	boundary
the	idea	of	having	strings	with	an	internal	UTF-8	encoding	is
very	interesting.	Having	worked	with	Rust	for	a	while	now	I	am
getting	more	and	more	convinced	that	the	approach	is	a	good
idea.	While	it	forces	you	to	give	up	on	the	idea	of	being	able	to
address	characters	individually,	that	is	actually	not	a	huge	loss.
For	a	start	Unicode	would	pretty	much	require	you	to	normalize
your	strings	anyways	before	you	do	text	processing	due	to	the
many	ways	in	which	you	can	format	the	strings.	For	instance
umlauts	come	in	combined	characters	but	they	can	also	be
manually	created	by	placing	the	regular	letter	followed	by	the
combining	diaeresis	character.

So	for	quite	a	few	operations	(like	validating	length,	font
rendering	etc.)	the	basic	operations	a	string	type	provides	are
already	non	sufficient	anyways.	Something	as	simple	as	“is	this
string	long	enough	for	a	tweet”	already	requires	quite	a	bit	of
special	casing.

So	far	at	least	I	have	not	missed	direct	character	access	for
anything	but	peeking	at	known	ASCII	characters	in	Rust	and	I
don't	really	expect	that	the	string	would	become	a	problem.
Especially	if	UTF-8	stays	the	dominant	format	then	keeping	it
internally	as	well	makes	a	lot	of	sense	and	requires	lots	of
unnecessary	encoding	and	decoding	steps	and	means	the
language	does	not	need	to	provide	support	for	ASCII	strings
separately.

I'm	definitely	expecting	more	languages	to	take	the	UTF-8	route
in	the	future	and	just	provide	more	tools	to	deal	with	Unicode
as	part	of	the	standard	library.

This	entry	was	tagged	python,	rust,	thoughts	and	unicode

©	Copyright	2015	by	Armin	Ronacher.
Content	licensed	under	the	Creative	Commons	attribution-noncommercial-

sharealike	License.
Contact	me	via	mail,	twitter,	github	or	bitbucket.	Tip	me	via	gittip.

More	info:	imprint.	Subscribe	to	Atom	feed	(or	RSS)




