
Confluent

Using	logs	to	build	a	solid	data	infrastructure	(or:
why	dual	writes	are	a	bad	idea)

May	27,	2015May	27,	2015 | 	Martin	Kleppmann
This	is	an	edited	transcript	of	a	talk	(https://martin.kleppmann.com/2015/04/24/logs-for-
data-infrastructure-at-craft.html)	I	gave	at	the	Craft	Conference	2015	(http://craft-
conf.com/2015).	The	video	(http://www.ustream.tv/recorded/61479591/theater)	and
slides	(https://speakerdeck.com/ept/using-logs-to-create-a-solid-data-infrastructure)	are
also	available.

How	does	your	database	store	data	on	disk	reliably?	It	uses	a	log.
How	does	one	database	replica	synchronise	with	another	replica?	It	uses	a	log.
How	does	a	distributed	algorithm	like	Raft	(https://ramcloud.stanford.edu/raft.pdf)
achieve	consensus?	It	uses	a	log.
How	does	activity	data	get	recorded	in	a	system	like	Apache	Kafka
(http://kafka.apache.org/)?	It	uses	a	log.
How	will	the	data	infrastructure	of	your	application	remain	robust	at	scale?	Guess
what…

Logs	are	everywhere.	I’m	not	talking	about	plain-text	log	files	(such	as	syslog	or	log4j)	–
I	mean	an	append-only,	totally	ordered	sequence	of	records.	It’s	a	very	simple	structure,
but	it’s	also	a	bit	strange	at	first	if	you’re	used	to	normal	databases.	However,	once	you
learn	to	think	in	terms	of	logs,	many	problems	of	making	large-scale	data	systems
reliable,	scalable	and	maintainable	suddenly	become	much	more	tractable.

Drawing	from	the	experience	of	building	scalable	systems	at	LinkedIn	and	other
startups,	this	talk	explores	why	logs	are	such	a	fine	idea:	making	it	easier	to	maintain
search	indexes	and	caches,	making	your	applications	more	scalable	and	more	robust	in
the	face	of	failures,	and	opening	up	your	data	for	richer	analysis,	while	avoiding	race
conditions,	inconsistencies	and	other	ugly	problems.

Hello!	I’m	Martin	Kleppmann	(https://martin.kleppmann.com/),	and	I	work
on	large-scale	data	systems,	especially	the	kinds	of	systems	that	you
find	at	internet	companies.	I	used	to	work	at	LinkedIn,	contributing	to
an	open	source	stream	processing	system	called	Samza
(http://samza.apache.org/).

In	the	course	of	that	work,	my	colleagues	and	I	learnt	a	thing	or	two
about	how	to	build	applications	such	that	they	are	operationally	robust,
reliable	and	perform	well.	In	particular,	I	got	to	work	with	some	fine
people	like	Jay	Kreps	(https://twitter.com/jaykreps),	Chris	Riccomini
(https://twitter.com/criccomini)	and	Neha	Narkhede
(https://twitter.com/nehanarkhede).	They	figured	out	a	particular
architectural	style	for	applications,	based	on	logs,	that	turns	out	to
work	really	well.	In	this	talk	I	will	describe	that	approach,	and	show
how	similar	patterns	arise	in	various	different	areas	of	computing.

What	I’m	going	to	talk	about	today	isn’t	really	new	—	some	people	have
known	about	these	ideas	for	a	long	time.	However,	they	aren’t	as	widely
known	as	they	should	be.	If	you	work	on	a	non-trivial	application,
something	with	more	than	just	one	database,	you’ll	probably	find	these
ideas	very	useful.

(http://dataintensive.net/)

At	the	moment,	I’m	taking	a	sabbatical	to	write	a	book	for	O’Reilly,
called	“Designing	Data-Intensive	Applications
(http://dataintensive.net/)”.	This	book	is	an	attempt	to	collect	the
important	fundamental	lessons	we’ve	learnt	about	data	systems	in	the
last	few	decades,	covering	the	architecture	of	databases,	caches,
indexes,	batch	processing	and	stream	processing.

The	book	is	not	about	any	one	particular	database	or	tool	–	it’s	about
the	whole	range	of	different	tools	and	algorithms	that	are	used	in
practice,	and	their	trade-offs,	their	pros	and	cons.	This	talk	is	partly
based	on	my	research	for	the	book,	so	if	you	find	it	interesting,	you
can	find	more	detail	and	background	in	the	book.	The	first	seven
chapters	are	currently	available	in	early	release
(http://dataintensive.net/).

Anyway,	let’s	get	going.	Let’s	assume	that	you’re	working	on	a	web
application.	In	the	simplest	case,	it	probably	has	the	stereotypical
three-tier	architecture:	you	have	some	clients	(which	may	be	web
browsers,	or	mobile	apps,	or	both),	which	make	requests	to	a	web
application	running	on	your	servers.	The	web	application	is	where	your
application	code	or	“business	logic”	lives.

Whenever	the	application	wants	to	remember	something	for	the	future,	it
stores	it	in	a	database.	And	whenever	the	application	wants	to	look	up
something	that	it	stored	previously,	it	queries	the	database.	This
approach	is	simple	to	understand	and	works	pretty	well.

However,	things	usually	don’t	stay	so	simple	for	long.	Perhaps	you	get
more	users,	making	more	requests,	your	database	gets	slow,	and	you	add	a
cache	to	speed	it	up	–	perhaps	memcached	or	Redis,	for	example.	Perhaps
you	need	to	add	full-text	search	to	your	application,	and	the	basic
search	facility	built	into	your	database	is	not	good	enough,	so	you	end
up	setting	a	separate	indexing	service	such	as	Elasticsearch	or	Solr.

Perhaps	you	need	to	do	some	graph	operations	that	are	not	efficient	on	a
relational	or	document	database,	for	example	for	social	features	or
recommendations,	so	you	add	a	separate	graph	index	to	your	system.
Perhaps	you	need	to	move	some	expensive	operations	out	of	the	web
request	flow,	and	into	an	asynchronous	background	process,	so	you	add	a
message	queue	which	lets	you	send	jobs	to	your	background	workers.

And	it	gets	worse…

By	now,	other	parts	of	the	system	are	getting	slow	again,	so	you	add
another	cache.	More	caches	always	make	things	faster,	right?	But	now	you
have	a	lot	of	systems	and	services,	so	you	need	to	add	metrics	and
monitoring	so	that	you	can	see	whether	they	are	actually	working,	and
the	metrics	system	is	another	system	in	its	own	right.

