
DOWNLOAD PLUGINS HELP ABOUT NEWS DEVELOPMENT

Latest	News
Security	Advisories
Blogs

	Subscribe	via	RSS	2.0	or	Atom!Pidgin	News
Junk	security	reporting	for	cash	—	and	credit?
June	25,	2015	03:14	PM	by	Ethan	Blanton

A	few	times	a	year,	Pidgin	gets	a	rash	of	junk	security	reports	from	“independent	security
researchers”.	Typically	we	get	3–5	or	more	reports	in	the	span	of	just	a	couple	of	days,	reporting
“vulnerabilities”	such	as	HTTP	POST	submission	of	plain-text	passwords	to	TLS-encrypted	GNU
Mailman	subscription	preferences	login.	(As	many	of	you	will	know,	by	default	Mailman	will	email
your	password	to	you	every	month.	In	addition,	password	retrieval	is	as	simple	as	entering	a
subscribed	email	address	and	waiting	for	the	password	to	arrive	in	that	address’s	inbox.)	The	report
typically	also	asks	for	consideration	in	the	form	of	a	bounty	or	finder’s	fee.

The	typical	defining	characteristics	of	such	an	email	are:

1.	 The	security	flaw	being	reported	is	trivial-to-irrelevant.
2.	 The	mechanism	by	which	the	flaw	operates	is	often	protocol-	or	configuration-related,	such

as	the	presence	or	absence	of	certain	HTTP	headers	or	the	method	used	for	a	form
submission.

3.	 The	report	does	not	indicate	that	the	“researcher”	understands	the	flaw	or	even	personally
verified	its	existence;	often	one	gets	the	feeling	from	this	and	the	previous	point	that	it	was
identified	by	an	automated	tool.

4.	 The	reporter	shows	no	understanding	of	the	entity	being	contacted,	often	(for	example)
referring	to	the	Pidgin	project	as	a	“company”	or	suggesting	that	it	is	a	large	and	wealthy
organization.

5.	 The	reporter	asks	for	some	sort	of	reward.
6.	 All	of	the	reports	in	a	given	burst	come	from	the	same	general	locale,	often	India.

The	first	three	points	on	this	list	make	the	reports	seldom	useful	and	somewhat	of	a	nuisance.	The
third	point,	in	particular,	means	that	when	the	reporter	receives	a	polite	reply	to	the	effect	of	“we
know,	it’s	not	a	problem	and	here’s	why,”	they	often	persist	in	repeating	textbook	explanations	of
the	flaw	with	no	reference	to	the	effective	implications	of	the	problem	(or	lack	thereof).	Sometimes
this	degenerates	into	threats	of	exploitation	or	disclosure	to	the	highest	bidder,	though	not	often.

The	fourth	and	fifth	points	conflict	somewhat	with	the	sixth	point	in	trying	to	understand	why	this
happens	and	attempting	to	address	the	problem.	Points	4	&	5	suggest	that	the	reporter’s	primary
objective	is	financial	gain,	and	coupled	with	1–3	that	they	recently	found	out	about	this	issue	(or
issues	like	it)	and	saw	an	opportunity	to	make	a	quick	buck	off	large	organizations	with	mediocre
security	skills.	This	would	lead	me	to	believe	that	the	rashes	of	back-to-back	reports	are	prompted
by,	perhaps,	media	coverage	of	bug	bounties	or	reporting	of	a	new-and-interesting	configuration
error	in	large	numbers	of	sites.	Unfortunately,	the	error	or	flaw	being	reported	is	often	not	new	or
interesting.

I	believe	that	the	sixth	point	is	most	instructive,	and	I	think	there’s	something	the	community	can	do
about	it.	I	suspect	that	these	rashes	of	reports	are	in	fact	course	assignments	for	some	sort	of
course	on	computer	security	being	taught	at	an	academic	institution	(and	probably	various	courses
at	various	institutions).	I	suspect	that	students	are	instructed	to	learn	about	some	common
vulnerabilities,	find	an	example	on	the	web,	and	contact	the	site	administrators	with	their	findings.

I	cannot	object	to	the	general	principle	behind	such	an	assignment.	However,	I	can	object	to	the	way
it	is	being	specifically	handled.	If	my	suspicions	are	correct,	then	I	believe	that	it	is	the	responsibility
of	the	course	instructor	to	vet	the	students’	individual	reports	for	relevance	and	correctness	before
sending	them	on	to	the	affected	organizations.	I	would	also	leave	out	the	bounty-seeking	in	an
educational	setting,	but	I	recognize	that	requesting	a	bounty	for	valid	flaws	is	an	accepted	practice
in	the	commercial	world,	and	that	identifying	valid	flaws	is	a	valuable	service.

An	alternate,	but	related,	possibility	is	that	some	security	course	is	discussing	vulnerabilities	and
disclosures,	and	students	are	taking	it	upon	themselves	to	contact	various	organizations	with	flaws
they	found	using	automated	tools	to	try	to	make	some	cash	on	the	side.	I	find	this	less	likely	given
the	very	short	time	frames	in	which	such	reporting	bursts	occur	(often	just	a	few	days).

In	either	of	these	education-related	cases,	there’s	something	that	can	be	done	about	the	problem.	If
you	are	an	instructor	teaching	such	a	course,	please	emphasize	responsible	reporting,	which
includes	understanding	both	the	mechanism	and	the	impact	of	the	flaw,	and	determining	whether	it
is	likely	to	be	relevant	to	the	affected	organization.	In	addition,	as	mentioned	above,	screening
reports	before	they	are	sent	out	would	be	the	neighborly	thing	to	do.

In	the	case	of	an	organization	like	Pidgin,	we	take	vulnerability	reports	seriously	and	expend	some
effort	validating	their	existence	and/or	relevance.	As	we	are	an	all-volunteer	organization	with	a
limited	amount	of	time	at	our	disposal,	dealing	with	bogus	and	junk	reports	waste	valuable
resources.	Report	responsibly!

More	Windows,	more	features
May	13,	2014	04:29	PM	by	Tomasz	Wasilczyk

With	a	great	help	from	LRN,	who	sent	initial	set	of	patches	for	fixing	autotools-based	build	for	win32
and	assisted	in	the	work,	I	have	finally	managed	to	make	3.0.0	cross	compilation	possible	and	easy.
It	also	involved	fixing	minor	win32	problems	and	enabling	features	that	were	not	accessible	for	this
platform	before.

The	most	important	change	is	making	linux-to-windows	cross-compilation	almost	as	easy	as	normal
build.	The	whole	effort	(not	counting	installation	of	mingw*	packages)	is	reduced	to	setting	two
environmental	variables	(PKG_CONFIG	and	PKG_CONFIG_PATH)	and	adding	a	single	switch	to	the
configure	script:	./configure	--host=i686-w64-mingw32	&&	make.	That’s	all!	For	now,	there	is
no	option	to	cross-build	the	installer	yet.

	On	the	other	hand,	the	most	end-user-
attractive	change	is	a	Finch	win32	build.	It	required	both	libgnt	and	Finch	fixes,	which	made	those
two	quite	usable	on	this	system.

Moreover,	I	finally	implemented	all	remaining	features	required	for	using	OTR	plugin	with	Finch.
There	is	still	one	missing	–	you	cannot	browse	key	list	yet,	but	it’s	not	crucial	for	a	daily	use.	This
change	is	not	related	to	Windows	and	there	may	be	minor	problems	when	running	the	new	OTR
plugin	on	win32,	but	I	will	face	all	of	them	by	the	chance	of	integrating	it	with	Pidgin	tree.

An	example	of	less	significant,	but	still	useful	Windows	related	change	is	GTK3/gstreamer-1.0
compatibility,	which	was	an	easy	to	achieve	with	the	fixed	autotools	build.	I	also	removed	the
Bonjour	SDK	dependency	from	the	win32	build,	as	there	were	license	issues	with	it	–	for	now,	you	can
build	Bonjour	prpl	without	it.

The	last	feature	may	be	found	useless	by	some	of	you,	while	some	might	like	it	–	that’s	why	it’s
optional.	You	can	enable	Filesystem	Hierarchy	Standard	directory	structure	with	a	single	configure
switch:	--with-win32-dirs=fhs.	For	now,	it’s	the	easiest	way	to	prepare	a	working	Windows	build,
since	there	is	no	cross-built	installer	yet.

Few	steps	towards	a	stable	release
Pidgin	3	is	not	API/ABI	compatible	with	Pidgin	2,	and	is	only	partially	configuration-compatible.	While
the	first	incompatibility	is	necessary	to	move	forward,	the	second	might	be	really	frustrating	for
users.	Because	of	ABI	incompatibility,	libpurple2	plugins	won’t	work	with	libpurple3	–	their	authors
will	eventually	convert	them	for	the	new	version.	Configuration	incompatibility	may	lead	to	loosing
your	data	–	preferences,	contacts	etc.

Pidgin	3	was	almost	backward-compatible,	which	allowed	to	switch	to	it	flawlessly.	On	the	other
hand,	Pidgin	2	was	not	forward-compatible.	For	example,	it	dropped	all	encrypted	passwords,	that
were	set	with	Pidgin	3.	Now,	it	won’t	be	able	to	read	those	(since	keyring	support	is	not	implemented
for	2.x.y	branch),	but	at	least	it	leaves	them	in	place.	I	also	fixed	more	forward-incompatibilities:
handling	for	GTalk	and	Facebook	XMPP	accounts	created	with	3.0.0	version	and	internationalization
issues	related	to	default	group	(“Buddies”)	naming.	All	of	these	will	be	released	in	2.x.y	branch,	so
you	will	be	able	to	switch	from	3.0.0	to	2.10.10	and	back	without	loosing	your	data.

There	were	also	minor,	but	annoying	issues	fixed.	Nick	colors	for	chat	participants	in	XMPP	MUC	or	irc
should	not	suffer	from	a	low-contrast	issue.	I	have	finally	made	spell	checking	usable,	by
implementing	a	language	selection	sub	menu	for	WebKitGTK.	It	still	has	some	flaws,	that	I	will	work
on	some	day:	the	biggest	one	is	that	the	selected	language	is	global,	not	per-conversation.

To	make	development	branch	more	stable,	I	decided	to	focus	on	Coverity	bug	reports.	Since	we	are
allowed	to	maintain	just	one	branch	at	once,	I	decided	to	fix	all	2.x.y	reports	before	switching	to
3.0.0.	For	now,	I	fixed	almost	all	of	them	(and	merged	fixes	to	the	3.0.0	branch),	so	it	should	be	a	bit
more	stable.	I	also	updated	all	win32	dependencies,	which	should	also	improve	stability.

Don’t	get	me	wrong,	there	is	still	a	long	way	to	the	stable	Pidgin	3.0.0.	But	it’s	already	usable	right
now.

Show	me	your	desktop

	I	have	switched	from	Konnekt	(a	local	Polish	instant	messenger)	to	Pidgin
around	the	year	2007.	It	provided	a	feature	absent	in	Pidgin,	that	I	missed	very	much:	an	easy	way	to
send	screenshots.	There	were	a	plugin	for	Pidgin	2.x.y,	but	I	didn’t	liked	it	and	it	wasn’t	working	with
Pidgin	3.

Ultimately,	I	decided	to	invest	two	days	of	my	life	and	create	my	own	plugin.	It	just	works,	covering
all	attributes	I	liked	in	other	instant	messengers	with	such	feature.	It’s	simple,	stable	and	fits	into	the
Pidgin	UI	well.

I	plan	to	extend	its	functionality	with	another	plugin.	For	now,	it’s	only	possible	to	send	screenshots
over	protocols	with	inline	images	support.	Thus,	you	can	not	use	it	with	XMPP	or	IRC.	The	second
plugin	will	allow	for	uploading	images	to	imgur	(or	similar	services)	for	protocols	that	doesn’t	support
images.

Smile!
April	21,	2014	03:37	PM	by	Tomasz	Wasilczyk

I	have	put	a	lot	of	effort	into	a	feature	that	I	don’t	even	use:	graphical	emoticons.	As	usual,	the	small
issue	resulted	in	a	large	code	refactoring.	I	had	the	task	of	fixing	regression	bugs	from	Pidgin	2.x.y,
so	I	took	care	of	broken	remote	smileys.	It’s	a	pleasant	feature,	that	allows	defining	the	list	of
custom	smileys	to	use	in	outgoing	messages.	If	we	send	one	in	our	message	and	the	remote	client
doesn’t	have	it,	the	image	will	be	automatically	transferred.	For	protocols	not	supporting	this	feature,
the	bare	textual	representation	will	be	shown	instead	of	the	picture.

The	code	responsible	for	emoticon	handling	was	horrid.	In	2.x.y	branch	it	was	already	quite	messy,
but	became	even	worse	after	replacing	GtkIMHtml	with	WebKitGTK	for	displaying	a	conversation.	The
problem	was,	the	old	parsing	code	was	optimised	to	be	used	with	GtkIMHtml.	It	was	totally
incompatible	with	WebKitGTK,	so	the	GSoC	student	who	did	a	conversion	made	his	own	provisional
smiley	parser.	It	just	added	insult	to	injury.

Inline	images
Both	GtkIMHtml	and	WebKitGTK	use	purple’s	“stored	images”	to	provide	data	for	emoticon	smiley.
It’s	a	generic	container	to	hold	raw	image	file	contents,	without	any	decoding.	Its	main	purpose	was
pretty	simple:	to	reference	this	data	by	a	single	integer	number.	Thus,	an	image	may	be	embedded
in	HTML	with	.	It’s	quite	convenient,	but	the	API	was	a	bit	messy.	Not
that	bad,	but	we	had	plans	to	convert	it	to	a	GObject.	Instead	of	duplicating	the	exact	behavior	of	the
old	implementation,	I	took	the	usual	way:	I	wrote	entirely	new	PurpleImage	class,	much	richer,	but
also	simpler	to	use.

PurpleImages,	aside	from	the	old	simple	referencing	feature,	have	several	new	ones.	Remote
images	support	is	the	one	which	improves	end-user	experience	the	most.	It	allows	defining	an
empty	image	and	providing	a	data	for	it	later.	Now,	if	we	receive	a	message	with	an	inline	image
embedded	(not	necessarily	a	smiley),	it	will	be	displayed	without	it	and	the	image	will	be	shown
when	ready	–	just	like	its	done	in	web	browsers.	It	heavily	impacts	protocol	plugins:	with	the	old	API,
they	had	to	queue	messages	and	wait	for	images	being	transferred.	Now,	it’s	fully	handled	by
libpurple.	By	the	chance	of	deploying	it,	I	fixed	inline	images	support	in	every	protocol	that	had	it.

Tries
As	I	mentioned	before,	the	smiley	parser	for	3.0.0	branch	was	provisional	and	the	old	one	was	not
suitable	for	WebKitGTK.	GtkIMHtml	(a	Pidgin	2.x.y	component,	despite	its	Gtk	namespace)	exposed
its	internal	parsing	mechanism	and	allowed	to	process	every	literal	in	parsed	HTML.	Thereby,	a
libpurple	routine	was	called	on	every	word	and	replaced	them	into	an	image,	if	hit	the	emoticon.	The
lookup	was	quite	fast,	because	of	trie-like	implementation	of	GtkSmileyTree.