Next,	you	want	to	send	notifications,	such	as	email	or	push
notifications	to	your	users,	so	you	chain	a	notification	system	off	the
side	of	the	job	queue	for	background	workers,	and	it	perhaps	needs	some
kind	of	database	of	its	own	to	keep	track	of	stuff.	But	now	you’re
generating	a	lot	of	data	that	needs	to	be	analysed,	and	you	can’t	have
your	business	analysts	running	big	expensive	queries	on	your	main
database,	so	you	add	Hadoop	or	a	data	warehouse,	and	load	the	data	from
the	database	into	it.

Now	that	your	business	analytics	are	working,	you	find	that	your	search
system	is	no	longer	keeping	up…	but	you	realise	that	since	you	have	all
the	data	in	HDFS	anyway,	you	could	actually	build	your	search	indexes	in
Hadoop	and	push	them	out	to	the	search	servers,	and	the	system	just
keeps	getting	more	and	more	complicated…

…and	the	result	is	complete	and	utter	insanity.

How	did	we	get	into	that	state?	How	did	we	end	up	with	such	complexity,
where	everything	is	calling	everything	else,	and	nobody	understands	what
is	going	on?

It’s	not	that	any	particular	decision	we	made	along	the	way	was	bad.
There	is	no	one	database	or	tool	that	can	do	everything	that	our
application	requires	–	we	use	the	best	tool	for	the	job,	and	for	an
application	with	a	variety	of	features	that	implies	using	a	variety	of
tools.

Also,	as	a	system	grows,	you	need	a	way	of	decomposing	it	into	smaller
components	in	order	to	keep	it	manageable.	That’s	what	microservices	are
all	about.	But	if	your	system	becomes	a	tangled	mess	of	interdependent
components,	that’s	not	manageable	either.

Simply	having	many	different	storage	systems	is	not	a	problem	in	itself:
if	they	were	all	independent	from	each	other,	it	wouldn’t	be	a	big	deal.
The	real	trouble	here	is	that	many	of	them	end	up	containing	the	same
data,	or	related	data,	but	in	different	forms.

For	example,	the	documents	in	your	full-text	indexes	are	typically	also
stored	in	a	database,	because	search	indexes	are	not	intended	to	be	used
as	systems	of	record.	The	data	in	your	caches	is	a	duplicate	of	data	in
some	database	(perhaps	joined	with	other	data,	or	rendered	into	HTML,	or
something)	–	that’s	the	definition	of	a	cache.

Also,	denormalization	is	just	another	form	of	duplicating	data,	similar
to	caching	–	if	some	value	is	too	expensive	to	recompute	on	reads,	you
may	store	that	value	somewhere,	but	now	you	need	to	also	keep	it	up-to-
date	when	the	underlying	data	changes.	Materialized	aggregates,	such	as
the	count,	sum	or	average	of	a	bunch	of	records	(which	you	often	get	in
metrics	or	analytics	systems)	are	again	a	form	of	redundant	data.

I’m	not	saying	that	this	duplication	of	data	is	bad	–	far	from	it.
Caching,	indexing	and	other	forms	of	redundant	data	are	often	essential
for	getting	good	performance	on	reads.	However,	keeping	the	data	in	sync
between	all	these	various	different	representations	and	storage	systems
becomes	a	real	challenge.

For	lack	of	a	better	term	I’m	going	to	call	this	the	problem	of	“data
integration”.	With	that	I	really	just	mean	“making	sure	that	the	data	ends	up
in	all	the	right	places”.	Whenever	a	piece	of	data	changes	in	one	place,	it
needs	to	change	correspondingly	in	all	the	other	places	where	there	is	a
copy	or	derivative	of	that	data.

So	how	do	we	keep	these	different	data	systems	in	sync?	There	are	a	few
different	techniques.

A	popular	approach	is	so-called	dual	writes:

Dual	writes	is	simple:	it’s	your	application	code’s	responsibility	to
update	data	in	all	the	right	places.	For	example,	if	a	user	submits	some
data	to	your	web	app,	there’s	some	code	in	the	web	app	that	first	writes
the	data	to	your	database,	then	invalidates	or	refreshes	the	appropriate
cache	entries,	then	re-indexes	the	document	in	your	full-text	search
index,	and	so	on.	(Or	maybe	it	does	those	things	in	parallel	–	doesn’t
matter	for	our	purposes.)

The	dual	writes	approach	is	popular	because	it’s	easy	to	build,	and	it
more	or	less	works	at	first.	But	I’d	like	to	argue	that	it’s	a	really
bad	idea,	because	it	has	some	fundamental	problems.	The	first	problem	is
race	conditions.

The	following	diagram	shows	two	clients	making	dual	writes	to	two
datastores.	Time	flows	from	left	to	right,	following	the	black	arrows:

Here,	the	first	client	(teal)	is	setting	the	key	X	to	be	some	value	A.
They	first	make	a	request	to	the	first	datastore	–	perhaps	that’s	the
database,	for	example	–	and	set	X=A.	The	datastore	responds	saying	the
write	was	successful.	Then	the	client	makes	a	request	to	the	second
datastore	–	perhaps	that’s	the	search	index	–	and	also	sets	X=A.

At	the	same	time	as	this	is	happening,	another	client	(red)	is	also
active.	It	wants	to	write	to	the	same	key	X,	but	it	wants	to	set	the	key
to	a	different	value	B.	The	client	proceeds	in	the	same	way:	it	first
sends	a	request	X=B	to	the	first	datastore,	and	then	sends	a	request	X=B
to	the	second	datastore.

All	these	writes	are	successful.	However,	look	at	what	value	is	stored
in	each	database	over	time:

In	the	first	datastore,	the	value	is	first	set	to	A	by	the	teal	client,
and	then	set	to	B	by	the	red	client,	so	the	final	value	is	B.

In	the	second	datastore,	the	requests	arrive	in	a	different	order:	the
value	is	first	set	to	B,	and	then	set	to	A,	so	the	final	value	is	A.	Now
the	two	datastores	are	inconsistent	with	each	other,	and	they	will
permanently	remain	inconsistent	until	sometime	later	someone	comes	and
overwrites	X	again.