A	Trie	is	a	tree	structure	for	holding	multiple	strings	and	searching	them	by	prefixes.	The	primary
idea	of	trie	is	that	two	strings	with	the	common	prefix	will	share	the	part	of	tree	for	the	common
segment	and	branch	out	the	remaining	parts.	It’s	only	a	fundamental	part	of	structure,	which	may	be
used	for	completely	different	purposes.	In	fact,	it	was	used	both	in	the	old	GtkSmileyTree	and	my
new	smiley	parser	implementation.	Except	for	this	single	similarity,	these	two	are	barely	related.

Instead	of	writing	fat-but-fast	smiley	parser,	I	decided	to	implement	independent	PurpleTrie	class	–	a
trie-based	text	search	algorithm.	It	allows	for	searching	multiple	strings	in	multiple	source	texts	in	a
linear	time!	To	be	precise,	it	needs	O(m)	time	for	building	a	trie	(where	m	is	the	total	length	of
provided	patterns)	and	O(n)	time	for	searching	(where	n	is	the	length	of	source	text).	The	frequency
of	patterns	in	a	text	doesn’t	affect	this	value.	The	best	thing	in	that	structure	is,	it	may	also	be	used
in	libpurple	plugins.

For	a	contrast,	the	interim	smiley	parser	implementation	was	not	focused	on	performance	at	all.	Its
search	time	could	be	estimated	as	O(n	*	m	*	t),	where	n	is	the	number	of	smileys,	m	is	their	length
(assuming	smileys	are	equal-length	–	in	the	real-world	case	the	formula	would	be	more
complicated)	and	t	is	the	text	length.	It’s	that	bad,	mainly	because	every	supported	(not	necessarily
inserted	into	a	text)	smiley	is	parsed	separately.	The	m	*	t	part	depends	on	strstr	implementation,
but	for	the	better	ones	we	could	find	another	similarly	bad	instance	of	smileys	configuration.	With
such	bad	complexity,	it	could	even	be	exploited	for	a	denial-of-service	attack.

What’s	next?
In	3.0.0	branch	there	were	a	lot	of	smiley-	and	image-related	issues	and	I	haven’t	described	all	of
them.	But	I	hope	I	fixed	all	of	them.	You	can	look	for	details	in	our	hg,	in	smiley-related	commits
between	302a7cb4c1ab	and	d598e7950c34.	Now,	I	am	focused	on	the	permanent	issue	–	the
Windows	version.

In	Support	of	Instant	Messaging	Communications	Freedom
February	16,	2014	02:40	AM	by	Ethan	Blanton

As	recent	news	events	have	driven	home	time	after	time,	secure	communications	is	a	difficult	yet
important	aspect	of	modern	life.	What	“secure”	may	mean	differs	from	person	to	person	and	from
topic	to	topic,	but	certainly	the	typical	person	is	somewhat	uncomfortable	with	the	idea	that	anyone
—	and	in	particular,	large	corporations	or	the	government	—	might	be	eavesdropping	on	their	casual
communications.	There	are	exceptions,	and	there	are	people	who	believe	that	only	criminals	should
have	something	to	hide,	but	for	the	moment	let's	assume	that	some	measure	of	secrecy	in	private
communications	is	warranted	and/or	desirable.	This	post	is	a	commentary	on	some	of	the
technologies	that	make	it	possible	(or	difficult	or	impossible,	in	many	cases)	to	achieve	secure
communications	on	an	instant	messaging	(IM)	network.

I'm	going	to	play	a	little	bit	fast	and	loose	with	terminology	to	help	keep	it	understandable,	but	I	also
want	it	to	be	accurate.	In	particular,	when	I	say	that	communication	is	secure,	I	mean	private,
specifically.	For	the	purposes	of	this	post,	that	effectively	means	encrypted	and	using	some	sort	of
authentication	protocol	to	ensure	that	it's	encrypted	to	the	right	person.	The	details	are	out	of	scope.
Please	contact	me	if	you	notice	any	particular	discrepancies	or	incorrect	statements,	either	arising
from	loose	terminology	or	other	errors.

First,	where	I'm	coming	from:	I	believe	that	essentially	all	communications	should	be	secured,	and	I
believe	that	that	security	should	be	very	strong.	By	“very	strong,“	I	mean	that	it	should	be	effectively
impossible	for	any	third	party	to	eavesdrop	without	the	acquiescence	of	a	party	participating	in	the
communication.	I	have	a	fair	amount	of	history	in	computer	communications.	I	am	a	long	time
developer	on	the	Pidgin	instant	messaging	client	and	related	software.	I	am	on	the	board	of
directors	for	Instant	Messaging	Freedom,	Inc.,	a	non-profit	organization	“whose	goal	is	to	support
free	instant	messaging	software.”	Instant	messaging	is	important	to	me	as	a	communication
technology	filling	the	gap	between	real-time	spoken	communication	and	e-mail.

Types	of	IM	security

There	are	a	number	of	ways	in	which	an	IM	conversation	can	be	"secured",	and	not	all	of	them	have
the	same	properties.	First,	there	is	using	a	secure	connection,	such	as	SSL	or	TLS	between	your
computer	and	your	IM	service's	computer.	Second,	there	is	end-to-end	security,	such	as	Off-the-
Record	Messaging	(OTR).	Then	there	are	additional,	more	complicated	options	that	we	won't	discuss
—	but	they	basically	break	down	to	a	combination	of	one	or	the	other	of	the	above,	or	one	of	the
above	with	a	different	remote	endpoint.	(\textit{E.g.,}	end-to-end	security	between	you	and	a
remote	user's	IM	server	to	query	her	current	status.)

Secure	IM	connections

A	secure	connection	to	the	server	protects	your	connection	from	eavesdropping	on	the	local	network
and	the	path	between	you	and	your	IM	service	(provided	that	it's	done	correctly),	but	it	does	not
protect	your	conversation	from	the	IM	service	itself	and	it	does	not	tell	you	anything	about	whether
the	user	you're	chatting	with	is	using	a	secure	connection.	Despite	these	weaknesses,	a	secure
connection	to	the	server	is	critically	important,	because	it	protects	a	large	amount	of	private
information.	Things	like	buddy	lists,	status	updates	(online,	offline,	away,	etc.)	from	your	buddies,
and	your	own	status	updates	pass	through	this	connection	and	are	not	necessarily	targeted	to	any
specific	other	user,	which	makes	end-to-end	encryption	difficult.

This	is	the	limit	of	security	offered	by	most	commercial	IM	services.	There	are	a	few	exceptions,	like
AIM's	encrypted	IM,	but	often	they	have	a	similar	effective	security	model	—	for	example,	the	only
proof	that	the	encrypted	channel	you're	talking	on	is	actually	terminated	at	the	remote	user	(and	not
the	IM	service's	servers)	is	a	certificate	signed	by	...	the	IM	service	itself.	(The	details	of	why	this	is
not	sufficient	are	outside	the	scope	of	this	post.	Maybe	I'll	write	some	more	on	that	later.)

End-to-end	security

End-to-end	security	protects	your	communication	from	eavesdropping	all	the	way	to	the	other	user.
If	some	person	or	organization	wants	to	read	your	messages,	they	have	to	do	so	at	your	computer	or
your	interlocutor's	computer.	There	are	a	small	number	of	protocols	that	support	this	directly,	but
mostly	not	in	a	particularly	useful	way	(see	the	discussion	of	AIM	encrypted	IM	above).[1]

The	usual	solution	for	end-to-end	encryption	is	a	third-party	protocol	carried	on	top	of	the	IM	session.
There	are	several	such	protocols,	but	by	far	the	most	popular	is	the	previously-mentioned	Off-the-
Record.	OTR	provides	end-to-end	encryption	for	two-party	conversations	with	authentication	of	the
remote	user	and	a	variety	of	desirable	encryption	protocol	characteristics.	(It	also	provides
repudiability	for	situations	where	that	may	be	important.)