An	the	worst	thing:	you	probably	won’t	even	notice	that	your	database
and	your	search	indexes	have	gone	out	of	sync,	because	no	errors
occurred.	You’ll	probably	only	realize	six	months	later,	while	you’re
doing	something	completely	different,	that	your	database	and	your
indexes	don’t	match	up,	and	you’ll	have	no	idea	how	that	could	have
happened.

That	alone	should	be	enough	to	put	anyone	off	dual	writes.	But	wait,
there’s	more…

Let’s	look	at	denormalized	data.	Say,	for	example,	you	have	an
application	where	users	can	send	each	other	messages	or	emails,	and	you
have	an	inbox	for	each	user.	When	a	new	message	is	sent,	you	want	to	do
two	things:	add	the	message	to	the	list	of	messages	in	the	user’s	inbox,
and	also	increment	the	user’s	count	of	unread	messages.

You	keep	a	separate	counter	because	you	display	it	in	the	user	interface
all	the	time,	and	it	would	be	too	slow	to	query	the	number	of	unread
messages	by	scanning	over	the	list	of	messages	every	time	you	need	to
display	the	number.	However,	this	counter	is	denormalized	information:
it’s	derived	from	the	actual	messages	in	the	inbox,	and	whenever	the
messages	change,	you	also	need	to	update	the	counter	accordingly.

Let’s	keep	this	one	simple:	one	client,	one	database.	Think	about	what
happens	over	time:	first	the	client	inserts	the	new	message	into	the
recipient’s	inbox.	Then	the	client	makes	a	requiest	to	increment	the
unread	counter.

However,	just	in	that	moment,	something	goes	wrong	–	perhaps	the
database	goes	down,	or	a	process	crashes,	or	the	network	gets
interrupted,	or	someone	unplugs	the	wrong	network	cable.	Whatever	the
reason,	the	update	to	the	unread	counter	fails.

Now	your	database	is	inconsistent:	the	message	has	been	added	to	the
inbox,	but	the	counter	hasn’t	been	updated.	And	unless	you	periodically
recompute	all	your	counter	values	from	scratch,	or	undo	the	insertion	of
the	message,	it	will	forever	remain	inconsistent.

Of	course,	you	could	argue	that	this	problem	was	solved	decades	ago	by
transactions:	atomicity,	the	“A”	in	“ACID”,	means	that	if	you	make	several
changes	within	one	transaction,	they	either	all	happen	or	none	happen.
The	purpose	of	atomicity	is	to	solve	precisely	this	issue	–	if	something
goes	wrong	during	your	writes,	you	don’t	have	to	worry	about	a	half-
finished	set	of	changes	making	your	data	inconsistent.

The	traditional	approach	of	wrapping	the	two	writes	in	a	transaction
works	fine	in	databases	that	support	it,	but	many	of	the	new	generation
of	databases	don’t,	so	you’re	on	your	own.

Also,	if	the	denormalized	information	is	stored	in	a	different	database
–	for	example,	if	you	keep	your	emails	in	a	database	but	your	unread
counters	in	Redis	–	then	you	lose	the	ability	to	tie	the	writes	together
into	a	single	transaction.	If	one	write	succeeds,	and	the	other	fails,
you’re	going	to	have	a	difficult	time	clearing	up	the	inconsistency.

Some	systems	support	distributed	transactions,	based	on	2-phase	commit
(http://the-paper-trail.org/blog/consensus-protocols-two-phase-commit/)
for	example.	However,	many	datastores	nowadays	don’t	support	it,	and
even	if	they	did,	it’s	not	clear
(http://adrianmarriott.net/logosroot/papers/LifeBeyondTxns.pdf)	whether
distributed	transactions	are	a	good	idea	in	the	first	place.	So	we	have
to	assume	that	with	dual	writes,	the	application	has	to	deal	with
partial	failure,	which	is	difficult.

So,	back	to	our	original	question.	How	do	we	make	sure	that	all	the	data
ends	up	in	all	the	right	places?	How	do	we	get	a	copy	of	the	same	data
to	appear	in	several	different	storage	systems,	and	keep	them	all
consistently	in	sync	as	the	data	changes?

As	we	saw,	dual	writes	isn’t	the	solution,	because	it	can	introduce
inconsistencies	due	to	race	conditions	and	partial	failures.	How	can	we
do	better?

I’m	a	fan	of	stupidly	simple	solutions.	The	great	thing	about	simple
solutions	is	that	you	have	a	chance	of	understanding	them	and	convincing
yourself	that	they’re	correct.	And	in	this	case,	the	simplest	solution	I
can	see	is	to	do	all	your	writes	in	a	fixed	order,	and	to	store	them	in
that	fixed	order.

If	you	do	all	your	writes	sequentially,	without	any	concurrency,	then
you	have	removed	the	potential	for	race	conditions.	Moreover,	if	you
write	down	the	order	in	which	you	make	your	writes,	it	becomes	much
easier	to	recover	from	partial	failures,	as	I	will	show	later.

So,	the	stupidly	simple	solution	that	I	propose	looks	like	this:
whenever	anyone	wants	to	write	some	data,	we	append	that	write	to	the
end	of	a	sequence	of	records.	That	sequence	is	totally	ordered,	it’s
append-only	(we	never	modify	existing	records,	only	ever	add	new	records
at	the	end),	and	it’s	persistent	(we	store	it	durably	on	disk).

The	picture	above	shows	an	example	of	such	a	data	structure:	moving	left
to	right,	it	records	that	we	first	wrote	X=5,	then	we	wrote	Y=8,	then	we
wrote	X=6,	and	so	on.

That	data	structure	has	a	name:	we	call	it	a	log.

The	interesting	thing	about	logs	is	that	they	pop	up	in	many	different
areas	of	computing.	Although	it	may	seem	like	a	stupidly	simple	idea
that	can’t	possibly	work,	it	actually	turns	out	to	be	incredibly
powerful.

When	I	say	“logs”,	the	first	thing	you	probably	think	of	is	textual
application	logs	of	the	style	you	might	get	from	Log4j	or	Syslog.	For
example,	the	above	is	one	line	from	an	nginx	server’s	access	log,
telling	me	that	some	IP	addresses	requested	a	certain	file	at	a	certain
time.	It	also	includes	the	referrer,	the	user-agent,	the	response	code
and	a	few	other	things.

Sure,	that’s	one	kind	of	log,	but	when	I	talk	about	logs	here	I	mean
something	more	general.	I	mean	any	kind	of	data	structure	of	totally
ordered	records	that	is	append-only	and	persistent.	Any	kind	of	append-
only	file.

In	the	rest	of	this	talk,	I’d	like	to	run	through	a	few	examples	of	how
logs	are	used	in	practice.	It	turns	out	that	logs	are	already	present	in
the	databases	and	systems	you	use	every	day.	And	once	we	understand	how
logs	are	used	in	various	different	systems,	we’ll	be	in	a	better
position	to	understand	how	they	can	help	us	solve	the	problem	of	data
integration.

I’d	like	to	talk	about	four	different	places	where	logs	are	used,	and
the	first	is	in	the	internals	of	database	storage	engines.

Do	you	remember	B-Trees	(http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.219.7269)	from	your	algorithms	classes?	They	are	a	very
widely	used	data	structure	for	storage	engines	–	almost	all	relational
databases,	and	many	non-relational	databases,	use	them.

To	summarize	them	briefly:	a	B-Tree	consists	of	pages,	which	are	fixed-
size	blocks	on	disk,	typically	4	or	8	kB	in	size.	When	you	want	to	look
up	a	particular	key,	you	start	with	one	page,	which	is	at	the	root	of
the	tree.	The	page	contains	pointers	to	other	pages,	and	each	pointer	is
tagged	with	a	range	of	keys:	for	example,	if	your	key	is	between	0	and
100,	you	follow	the	first	pointer;	if	your	key	is	between	100	and	300,
you	follow	the	second	pointer;	and	so	on.

The	pointer	takes	you	to	another	page,	which	further	breaks	down	the	key
range	into	sub-ranges.	And	eventually	you	end	up	at	the	page	containing
the	particular	key	you’re	looking	for.

Now	what	happens	if	you	need	to	insert	a	new	key/value	pair	into	a	B-
tree?	You	have	to	insert	it	into	the	page	whose	key	range	contains	the
key	you’re	inserting.	If	there	is	enough	spare	space	in	that	page,	no
problem.	But	if	the	page	is	full,	it	needs	to	be	split	into	two	separate
pages.

When	you	split	a	page,	you	need	to	write	at	least	three	pages	to	disk:
the	two	pages	that	are	the	result	of	the	split,	and	the	parent	page	(to
update	the	pointers	to	the	split	pages).	However,	these	pages	may	be
stored	at	various	different	locations	on	disk.

This	raises	the	question:	what	happens	if	the	database	crashes	(or	the
power	goes	out,	or	something	else	goes	wrong)	halfway	through	the
operation,	after	only	some	of	those	pages	have	been	written	to	disk?	In
that	case,	you	have	the	old	(pre-split)	data	in	some	pages,	and	the	new
(post-split)	data	in	other	pages,	and	that’s	bad	news.	You’re	most
likely	going	to	end	up	with	dangling	pointers	or	pages	that	nobody	is
pointing	to.	In	other	words,	you’ve	got	a	corrupted	index.

Now,	storage	engines	have	been	doing	this	for	decades,	so	how	do	they
make	B-trees	reliable?	The	answer	is	that	they	use	a	write-ahead	log
(http://db.csail.mit.edu/madden/html/aries.pdf)	(WAL).

A	write-ahead	log	is	a	particular	kind	of	log,	i.e.	an	append-only	file
on	disk.	Whenever	the	storage	engine	wants	to	make	any	kind	of	change	to
the	B-tree,	it	must	first	write	the	change	that	it	intends	to	make	to	the
WAL.	Only	after	it	has	been	written	to	the	WAL,	and	durably	written	to
disk,	it	is	allowed	to	modify	the	actual	B-tree.

This	makes	the	B-tree	reliable:	if	the	database	crashes	while	data	was
being	appended	to	the	WAL,	no	problem,	because	the	B-tree	hasn’t	been
touched	yet.	And	if	it	crashes	while	the	B-tree	is	being	modified,	no
problem,	because	the	WAL	contains	the	information	about	what	changes
were	about	to	happen.	When	the	database	comes	back	up	after	the	crash,
it	can	use	the	WAL	to	repair	the	B-tree	and	get	it	back	into	a
consistent	state.

This	is	our	first	example	to	show	that	logs	are	a	really	neat	idea.

Now,	storage	engines	didn’t	stop	with	B-trees.	Some	clever	folks
realized	that	if	we’re	writing	everything	to	a	log	anyway,	we	might	as
well	use	the	log	as	the	primary	storage	medium.	This	is	known	as	log-
structured	storage	(http://www.cs.umb.edu/~poneil/lsmtree.pdf),	which	is
used	in	HBase	(http://blog.cloudera.com/blog/2012/06/hbase-io-hfile-
input-output/)	and	Cassandra	(http://jonathanhui.com/how-cassandra-read-
persists-data-and-maintain-consistency),	and	a	variant	appears	in	Riak
(http://basho.com/assets/bitcask-intro.pdf).

In	log-structured	storage	we	don’t	always	keep	appending	to	the	same
file,	because	it	would	become	too	large	and	it	would	be	too	difficult	to
find	the	key	we’re	looking	for.	Instead,	the	log	is	broken	into
segments,	and	from	time	to	time	the	storage	engine	merges	segments	and
discards	duplicate	keys.	Segments	may	also	be	internally	sorted	by	key,
which	can	make	it	easier	to	find	the	key	you’re	looking	for,	and	also
simplifies	merging.	However,	these	segments	are	still	logs:	they	are
only	written	sequentially,	and	they	are	immutable	once	written.

As	you	can	see,	logs	play	an	important	role	in	storage	engines.

Let’s	move	on	to	the	second	example	where	logs	are	used:	database
replication.

Replication	is	a	feature	that	you	find	in	many	databases:	it	allows	you
to	keep	a	copy	of	the	same	data	on	several	different	nodes.	That	can	be
useful	for	spreading	the	load,	and	it	also	means	that	if	one	node	dies,
you	can	fail	over	to	another	one.

There	are	a	few	different	ways	of	implementing	replication,	but	a	common
choice	is	to	designate	one	node	as	the	leader	(also	known	as	primary	or
master),	and	the	other	replicas	as	followers	(also	known	as	standby	or
slave).	I	don’t	like	the	master/slave	terminology,	so	I’m	going	to	stick
with	leader/follower.

Whenever	a	client	wants	to	write	something	to	the	database,	it	needs	to
talk	to	the	leader.	Read-only	clients	can	use	either	the	leader	or	the
follower	(although	the	follower	is	typically	asynchronous,	so	it	may
have	slightly	out-of-date	information	if	the	latest	writes	haven’t	yet
been	applied).