What	end-to-end	security	cannot	provide	is	protection	for	all	of	the	stuff	that's	intended	for	a	very
broad	audience.[2]	Such	data	(things	like	away	messages,	online	status,	and	buddy	lists)	is
typically	[3]	handled	by	the	service's	servers	on	behalf	of	its	users,	in	such	a	way	that	necessitates
more-or-less	trusting	the	servers	with	the	information.	(This	is	a	reason	not	to	put	sensitive
information	in	your	status	message!)

Secure	connections	with	end-to-end	security

Given	the	individual	limitations	of	these	two	forms	of	data	security,	we	arrive	at	the	inescapable
conclusion	that,	for	instant	messaging	services,	they	are	complementary	rather	than	redundant	or
simply	unrelated.	Secure	connections	to	the	servers	provide	best-effort	protection	for	group	chats,
administrative	information,	and	metadata,	while	end-to-end	security	provides	strong	protection	for
conversation	content.

The	pros	and	cons	of	federation

Traditional	IM	networks	are	monolithic,	walled	gardens	—	if	you	want	to	chat	with	a	user	on	the
network,	you	get	an	account	with	the	single	service	provider	for	that	network.	There	have	been
limited	exceptions	to	this	over	the	years	(e.g.,	MSN	Live	Messenger	and	Yahoo!	Messenger	offer(ed)
some	degree	of	interoperability),	but	for	the	most	part,	not	only	have	networks	been	incompatible,
there	have	been	sole	providers	within	those	networks.

This	kind	of	structure	means	that,	while	your	metadata	and	administrative	information	are	only	ever
managed	by	a	single	entity	(the	monolithic	service	provider),	that	service	provider	also	sees	all	of
the	related	metadata	etc.,	and	it's	necessary	some	giant	faceless	corporation.	That	corporation
stores	your	buddy	lists,	knows	when	you	talk	with	whom,	knows	when	you're	away	or	idle,	and	all
kinds	of	other	behavioral	information.	Moreover,	it	has	you	in	a	lock	—	if	you	want	to	talk	to	your
buddies,	you	have	to	use	its	services.

The	alternative	to	the	monolithic	single-provider	network	is	a	federated	service.	In	a	federated
service,	multiple	(possibly	unrelated)	service	providers	cooperate	in	a	network	tied	together	by	a
common	protocol,	allowing	users	of	different	service	providers	to	interact	with	each	other	without
worrying	about	whose	service	is	provided	by	whom.

In	a	federated	structure,	you	still	have	to	trust	your	service	provider	with	all	of	your	metadata	and
administrative	information,	but	you	don't	necessarily	have	to	trust	any	of	the	other	service	providers
in	the	network.	In	fact,	in	the	general	case,	most	of	them	don't	even	know	you	exist!	Some	portion	of
your	data	will	necessarily	be	shared	with	the	servers	your	friends	and	interlocutors	are	associated
with,	but	you	can	scope	that	sharing	to	a	greater	or	lesser	degree.	On	the	other	side	of	the	coin,	you
also	have	to	place	at	least	a	small	amount	of	trust	in	third-party	providers	with	whom	you	have	no
specific	relationship,	if	you	want	to	talk	to	people	on	those	providers'	servers.

The	quintessential	federated	network	is	XMPP,	previously	known	as	Jabber.	XMPP	is	a	widely
federated	network,	wherein	anyone	can	run	an	IM	server	and	become	a	service	provider	for	other
users.	Conversations	between	users	work	a	lot	like	email;	if	I	want	to	chat	with	you,	I	send	a
message	to	my	server,	it	forwards	it	to	your	server,	which	forwards	it	to	you.	The	return	path	is	the
same	in	reverse.	Not	only	can	anyone	put	up	an	XMPP	server,	but	the	protocol	is	entirely	open	and
well-documented,	so	there	are	literally	dozens	of	server	software	implementations	and	thousands	of
providers	already	in	the	network.	Those	providers	range	from	large,	commercial	entities	(such	as
Google's	Google	Talk,	now	known	as	Hangouts)	to	tiny	servers	serving	just	one	user.

The	huge	benefit	of	federation	is	the	freedom	to	choose	your	service	provider.	Moreover,	to	change
that	service	provider.	With	an	open	federated	network	like	XMPP,	you	can	even	be	your	own	service
provider	if	you	so	desire.	That's	a	kind	of	communications	freedom	that	no	monolithic	provider	can
ever	provide,	by	definition.

It	is	my	opinion	that	the	federated	structure	is	a	superior	solution,	security,	privacy,	and	freedom-
wise,	to	old-style	monolithic	IM	networks.	The	majority	of	your	sensitive	data	(administrative
information,	complete	buddy	list,	etc.)	is	kept	and	managed	by	only	one	entity,	and	is	parceled	out	to
third-party	entities	only	as	required	to	provide	the	services	you	specifically	request.	In	the	specific
case	of	a	closed	group	of	users	(such	as	a	corporate	or	organizational	server),	it	may	be	contained
entirely.	I	am	also	a	strong	advocate	of	open	standards	which	federated	solutions	tend	to	require	(to
make	federation	possible),	and	which	XMPP	certainly	provides.	The	ability	to	pick	up	your	data	and
move	it	to	another	service	provider	with	limited	(or	nonexistent)	loss	of	functionality	is	an	extremely
powerful	argument	for	the	freedom	of	a	federated	solution.

Today's	best	practices

The	foregoing	basically	points	to	a	simple	best	practices	recommendation	for	IM	freedom	and
security:	use	XMPP,	find	a	server	you	trust,	ensure	that	you're	using	TLS	encryption,	and	employ	an
end-to-end	security	solution	like	OTR	when	it	matters.	(Unfortunately,	without	complete	penetration
of	end-to-end	security	solutions,	“when	it	matters”	is	the	best	we	can	do.	Even	then	it	can	be	hard	to
achieve!)	Today,	with	the	availability	of	a	number	of	large	XMPP	service	providers	with	federation
and	open	registration	(Google,	DuckDuckGo,	Jabber.org,	or	dozens	of	others),	as	well	as	many	fine
XMPP	clients	(including,	of	course	Pidgin,	finch,	and	Adium),	getting	an	XMPP	account	and	finding
your	friends	is	relatively	painless.	Many	of	them	will	already	be	available	if	you	simply	add	gmail
address	as	a	buddy	in	your	XMPP	client.

Secure	connections	are	not	yet	provided	by	all	XMPP	servers.	Among	servers	that	do	provide	secure
connections	to	clients,	not	all	provide	secure	connections	to	other	servers.	(If	you	recall	the	email-
like	communication	model	of	XMPP,	this	means	that	your	communicatiosn	with	users	on	other
servers	would	not	be	secured	between	servers,	even	assuming	you	trust	both	servers.)	The	excellent
xmpp.net	directory	of	public	XMPP	servers	provides	ratings	for	client-to-server	and	server-to-server
communications	security;	look	for	A-rated	servers.	If	you	set	up	your	own	server,	xmpp.net	also
provides	a	security	validator	that	can	be	used	to	ensure	your	personal	server	is	up	to	snuff.

Improving	the	situation

Going	forward,	there	are	a	number	of	efforts	underway	to	further	improve	the	already	rather	good
connection	security	situation	in	the	XMPP	network.	Notably,	the	XMPP	manifesto	is	(documentation
of)	an	effort	to	transition	the	entire	federated	XMPP	network	to	secured	connections	by	May	19,
2014.

The	end-to-end	security	situation	is	still	a	little	underdeveloped,	in	my	opinion.	OTR	is	great,	but	its
protocol-independent	nature	leaves	it	with	a	level	of	integration	that	isn't	as	complete	as	it	could	be.
I	have	some	early-draft	notes	on	desirable	features	for	a	new	XMPP	end-to-end	encryption	protocol,
but	a	lot	of	work	remains	to	be	done	on	the	topic	—	and	much	of	it	by	people	with	stronger	crypto
chops	than	I	have.