When	clients	write	data	to	the	leader,	how	does	that	data	get	to	the
followers?	Big	surprise:	they	use	a	log!	They	use	a	replication	log,	which
may	in	fact	be	the	same	as	the	write-ahead	log	(this	is	what	Postgres
does,	for	example)	or	it	may	be	a	separate	replication	log	(MySQL	does
this).

The	replication	log	works	as	follows:	whenever	some	data	is	written	to
the	leader,	it	is	also	appended	to	the	replication	log.	The	followers
read	that	log	in	the	order	it	was	written,	and	apply	each	of	the	writes
to	their	own	copy	of	the	data.	As	a	result,	each	follower	processes	the
same	writes	in	the	same	order	as	the	leader,	and	thus	it	ends	up	with	a
copy	of	the	same	data.

Even	if	the	writes	happen	concurrently	on	the	reader,	the	log	still
contains	the	writes	in	a	total	order.	Thus,	the	log	actually	removes	the
concurrency	from	the	writes	–	it	“squeezes	all	the	non-determinism	out
of	the	stream	of	writes	(https://engineering.linkedin.com/distributed-
systems/log-what-every-software-engineer-should-know-about-real-time-
datas-unifying)”,	and	on	the	follower	there’s	no	doubt	about	the	order
in	which	the	writes	happened.

So	what	about	the	dual-writes	race	condition	we	discussed	earlier?



This	race	condition	cannot	happen	with	leader-based	replication,	because
clients	don’t	write	directly	to	the	followers.	The	only	writes	processed
by	followers	are	the	ones	they	receive	from	the	replication	log.	And
since	the	log	fixes	the	order	of	those	writes,	there	is	no	ambiguity
over	which	one	happened	first.

And	what	about	the	second	problem	with	dual	writes	that	we	discussed
earlier?	This	could	still	happen:	a	follower	could	successfully	process
the	first	write	from	a	transaction,	but	fail	to	process	the	second	write
from	the	transaction	(perhaps	because	the	disk	is	full,	or	the	network
is	interrupted).

If	the	network	between	the	leader	and	the	follower	is	interrupted,	the
replication	log	cannot	flow	from	the	leader	to	the	follower.	This	could
lead	to	an	inconsistent	replica,	as	we	discussed	previously.	How	does
database	replication	recover	from	such	errors	and	avoid	becoming
inconsistent?

Notice	that	the	log	has	a	very	nice	property:	because	the	leader	only
ever	appends	to	it,	we	can	give	each	record	in	the	log	a	sequential
number	that	is	always	increasing	(which	we	might	call	log	position	or
offset).	Furthermore,	followers	only	process	it	in	sequential	order	(from
left	to	right,	i.e.	in	order	of	increasing	log	position),	so	we	can
describe	a	follower’s	current	state	with	a	single	number:	the	position
of	the	latest	record	it	has	processed.

When	you	know	a	follower’s	current	position	in	the	log,	you	can	be	sure
that	all	the	prior	records	in	the	log	have	already	been	processed,	and
none	of	the	subsequent	records	have	been	processed.

This	is	great,	because	it	makes	error	recovery	quite	simple.	If	a
follower	becomes	disconnected	from	the	leader,	or	it	crashes,	the
follower	just	needs	to	store	the	log	position	up	to	which	it	has
processed	the	replication	log.	When	the	follower	recovers,	it	reconnects
to	the	leader,	and	asks	for	the	replication	log	starting	from	the	last
offset	that	it	previously	processed.	Thus,	the	follower	can	catch	up	on
all	the	writes	that	it	missed	while	it	was	disconnected,	without	losing
any	data	or	receiving	duplicates.

The	fact	that	the	log	is	totally	ordered	makes	this	recovery	much
simpler	than	if	you	had	to	keep	track	of	every	write	individually.

The	third	example	of	logs	in	practice	is	in	a	different	area:
distributed	consensus.

Achieving	consensus	is	one	of	the	well-known	and	often-discussed
problems	in	distributed	systems.	It	is	important,	but	it	is	also
surprisingly	difficult	to	solve.

An	example	of	consensus	in	the	real	world	would	be	trying	to	get	a	group
of	friends	to	agree	on	where	to	go	for	lunch.	This	is	a	distinctive
feature	of	a	sophisticated	civilization
(https://www.goodreads.com/quotes/71510-the-history-of-every-major-
galactic-civilization-tends-to-pass),	and	can	be	a	surprisingly
difficult	problem,	especially	if	some	of	your	friends	are	easily
distractible	(so	they	don’t	always	respond	to	your	questions)	or	if	they
are	fussy	eaters.

Closer	to	our	usual	domain	of	computers,	an	example	of	where	you	might
want	consensus	is	in	a	distributed	database	system:	for	instance,	you
may	require	all	your	database	nodes	to	agree	on	which	node	is	the	leader
for	a	particular	partition	(shard)	of	the	database.

It’s	pretty	important	that	they	all	agree	on	who’s	leader:	if	two
different	nodes	both	think	they	are	leader,	they	may	both	accept	writes
from	clients.	Later,	when	one	of	them	finds	out	that	it	was	wrong	and	it
wasn’t	leader	after	all,	the	writes	that	it	accepted	may	be	lost.	This
situation	is	known	as	split	brain,	and	it	can	cause	nasty	data	loss
(https://aphyr.com/posts/284-call-me-maybe-mongodb).

There	are	a	few	different	algorithms	for	implementing	consensus.	Paxos
(http://www.read.seas.harvard.edu/~kohler/class/08w-
dsi/chandra07paxos.pdf)	is	perhaps	the	most	well-known,	but	there	are
also	Zab	(http://labs.yahoo.com/files/ZAB.pdf)	(used	by	Zookeeper
(https://zookeeper.apache.org/)),	Raft
(http://ramcloud.stanford.edu/raft.pdf)	and	others
(http://arxiv.org/abs/1309.5671).	These	algorithms	are	quite	tricky	and
have	some	non-obvious	subtleties
(http://www.cl.cam.ac.uk/~ms705/pub/papers/2015-osr-raft.pdf).	In	this
talk,	I	will	just	very	briefly	sketch	one	part	of	the	Raft	algorithm.

In	a	consensus	system,	there	are	a	number	of	nodes	(three	in	this
diagram)	which	are	in	charge	of	agreeing	what	the	value	of	a	particular
variable	should	be.	A	client	proposes	a	value,	for	example	X=8	(which
may	mean	that	node	X	is	the	leader	for	partition	8),	by	sending	it	to
one	of	the	Raft	nodes.	That	node	collects	votes	from	the	other	nodes.	If
a	majority	of	nodes	agree	that	the	value	should	be	X=8,	the	first	node
is	allowed	to	commit	the	value.

When	that	value	is	committed,	what	happens?	In	Raft,	that	value	is
appended	to	the	end	of	a	log.	Thus,	what	Raft	is	doing	is	not	just
getting	the	nodes	to	agree	on	one	particular	value	–	it’s	actually
building	up	a	log	of	values	that	have	been	agreed	over	time.	All	Raft
nodes	are	guaranteed	to	have	exactly	the	same	sequence	of	committed
values	in	their	log,	and	clients	can	consume	this	log.

Once	the	newly	agreed	value	has	been	committed,	appended	to	the	log	and
replicated	to	the	other	nodes,	the	client	that	originally	proposed	the
value	X=8	is	sent	a	response	saying	that	the	system	succeeded	in
reaching	consensus,	and	that	the	proposed	value	is	now	part	of	the	Raft
log.

(As	a	theoretical	aside,	the	problems	of	consensus	and	atomic	broadcast	–
that	is,	creating	a	log	with	exactly-once	delivery	–	are	reducible	to
each	other	(http://courses.csail.mit.edu/6.852/08/papers/CT96-JACM.pdf).
This	means	Raft’s	use	of	a	log	is	not	just	a	convenient	implementation
detail,	but	also
reflects	a	fundamental	property	of	the	consensus	problem	it	is	solving.)

Ok.	We’ve	seen	that	logs	really	are	a	recurring	theme	in	surprisingly
many	areas	of	computing:	storage	engines,	database	replication	and
consensus.	As	the	fourth	and	final	example,	I’d	like	to	talk	about
Apache	Kafka	(http://kafka.apache.org/),	another	system	that	is	built
around	the	idea	of	logs.	The	interesting	thing	about	Kafka	is	that	it	it
doesn’t	hide	the	log	from	you.	Rather	than	treating	the	log	as	an
implementation	detail,	Kafka	exposes	it	to	you,	so	that	you	can	build
applications	around	it.

You	may	have	heard	of	Kafka	before.	It’s	an	open	source	project	that	was
originally	developed	at	LinkedIn,	and	is	now	a	lively	Apache	project
with	many	different	contributors	and	users.

The	typical	use	of	Kafka	is	as	a	message	broker	(message	queue)	–	so	it
is	somewhat	comparable	to	AMQP,	JMS	and	other	messaging	systems.	Kafka
has	two	types	of	clients:	producers	(which	send	messages	to	Kafka)	and
consumers	(which	subscribe	to	streams	of	messages	in	Kafka).

For	example,	producers	may	be	your	web	servers	or	mobile	apps,	and	the
types	of	messages	they	send	to	Kafka	might	be	logging	information	–	e.g.
events	that	indicate	which	user	clicked	which	link	at	which	point	in
time.	The	consumers	are	various	processes	that	need	to	find	out	about
stuff	that	is	happening:	for	example,	to	generate	analytics,	to	monitor
for	unusual	activity,	to	generate	personalized	recommendations	for
users,	and	so	on.

The	thing	that	makes	Kafka	interestingly	different	from	other	message
brokers	is	that	it	is	structured	as	a	log.	In	fact,	it	has	many	logs!
Data	streams	in	Kafka	are	split	into	partitions,	and	each	partition	is	a
log	(a	totally	ordered	sequence	of	messages).	Different	partitions	are
completely	independent	from	each	other,	so	there	is	no	ordering
guarantee	across	different	partitions.	This	allows	different	partitions
to	be	handled	on	different	servers,	which	is	important	for	the
scalability	of	Kafka.

Each	partition	is	stored	on	disk	and	replicated	across	several	machines,
so	it	is	durable	and	can	tolerate	machine	failure	without	data	loss.
Producing	and	consuming	logs	is	very	similar	to	what	we	saw	previously
in	the	context	of	database	replication:

Every	message	that	is	sent	to	Kafka	is	appended	to	the	end	of	a
partition.	That	is	the	only	write	operation	supported	by	Kafka:
appending	to	the	end	of	a	log.	It’s	not	possible	to	modify	past
messages.
Within	each	partition,	messages	have	a	monotonically	increasing	offset
(log	position).	To	consume	messages	from	Kafka,	a	client	reads
messages	sequentially,	starting	from	a	particular	offset.	That	offset
is	managed	by	the	consumer.

Let’s	return	to	the	data	integration	problem	from	the	beginning	of	this
talk.

Say	you	have	this	tangle	of	different	datastores,	caches	and	indexes
that	need	to	be	kept	in	sync	with	each	other.	Now	that	we	have	seen	a
bunch	of	examples	of	practical	applications	of	logs,	can	we	use	what
we’ve	learnt	to	figure	out	how	to	build	these	systems	in	a	better	way?

Firstly,	we	need	to	stop	doing	dual	writes.	As	discussed,	it’s	probably
going	to	make	your	data	inconsistent,	unless	you	have	very	carefully
thought	about	the	potential	race	conditions	and	partial	failures	that
can	occur	in	your	application.

And	note	this	inconsistency	isn’t	just	a	kind	of	“eventual	consistency”
that	is	often	quoted	in	asynchronous	systems.	What	I’m	talking	about
here	is	permanent	inconsistency	–	if	you’ve	written	two	different	values
to	two	different	datastores,	due	to	a	race	condition	or	partial	failure,
that	difference	won’t	simply	resolve	itself.	You’d	have	to	take	explicit
actions	to	search	for	data	mismatches	and	resolve	them	(which	is
difficult,	since	the	data	is	constantly	changing).

We	need	a	better	approach	than	dual	writes	for	keeping	different
datastores	in	sync.

What	I	propose	is	this:	rather	than	having	the	application	write
directly	to	the	various	datastores,	the	application	only	appends	the
data	to	a	log	(such	as	Kafka).	All	the	different	representations	of	this
data	–	your	databases,	your	caches	(https://www.facebook.com/note.php?
note_id=23844338919&id=9445547199),	your	indexes	–	are	constructed	by
consuming	the	log	in	sequential	order.