What	you	can	do	now

The	takeaway	from	all	of	this?	Ditch	your	AIM,	MSN	Live	Messenger,	Yahoo!	Messenger,	or	whatever
other	IM	services	you're	currently	using,	and	get	on	board	with	a	federated	XMPP	provider.	Follow	the
recommendations	in	best	practices,	above.	Use	a	public	server	or	install	your	own,	but	do	it	sooner
rather	than	later.	Make	sure	you're	using	TLS	(or	SSL,	if	you	have	to)	to	protect	your	connections,	and
consider	installing	OTR.

Then,	when	you're	done	with	that,	start	bringing	your	friends	over.	Talk	to	them	about	the	benefits	of
freedom	in	IM	services,	describe	the	insecurity	of	communication	on	traditional	commercial	IM
services,	simply	tell	them	you're	not	dealing	with	a	closed	IM	service	any	more,	or	whatever.	Point
them	at	this	article,	if	you	think	it	will	help.	XMPP	already	has	critical	mass,	it's	simply	a	matter	of
expanding	the	borders.

If	you	have	the	necessary	background,	consider	contacting	me	about	working	on	an	integrated	end-
to-end	encryption	and	authentication	solution	for	XMPP.	Join	the	devel@conference.pidgin.im	XMPP
MUC	and	indicate	your	interest.

Footnotes

[1]	SILC	is	an	example	of	a	service	that	provides	native	secure	connections	and	native	end-to-end
encryption.	Unfortunately,	it	is	no	longer	a	maintained	codebase,	it	is	not	well-supported	by	IM
clients	(though	libpurple,	and	thus	Pidgin	does	support	it),	and	it	has	a	problematic	federation
model.

[2]	“Cannot“	is	a	bit	strong	here,	but	I	believe	that,	given	the	current	state	of	the	art	of	encryption
protocols	and	mechanisms,	it's	true	enough	to	use	for	the	moment.	Secure	multiparty	broadcasts
with	hundreds	of	recipients	would	be	very	expensive	using	standard	techniques.	The	literature	may
(and	probably	will)	have	some	answers	to	this	problem	in	the	future,	but	for	now,	I'll	say	cannot.

[3]	I	say	typically	here	because	I	know	of	no	non-local-network	service	that	handles	this	any	other
way.	Local	network	messaging	(like	Apple's	Bonjour)	has	other	solutions	to	this	problem.	Generally,
however,	you	send	your	status	updates	to	the	server	and	it	distributes	them	(possibly	by	way	of
other	servers,	in	a	federated	protocol)	to	interested	parties	on	your	behalf.

Off-the-Record	Messaging	–	the	true	privacy
October	10,	2013	03:09	PM	by	Tomasz	Wasilczyk

Modern	instant	messengers	claims	about	security	and	privacy.	And	users	trusts	them.	But
companies	that	delivers	such	services	sometimes	fails	protecting	their	users	privacy.	The	point	is,
that	user	doesn’t	have	any	control	over	confidentiality	of	his	private	conversations	–	the	service
provider	does	it.

In	most	cases,	this	schema	works	pretty	good:	user	A	sends	a	private	message	via	an	encrypted
connection	to	a	service	provider	and	the	provider	sends	it	to	the	user	B	(also	using	an	encrypted
connection).	The	problem	occurs,	when	the	intermediary	company	reveals	such	message	–	due	to
software	failure	or	dishonest	employee.

Encrypting	the	message	by	A	seems	to	be	the	solution,	but	it	creates	another	set	of	problems.	To
make	user	A	able	to	encrypt	a	message	for	user	B,	he	have	to	obtain	a	B’s	public	key.	But	how	to
obtain	it	in	a	secure	way?	What,	if	B	loose	his	key,	used	to	secure	a	long	history	of	conversations?
Also,	to	make	user	B	sure,	that	the	A	sent	the	message,	user	A	have	to	sign	it.	But	what,	if	user	A	says
something	humiliating	to	user	B	in	private,	but	the	second	one	reveals	the	message	to	the	public
and	use	it	against	A?	The	message	is	signed	by	A,	so	there	is	a	proof	he	wrote	it.

And	there	comes	the	Off-the-Record	Messaging	protocol.	It’s	goal	is	to	provide	truly	private
conversations	over	any	underlying	IM	protocol	(such	as	xmpp,	ICQ,	Gadu-Gadu)	in	a	easy	to	use
manner.	It	ensures	four	aspects	of	privacy:

encryption,	so	nobody	other	than	A	or	B	can	read	their	messages;
authentication	of	the	other	party,	to	make	sure	we	are	talking	with	the	right	person;
deniability,	because	messages	does	not	have	digital	signatures	that	are	checkable	by	a
third	party	–	the	other	side	of	conversation	cannot	prove,	the	messages	he	got	are	sent	by
you	(but	he’s	still	sure	about	it);
perfect	forward	secrecy	–	if	someone	get	your	private	keys,	he	won’t	be	able	to
decrypt	any	past	conversations.

OTR	and	Pidgin/libpurple
There	is	a	plugin	for	Pidgin,	implementing	OTR	messaging	–	pidgin-otr.	Unfortunately,	the	user	have
to	install	it	by	himself,	so	it’s	not	as	easy	to	use	as	in	other	messengers.	I	was	asked	to	integrate	it
within	the	official	release.

I	decided	to	make	this	task	a	bit	more	challenging.	Pidgin-otr	is	a	Pidgin	UI	client	plugin,	so	it’s	not
available	for	other	libpurple	clients.	Some	of	them	(Adium)	implements	OTR	by	itself,	some	(Finch)
doesn’t	offer	such	functionality.	I	decided	to	rewrite	it	as	a	pure	libpurple	plugin,	to	provide	this
excellent	feature	for	all	clients	that	use	libpurple	as	a	backend.	Fortunately,	pidgin-otr	is	pretty	well
designed,	so	I	had	only	to	alter	things	related	directly	to	the	UI.

There	already	was	a	similar	attempt,	named	purple-otr.	Its	main	problem	was	really	poor	UI	–	its
author	used	pretty	limited	libpurple’s	Request	API	to	create	dialogs,	so	he	wasn’t	able	to	clone	all
pidgin-otr’s	functionality.	My	situation	is	way	more	comfortable,	because	I	am	a	Pidgin	developer
(having	direct	impact	on	its	code),	working	on	a	3.0.0	version	(which	breaks	API,	so	I	don’t	have	to
care	about	compatibility).	That	means,	I	was	able	to	extend	libpurple’s	features	to	better	fit	OTR
plugin	needs.	Some	of	libpurple	API	changes	that	made	it	possible:

End-to-End	encryption	providers	API	allows	to	present	(implementation
independently)	conversation’s	security	state.	Previously,	pidgin-otr	and	similiar	plugins
placed	their	own	controls	in	various	parts	of	the	conversation	window,	now	it’s	standardized.
Request	API	refactored	with	PurpleRequestCommonParameters,	which
makes	this	API	easily	extendable.
Using	PurpleRequestCommonParameters	for	new	features	implementation,	like	an	option	to
provide	HTML	decorated	text	descriptions,	an	option	to	alter	the	dialog	icon,
to	make	better	control	over	the	dialog	buttons.
Adding	a	new	window	type:	cancellable	“please	wait”	dialog,	with	an	optional
progress	bar.

These	changes	may	not	look	crucial.	In	fact,	without	them	the	libpurple’s	pidgin-otr	port	would	look
really	poor	or	even	awkward.

At	this	point,	all	conversation-related	code	is	ready	and	working	fine,	and	it’s	possible	to	use	it
conveniently.	I	haven’t	implemented	configuration	dialogs	yet	(It’s	the	next	task	for	me)	nor	adapted
Finch	for	the	new	API	(so	it’s	not	possible	yet	to	use	it	with	OTR,	but	it’s	not	the	hard	part).

Unfortunately,	there	is	no	possibility	to	test	it	at	the	moment.	The	libpurple’s	part	is	in	its	repository,
but	the	new	pidgin-otr	is	developed	in	its	non-public	branch	in	OTR	authors	repo.

101	HTTP	implementations
August	26,	2013	10:47	AM	by	Tomasz	Wasilczyk

Previous	libpurple	version	suffers	from	poor	HTTP	implementation.	Ordinary	user	won’t	notice	that,
because	plugins	tries	to	fill	the	hole.	However,	when	every	single	component	that	uses	HTTP	have	to
deal	with	the	same	issues,	there	must	be	some	mess	left.

Nearly	a	year	ago,	I’ve	decided	to	put	some	effort	here	and	implement	new,	flexible	HTTP	API.	Now,
I’ve	came	even	deeper,	replacing	existing	implementations	with	my	new	tool.

Replacing	old	HTTP	API	with	the	new	one	consisted	of	few	stages.	Firstly,	I’ve	replaced	all
purple_util_fetch_url	occurrences	with	purple_http_get.	That	was	the	pretty	easy	step,
because	both	functions	does	roughly	the	same	thing:	gets	the	URL	and	returns	its	contents.	Then,	it
was	the	time	for	the	tricky	part:	purple_util_fetch_url_request	required	building	and	parsing
HTTP	headers	manually.	Also,	it	leaves	part	of	proxy	handling	on	the	caller	in	a	weird	way	–	he	have
to	pass	an	full	URL	in	request	header,	if	proxy	is	on,	or	short	(without	hostname)	otherwise.

Getting	rid	of	purple_util_fetch_url*	routines	raised	code	quality	pretty	well,	but	the	most
difficult	task	was	still	undone.	Some	protocols	had	its	own	HTTP	implementations	–	just	imagine	that
amount	of	copy-paste.	I’d	like	to	share	some	examples:

oscar	(ICQ,	AIM)	implemented	it	on	it’s	own	to	just	perform	simple	GET	request;	the
implementation	was	so	horrible,	that	the	author	himself	named	the	functions
straight_to_hell,	damn_you	and	struct	pieceofcrap;	fortunately,	this	code	wasn’t
used	for	a	long	time;
mxit:	this	could	be	implemented	using	old	HTTP	API,	I	have	no	idea,	why	author	hadn’t	done
that;
msn:	this	one	was	somehow	justified	–	there	were	no	Keep-Alive	connections	in	old	API,	so
the	author	did	it	by	himself	to	gain	some	performance;	the	bad	thing	is,	he	did	it	twice	(for
HTTP	relays	and	SOAP	handling);
xmpp	also	has	two	implementations,	just	not	that	obviously	superfluous:	the	BOSH
implementation	was	complex	and	still	full	of	TODO’s;	it	took	advantage	of	simple	Keep-Alive
request,	but	in	really	obfuscated	way;	rewriting	of	second	implementation	(out-of-band	file
transfers)	was,	by	contrast,	easy	and	pleasing	task	(especially,	because	I’ve	done	similar	one
within	Gadu-Gadu	protocol	before);
yahoo	protocol	plugin	was	the	record-holder	with	the	value	of	four	distinct	HTTP
implementations;	I	think,	only	in	case	of	yahoo	file	transfers	it	wouldn’t	be	possible	to	do	it
using	existing	API.

There	are	still	two	remaining,	but	I’m	not	sure	if	I	will	refactor	them	at	all.	The	first	one	is	for	Gadu-
Gadu	protocol	–	it’s	included	in	libgadu	library,	so	it’s	not	trivial	to	pull	it	out	without	violating	its	API.
The	second	is	for	Novell	GroupWise	Instant	Messenger	–	a	closed	service,	available	for	companies.
There	are	no	public	test	servers,	which	I	could	try	out.	Also	installation	and	configuration	of	its	demo
overwhelmed	me	(in	fact,	it’s	buggy).	I’m	not	sure	if	it’s	worth	the	effort	to	do	both	cases	above.

My	next	task	will	be	Off-the-record	plugin	refinement	and	integration	into	the	main	tree.

Pidgin	with	Video	finally	for	Windows
June	08,	2013	05:54	PM	by	Tomasz	Wasilczyk

I	just	did	another	long	desired	feature:	Video	conferences	support	for	Windows.	There	already	were
attempts	to	do	it,	but	they	were	not	finished	nor	even	published	–	this	one	is	already	in	Pidgin’s	tree,
so	it’s	a	matter	of	time	to	get	them	released	(just	wait	for	3.0.0).	If	you	don’t	want	to	wait,	you	can
always	grab	a	development	build.

I	did	a	lot	of	tweaks	both	in	Pidgin	and	its	dependencies	(GStreamer	and	related),	but	finally
everything	looks	working	and	stable.	The	hard	part,	unlike	in	the	previous	Eion’s	attempt,	was	the
camera	capture	plugins	for	GStreamer	–	DirectShow	and	WinKS.	The	first	one	is	not	buildable	in
newer	gst-plugins-bad	releases	(at	least,	for	mingw),	the	second	is	buggy.	I’ve	chosen	to	work	with
WinKS:	the	main	problem	was,	it	had	broken	support	for	different	capture	resolutions	(I	guess,	old
cameras	had	no	support	for	it,	so	they	were	not	affected).	Many	hours	of	debugging	resulted	in	a
simple	patch,	that	makes	the	resolution	fixed.	The	other	one	existed	in	Pidgin	itself:	there	were	no
possibility	to	select	camera,	because	winks	used	different	method	of	device	enumeration,	than
Pidgin	supported.

On	the	occasion	of	testing	VV	on	Windows,	I’ve	came	up	with	a	simple	idea:	some	users	may	do	not
want	to	show	their	faces	in	video	conferences,	but	they	could	want	to	see	others.	So,	I	implemented
a	new,	virtual	device	(both	for	Linux	and	Windows):	Disabled.	Depending	on	user’s	choice,	it	displays
black	screen	or	random	noise,	like	on	TV.	Simple,	but	useful.

Testing	on	Windows	platform	showed	some	bugs,	that	were	hardly	noticeable	before:	hangs	on
video	testing,	displaying	a	video	output	in	a	separate	window.	Beyond	them,	I	also	fixed	some
memleaks	and	did	other	tiny	fixes.

The	source	code	is	available	directly	from	the	hg	repository	and	openSUSE	Build	Service	project	(for
dependencies).	If	you	just	want	to	test	the	VV	feature	on	Windows,	you	can	just	grab	the	offline
installer.

As	always,	I’m	waiting	for	any	feedback,	bug	reports	and	comments.

Four	Pidgin	Summer	of	Code	students
May	28,	2013	12:52	AM	by	Mark	Doliner

Pidgin	was	awarded	four	students	for	this	year’s	Google	Summer	of	Code.	It	was	a	difficult	process
to	select	just	four	students	from	the	34	great	applications	we	received.	These	are	the	projects	we
finally	chose:

Ankit	Vani	will	be	working	on	GObjectification.	This	entails	a	lot	of	behind-the-scenes	changes
to	the	Pidgin	code	to	use	GObjects	to	make	developer’s	lives	easier.
Ashish	Gupta	will	be	working	on	improving	file	transfer	between	libpurple	and	non-libpurple
IM	clients.	He’ll	initially	be	focusing	on	the	Yahoo!	and	XMPP	protocols	before	moving	on	to	a
protocol-agnostic	file	transfer	plugin.

Bhaskar	Kandiyal	will	be	creating	a	website	for	browsing	available	Pidgin	plugins,	as	well	as
improving	Pidgin’s	plugin	management	and	installation	UI.
Phil	Hannent	will	create	Quail	–	a	Qt	GUI	for	libpurple.

We’re	looking	forward	to	seeing	what	they	create!	The	coding	period	begins	June	17	and	ends
September	23.