Each	datastore	that	needs	to	be	kept	in	sync	is	an	independent	consumer
of	the	log.	Every	consumer	takes	the	data	in	the	log,	one	record	at	a
time,	and	writes	it	to	its	own	datastore.	The	log	guarantees	that	the
consumers	all	see	the	records	in	the	same	order;	by	applying	the	writes
in	the	same	order,	the	problem	of	race	conditions	is	gone.	This	looks
very	much	like	the	database	replication	we	saw	earlier!

And	what	about	the	problem	of	partial	failure?	What	if	one	of	your
stores	has	a	problem	and	can’t	accept	writes	for	a	while?

That	problem	is	also	solved	by	the	log:	each	consumer	keeps	track	of	the
log	position	up	to	which	it	has	processed	the	log.	When	the	error	in	the
datastore-writing	consumer	is	resolved,	it	can	resume	processing	records
in	the	log	from	the	last	position	it	previously	reached.	That	way,	a
datastore	won’t	lose	any	updates,	even	if	it’s	offline	for	a	while.	This
is	great	for	decoupling	parts	of	your	system:	even	if	there	is	a	problem
in	one	datastore,	the	rest	of	the	system	remains	unaffected.

The	log,	the	stupidly	simple	idea	of	putting	your	writes	in	a	total
order,	strikes	again.

Just	one	problem	remains:	the	consumers	of	the	log	all	update	their
datastores	asynchronously,	so	they	are	eventually	consistent.	Reading
from	them	is	like	reading	from	a	database	follower:	they	may	be	a	little
behind	the	latest	writes,	so	you	don’t	have	a	guarantee	of	read-your-
writes
(http://www.allthingsdistributed.com/2007/12/eventually_consistent.html)
(and	certainly	not	linearizability	(https://aphyr.com/posts/313-strong-
consistency-models)).

I	think	that	can	be	overcome	by	layering	a	transaction	protocol
(http://research.microsoft.com/pubs/199947/Tango.pdf)	on	top	of	the	log,
but	that’s	a	researchy	area	which	so	far	hasn’t	been	widely	implemented
in	production	systems.	For	now,	a	better	option	is	to	extract	the	log
from	a	database:

This	approach	is	called	change	data	capture,	which	I	wrote	about	recently
(http://blog.confluent.io/2015/04/23/bottled-water-real-time-
integration-of-postgresql-and-kafka/)	(and	implemented	on	PostgreSQL
(https://github.com/confluentinc/bottledwater-pg)).	As	long	as	you’re
only	writing	to	a	single	database	(not	doing	dual	writes),	and	getting
the	log	of	writes	from	the	database	(in	the	order	in	which	they	were
committed	to	the	DB),	then	this	approach	works	just	as	well	as	making
your	writes	to	the	log	directly.

As	this	database	in	front	of	the	log	applies	writes	synchronously,	you
can	use	it	to	make	reads	that	require	“immediate	consistency”
(linearizability),	and	enforce	constraints	(e.g.	requiring	that	account
balances	never	go	negative).	Going	via	a	database	also	means	that	you
don’t	need	to	trust	the	log	as	your	system	of	record	(which	may	be	a
scary	prospect	if	it’s	implemented	with	a	new	technology)	–	if	you	have
an	existing	database	that	you	know	and	like,	and	you	can	extract	a
change	log	from	that	database,	you	can	still	get	all	the	advantages	of	a
log-oriented	architecture.	I’ll	be	talking	more	about	this	topic	in	an
upcoming	conference	talk	(http://martin.kleppmann.com/2015/06/02/change-
capture-at-berlin-buzzwords.html).

To	close,	I’d	like	to	leave	you	with	a	thought	experiment:

Most	APIs	we	work	with	have	endpoints	for	both	reading	and	writing.	In
RESTful	terms,	GET	is	for	reading	(i.e.	side-effect-free	operations)
and	POST,	PUT	and	DELETE	are	for	writing.	These	endpoints	for	writing
are	ok	if	you	only	have	one	system	you’re	writing	to,	but	if	you	have
more	than	one	such	system,	you	quickly	end	up	with	dual	writes	and	all
their	aforementioned	problems.

Imagine	a	system	with	an	API	in	which	you	eliminate	all	the	endpoints
for	writing.	Imagine	that	you	keep	all	the	GET	requests,	but	prohibit
any	POST,	PUT	or	DELETE.	Instead,	the	only	way	you	can	send	writes
into	the	system	is	by	appending	them	to	a	log,	and	having	the	system
consume	that	log.	(The	log	must	be	outside	of	the	system,	so	that	you
can	have	several	consumers	for	the	same	log.)

For	example,	imagine	a	variant	of	Elasticsearch	in	which	you	cannot
write	documents	through	the	REST	API,	but	only	write	documents	by
sending	them	to	Kafka.	Elasticsearch	would	internally	include	a	Kafka
consumer	that	takes	documents	and	adds	them	to	the	index.	This	would
actually	simplify	some	of	the	internals	of	Elasticsearch,	since	it	would
no	longer	have	to	worry	about	concurrency	control,	and	replication	would
be	simpler	to	implement.	And	it	would	sit	neatly	alongside	other	tools
that	may	be	consuming	the	same	log.

My	favorite	feature	of	this	log-oriented	architecture	is	this:	if	you
want	to	build	a	new	derived	datastore,	you	can	just	start	a	new	consumer
at	the	beginning	of	the	log,	and	churn	through	the	history	of	the	log,
applying	all	the	writes	to	your	datastore.	When	you	reach	the	end,
you’ve	got	a	new	view	onto	your	dataset,	and	you	can	keep	it	up-to-date
by	simply	continuing	to	consume	the	log!

This	makes	it	really	easy	to	try	out	new	ways	of	presenting	your
existing	data,	for	example	to	index	it	another	way.	You	can	build
experimental	new	indexes	or	views	onto	your	data	without	interfering
with	any	of	the	existing	data.	If	the	result	is	good,	you	can	shift
users	to	read	from	the	new	view;	if	it	isn’t,	you	can	just	discard	it
again.	This	gives	you	tremendous	freedom	to	experiment	and	adapt	your
application.