As	always,	thanks	to	everyone	who	applied.	And	remember,	this	is	an	open	source	project	and	you’re
welcome	to	contribute	even	if	you’re	not	participating	in	Summer	of	Code.

Students:	Apply	to	Pidgin	Google	Summer	of	Code	now!
April	25,	2013	05:31	AM	by	Mark	Doliner

The	application	period	for	applying	to	Google	Summer	of	Code	opened	on	Monday	and	we’ve
already	received	a	number	of	applications.	The	application	period	closes	next	Friday,	May	3rd.	Just	8
days	left—don’t	wait,	submit	your	application	soon!

Pidgin	in	Google	Summer	of	Code	2013
April	09,	2013	07:21	AM	by	Mark	Doliner

Google	has	accepted	Pidgin	into	Google	Summer	of	Code	2013.	Woo-hoo!	We’re	looking	forward	to
mentoring	a	few	lucky	students	again	this	year.

For	more	information,	read	Google’s	announcement,	peruse	our	application	template,	and	see	our
list	of	project	ideas.	The	application	period	beings	April	22nd—just	two	short	weeks	away!

We	always	encourage	our	users	to	brainstorm	and	share	your	ideas	on	improvements	you	would	like
to	see	in	Pidgin,	Finch,	and	libpurple.	Feel	free	to	share	thoughts	and	ask	questions	on	our	devel
mailing	list.

Pidgin	and	the	Impending	Shutdown	of	Windows	Live
Messenger
November	11,	2012	11:58	PM	by	John	Bailey

So,	Microsoft	recently	announced	that	they’ll	terminate	the	Windows	Live	Messenger	service	in	favor
of	Skype	in	early	2013.		We’ve	been	getting	a	number	of	questions	about	what	this	means	for	Pidgin.
	Quite	honestly,	we	don’t	know.		At	this	point,	all	we	know	is	that	China	will	still	be	able	to	use
Windows	Live	Messenger.		That	leads	us	to	believe	that	the	servers	providing	MSNP	service	will
remain	active	and	maintained	for	some	period	of	time	after	the	announced	shutdown,	but	it’s	not
clear	whether	or	not	that	will	be	the	case.		It’s	also	not	clear	if	the	servers	supporting	China’s
continued	use	of	WLM	will	be	accessible	to	non-Chinese	IP	space.		Even	further,	it’s	not	clear	if	the
recently-launched	XMPP	interface	to	the	WLM	network	will	remain	functional.		We	don’t	support	that
yet	though,	as	it	requires	some	authentication	magic	we	don’t	implement.		Even	if	we	implement
support	for	the	authentication	this	XMPP	gateway	requires,	it	could	end	up	being	a	waste	of	time,	as
it	could	get	shut	down	at	any	time,	either	before	or	after	the	rest	of	WLM.

And	before	anyone	goes	there,	we	can’t	support	Skype.		There	is	no	documentation	of	the	protocol
available	to	us,	nor	is	there	code	we	can	borrow	from	a	cleanly	reverse-engineered	alternative
implementation.		All	that	exists	is	SkypeKit,	whose	license	agreement	explicitly	forbids	its	use	in
open-source	software.		The	license	also	forbids	use	in	“server	applications”	which	precludes	doing
something	like	wrapping	a	simple	closed-source	XMPP	daemon	around	SkypeKit.		It	is	not	currently
possible	to	legally	support	Skype,	so	we	won’t	try.

The	bottom	line	is	we	have	no	idea	what	the	announcement	means	for	Pidgin	or	any	other
alternative	clients	yet.		We’ll	all	just	have	to	wait	and	see.

Announcing	our	four	Summer	of	Code	students!
April	24,	2012	08:19	AM	by	Mark	Doliner

We’re	pleased	to	announce	that	we’ve	accepted	four	students	for	this	year’s	Summer	of	Code!

Gadu-Gadu	PRPL	improvements	by	Tomasz	Wasilczyk,	mentored	by	Ethan	Blanton
Plugin	website	by	Nikhil	Bafna,	mentored	by	Kevin	Stange
Usage	stats	collection	by	Sanket	Agarwal,	mentored	by	Eion	Robb
libpurple	on	Android	by	Michael	Zangl,	mentored	by	Mark	Doliner

It’s	always	difficult	to	narrow	down	so	many	great	applications	into	just	a	handful,	and	we	want	to
thank	everyone	who	applied.	The	coding	period	runs	from	May	21	through	August	24.	If	you	want	to
follow	the	progress	of	the	four	students,	they’ll	be	providing	periodic	status	updates	to	our	devel
mailing	list	throughout	the	summer.

Read	Google’s	official	announcement	here.

Libpurple	in	GSoC	2012
March	27,	2012	12:28	PM	by	Jorge	Villaseñor

Libpurple	was	accepted	in	the	Google	Summer	of	Code		this	year	2012.

I	urge	every	student	reading	this	to	apply	for	any	of	the	projects	accepted	and	if	you	like,	apply	to
Libpurple.

We	have	a	set	of	proposed	ideas	but	you	are	encouraged	to	bring	your	own	ideas	since	they	will	be
fresher	and	will	not	compete	with	other	people	over	the	same	project.

You	can	find	libpurple's	application	page	at	Pidgin,	Finch	and	libpurple.

Pidgin	Accepted	to	2012	Summer	of	Code!
March	18,	2012	02:11	AM	by	Mark	Doliner

Good	news,	everyone!	Google	has	accepted	the	Pidgin	project‘s	application	to	be	a	mentoring
organization	in	this	year’s	Google	Summer	of	Code.	If	you	love	programming	and	are	looking	for	a
chance	to	help	an	open	source	project,	look	no	further.

How	much	can	you	accomplish	in	a	single	summer?	Quite	a	lot.	To	give	you	an	idea,	here’s	a	list	of
some	of	our	heftier	projects	of	past	years:

SSL	certificate	verification	and	management
Voice	and	video	chat	for	XMPP
The	Bonjour	protocol	plugin
The	MySpace	protocol	plugin
The	SIMPLE	protocol	plugin
Finch	(command-line	based	IM	client	based	on	libpurple)

Details
Get	inspired	by	our	ideas	list.	But	don’t	limit	yourself	to	those	ideas—we	love	when	students
propose	their	own	projects.
The	application	period	starts	March	26	and	ends	April	6th	(full	timeline)
Once	the	application	period	opens,	apply	here
We’re	guessing	we’ll	request	slots	for	3	students	this	year.
If	IM	isn’t	your	thing	but	you	still	want	to	participate,	check	out	the	list	of	other	great
organizations

Major	Changes	Afoot
August	28,	2011	03:44	PM	by	John	Bailey

Well,	it's	been	about	forever	since	I	last	bothered	to	post	anything	here.	Since	my	last	post,	we've
released	several	times,	introducing	and	fixing	a	bunch	of	bugs.	Now,	however,	we're	shifting	our
focus	to	new	development	of	a	sort	that	we	don't	do	often—compatibility	breakage	and	big	internal
changes.	This	means	that	our	main	development	effort	is	now	in	working	toward	Pidgin	and
libpurple	3.0.0.	I'm	going	to	try	to	explain	some	of	the	work	going	on	for	the	benefit	of	anyone	who
reads	my	ramblings,	so	here	goes.	

Versioning
First	of	all,	there	seems	to	be	some	confusion	about	how	Pidgin	and	libpurple	version	numbers	work.
I'd	like	to	try	to	clear	some	of	that	up.	

Pidgin,	Finch,	and	libpurple	use	what's	called	“Semantic	Versioning.”	That	is,	each	part	of	the	version
number	has	a	particular	meaning	for	users	and	developers.	We	chose	this	scheme	to	assist	plugin
developers	in	knowing	when	significant	changes	would	require	effort	on	their	part	to	maintain
compatibility	with	current	Pidgin	and/or	libpurple	versions.	It	also	helps	our	users	by	letting	them
know	when	their	existing	plugins	will	stop	working.	So,	how	does	this	semantic	versioning	work?
Let's	look	at	the	format	of	our	version	numbers	and	find	out.	