Further	reading

Many	of	the	ideas	in	this	talk	were	previously	laid	out	by	Jay	Kreps:
“The	Log:	What	every	software	engineer	should	know	about	real-time
data’s	unifying	abstraction
(http://engineering.linkedin.com/distributed-systems/log-what-every-
software-engineer-should-know-about-real-time-datas-unifying),”	16
December	2013.	(An	edited	version	was	published	as	an	ebook	by
O’Reilly	Media	(http://shop.oreilly.com/product/0636920034339.do),
September	2014.)
This	talk	arose	from	research	I	did	for	my	own	book,	“Designing	Data-
Intensive	Applications	(http://dataintensive.net),”	to	appear	with
O’Reilly	Media	in	2015.
For	a	more	detailed	vision	of	deriving	materialised	views	from	a	log,
see	my	previous	talk	“Turning	the	database	inside-out	with	Apache
Samza	(https://martin.kleppmann.com/2015/03/04/turning-the-database-
inside-out.html),”	at	Strange	Loop,	18	Sep	2014.
Pat	Helland	has	also	observed	that	immutability	and	append-only
datasets	are	a	recurring	pattern	at	many	levels	of	the	stack:	see
“Immutability	Changes	Everything
(http://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper16.pdf),”	at	7th
Biennial	Conference	on	Innovative	Data	Systems	Research	(CIDR),	January	2015.
LinkedIn’s	approach	to	building	derived	data	systems	based	on	totally
ordered	logs	is	described	in	Shirshanka	Das,	Chavdar	Botev,	Kapil
Surlaker,	et	al.:	“All	Aboard	the	Databus!
(http://www.socc2012.org/s18-das.pdf),”	at	ACM	Symposium	on	Cloud
Computing	(SoCC),	October	2012.
Facebook’s	Wormhole	has	a	lot	of	similarities	to	Databus.	See
Yogeshwer	Sharma,	Philippe	Ajoux,	Petchean	Ang,	et	al.:	“Wormhole:
Reliable	Pub-Sub	to	Support	Geo-replicated	Internet	Services
(https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-
sharma.pdf),”	at	12th	USENIX	Symposium	on	Networked	Systems	Design	and
Implementation	(NSDI),	May	2015.
If	you	need	transactional	semantics	(e.g.	linearizability),	you	can
add	a	transaction	protocol	on	top	of	the	asynchronous	log.	I	like	the
one	described	in	Mahesh	Balakrishnan,	Dahlia	Malkhi,	Ted	Wobber,	et
al.:	“Tango:	Distributed	Data	Structures	over	a	Shared	Log
(http://research.microsoft.com/pubs/199947/Tango.pdf),”	at	24th	ACM
Symposium	on	Operating	Systems	Principles	(SOSP),	pages	325–340,	November
2013.
Write-ahead	logs	are	described	in	many	places.	For	a	detailed
discussion,	see	C	Mohan,	Don	Haderle,	Bruce	G	Lindsay,	Hamid
Pirahesh,	and	Peter	Schwarz:	“ARIES:	A	Transaction	Recovery	Method
Supporting	Fine-Granularity	Locking	and	Partial	Rollbacks	Using
Write-Ahead	Logging	(http://db.csail.mit.edu/madden/html/aries.pdf),”
ACM	Transactions	on	Database	Systems	(TODS),	volume	17,	number	1,	pages
94–162,	March	1992.
The	log-structured	storage	approach	used	in	Cassandra	and	HBase
appears	in	Patrick	O’Neil,	Edward	Cheng,	Dieter	Gawlick,	and
Elizabeth	O’Neil:	“The	Log-Structured	Merge-Tree	(LSM-Tree)
(http://www.cs.umb.edu/~poneil/lsmtree.pdf),”	Acta	Informatica,	volume
33,	number	4,	pages	351–385,	June	1996.
For	an	analysis	of	the	Raft	consensus	algorithm,	and	some	subtle
correctness	requirements,	see	Heidi	Howard,	Malte	Schwarzkopf,	Anil
Madhavapeddy,	and	Jon	Crowcroft:	“Raft	Refloated:	Do	We	Have
Consensus?	(http://www.cl.cam.ac.uk/~ms705/pub/papers/2015-osr-
raft.pdf),”	ACM	SIGOPS	Operating	Systems	Review,	volume	49,	number	1,
pages	12–21,	January	2015.

4	thoughts	on	“Using	logs	to	build	a	solid	data
infrastructure	(or:	why	dual	writes	are	a	bad	idea)”

1.	

ANDREY	GORDIENKOV	SAYS:	Hi	Martin,
Could	you	please	clarify	following	statement:
Imagine	a	system	with	an	API	in	which	you	eliminate	all	the	endpoints
for	writing.	Imagine	that	you	keep	all	the	GET	requests,	but	prohibit
any	POST,	PUT	or	DELETE.	Instead,	the	only	way	you	can	send	writes
into	the	system	is	by	appending	them	to	a	log,	and	having	the	system
consume	that	log.

How	can	I	append	new	data	to	log	with	GET?	I	can	see	it	only	by
“parsing”	arguments	that	really	looks	like	prohibited	operation	=)
Should	some	external	system	writes	to	log?

Like

	May	28,	2015	at	8:15	am	 • Reply »
MARTIN	KLEPPMANN	SAYS:	Yes,	I	mean	that	you	separate	your	API
into	two	APIs:	one	that	is	read-only	(GET	requests	which	hit	some
kind	of	datastore	that	is	updated	from	a	log),	and	one	that	is
write-only	(appending	to	the	log).	You	can	either	have	external
systems	write	to	the	log	directly,	or	wrap	the	log-writing	in	some
kind	of	API	endpoint,	but	the	point	is	that	writes	go	to	the	log,
not	directly	to	the	derived	datastore.	This	principle	of	separating
read	and	write	APIs	is	also	known	as	CQRS.
Like

	May	29,	2015	at	11:03	am	 • Reply »

2.	

BOOKMARKS	FOR	MAY	27TH	|	CHRIS'S	DIGITAL	DETRITUS	SAYS:	[…]	Using	logs
to	build	a	solid	data	infrastructure	(or:	why	dual	writes	are	a	bad
idea)	|	Confluent	–	[…]	Like

	May	28,	2015	at	9:01	am	 • Reply »

3.	

MARCOS	ALCANTARA	SAYS:	Thanks	for	the	talk!	And	please,	talk	more!
Like

	May	28,	2015	at	10:45	pm	 • Reply »

BLOG	AT	WORDPRESS.COM.	|	THE	MINNOW	THEME.

 Follow

Follow	“Confluent”

Build	a	website	with	WordPress.com