Pidgin,	Finch,	and	libpurple	version	numbers	have	three	components,	separated	by	dots.	At	the	time
of	this	writing,	2.10.0	is	the	current	version	number.	These	components	are	called	major	(currently
2),	minor	(currently	10),	and	micro	or	patch	(currently	0).	Let's	look	at	what	each	means.	

Major:	the	major	version	doesn't	change	often.	The	last	time	we	changed	it	was	in	2007
with	the	release	of	Pidgin	2.0.0,	and	before	that	was	in	2004	with	1.0.0	when	we	started	using
semantic	versioning	under	our	previous	name.	Whenever	this	number	changes,	we've	made
changes	to	Pidgin,	Finch,	or	libpurple	that	break	compatibility	with	every	UI	and	plugin	that
currently	exists.	Usually	this	means	that	we've	removed	something	from	the	API	exposed	to
plugins	and	UI's,	or	that	we've	changed	something	about	a	function	(its	name,	arguments,
return	type,	or	the	header	file	it's	in).	Sometimes	plugins	or	UI's	can	just	be	recompiled	when
this	happens;	other	times	they	need	maintenance	to	become	compatible	with	the	new
release.	Additionally,	the	major	version	never	decreases.	It	will	always	increase	when	it
changes.
Minor:	the	minor	version	changes	more	frequently	than	the	major	version,	but	generally
less	often	than	the	micro	or	patch	version.	Whenever	the	minor	number	increases,	we've
added	things	to	our	API	that	do	not	break	compatibility	with	existing	plugins	or	UI's.	A	prime
example	of	this	is	adding	the	voice	and	video	support	we	added	in	2.6.0.	We	added	a	bunch
of	stuff	to	the	existing	API,	but	didn't	change	anything	that	would	cause	a	break	in	backward
compatibility	with	existing	plugins	and	UI's.	When	the	minor	version	decreases	(gets	set	back
to	0),	it	means	that	the	major	version	has	changed,	and	the	whole	cycle	starts	over.
Micro	or	patch:	The	patch	version	changes	with	almost	every	release.	When	this	version
increases,	it	means	that	we	haven't	touched	API	at	all;	instead	we've	done	nothing	but	fix
bugs	or	add	small	features	that	don't	affect	compatibility	with	plugins	or	UI's.	When	this
version	decreases	(gets	set	back	to	0),	it	means	that	the	minor	version	has	changed.

Related	to	all	this,	and	important	only	for	plugin	and	UI	developers	(so	skip	this	paragraph	if	you're
not	a	developer!),	is	the	behavior	of	the	PURPLE_VERSION_CHECK	macro.	Many	developers	expect
PURPLE_VERSION_CHECK(2,	5,	0)	or	similar	to	expand	to	a	statement	that	evaluates	to	1	or	TRUE
in	the	case	of	building	against	libpurple	3.0.0.	This,	however,	is	not	the	case.	Because	our	major
versions	are	incompatible	with	each	other,	we	have	intentionally	written	PURPLE_VERSION_CHECK	to
fail	if	the	major	version	is	not	an	exact	match.	We	understand	this	can	be	confusing	and
inconvenient,	and	we	sincerely	apologize	for	that,	but	we're	not	going	to	change	it.	

What	all	this	means	is	that	if	the	first	number	(major	version)	changes,	you're	going	to	need	to
update	your	plugins	when	you	upgrade	Pidgin,	Finch,	and	libpurple.	If	the	second	(minor	version)	or
third	(micro	version)	numbers	change,	it	means	you	need	to	upgrade	Pidgin,	Finch,	and	libpurple,	but
your	existing	plugins	will	still	work.	No	matter	what	the	Pidgin,	Finch,	and	libpurple	version	numbers
are,	you	should	always	be	using	the	newest	version.	

Structure	(“struct”)	Hiding
This	paragraph	is	for	those	who	aren't	programmers.	Feel	free	to	skip	it	if	you	don't	care	about	it.
Pidgin	is	written	in	the	C	language.	C	has	a	type	system,	which	means	that	if	you	declare	a	variable
(imagine	this	as	a	box	somewhere	in	your	computer's	memory)	you	can	store	only	one	type	of	data
in	it.	A	structure,	or	struct	in	C	parlance,	is	a	type	made	up	of	other	types	arranged	sequentially.	This
is	pretty	easy	to	picture	if	you	think	of	Lego	blocks--stack	a	red	block,	a	blue	block,	a	green	block,	a
yellow	block,	and	a	white	block	on	top	of	each	other	and	connect	them	together	and	you	now	have	a
structure	made	out	of	Lego	blocks.	It's	pretty	similar	in	C,	except	that	you're	telling	the	compiler	to
assemble	something	out	of	sequential	boxes	of	memory	instead	of	little	plastic	blocks.	

Pidgin	uses	structs	everywhere.	We	use	them	to	represent	things	like	your	buddies,	conversations,
accounts,	etc.	Currently	in	Pidgin	2.10.0,	most	of	the	structs	are	in	the	public	API—that	is,	anyone	can
directly	access	the	members	of	the	structs	and	do	whatever	they	like.	This	is	all	fine	and	well,	but	it
means	that	if	our	code	changes	such	that	a	particular	struct	needs	to	grow	significantly	by	the
addition	of	new	members,	we	can't	always	do	that	without	breaking	backward	compatibility.	(Yes,
we	included	padding	in	a	number	of	our	structs,	but	we've	burned	through	the	padding	in	several	of
them,	and	although	there	are	ways	to	work	around	it,	I	and	a	few	other	developers	don't	like	them.)	It
also	means	that	if	we	discover,	for	example,	that	switching	the	order	of	members	in	a	struct	allows
the	compiler	to	improve	its	optimizations	or	if	we	think	a	different	order	makes	more	logical	sense
for	those	of	us	reading	and	maintaining	the	code,	we	absolutely	can't	do	this	without	breaking
compatibility.	We	also	can't	rename	members	of	structs	for	the	same	reason—it	breaks
compatibility	with	existing	plugins,	UI's,	etc.	

Because	having	these	structs	in	the	public	API	limits	us	so	much,	we're	striving	to	hide	as	many	of
them	as	possible.	By	hiding,	we	mean	that	we're	removing	the	struct	definitions	from	the	header
files	and	moving	them	to	the	.c	files,	thus	making	them	private.	Plugin	and	UI	authors	will	still	be
able	to	reference	the	“objects”	with	pointers,	passing	them	to	functions	and	operating	on	them	with
the	appropriate	sections	of	our	public	API,	but	no	longer	will	the	members	of	the	structs	be	directly
accessible	outside	of	the	.c	files	that	define	the	functions	that	interact	with	them.	For	example,	we
have	a	PurpleRoomlist	struct	in	libpurple/roomlist.c	and	libpurple/roomlist.h.	For	3.0.0,	the	struct
definition	is	in	roomlist.c;	thus	the	individual	members	are	not	directly	accessible	outside	roomlist.c,
even	in	other	parts	of	libpurple.	This	“hiding”	of	the	strcuts	allows	us	significant	internal	flexibility	in
each	file	to	modify	the	struct	as	we	see	fit.	

Clean-Slate	API	Documentation
Because	we	generally	change	so	much	each	time	we	increase	our	major	version	number,	the	API
documentation	can	get	a	bit	confusing	if	we	keep	doing	@since	tags	and	whatnot	in	our	doxygen
documentation.	Our	general	overall	feeling	is	that	we	prefer	just	starting	with	a	clean	slate	at	each
new	major	version.	This	means	that	each	time	we	do	a	new	major	version,	all	existing	@since	tags
will	disappear,	any	functions	marked	as	@deprecated	will	be	removed,	renamed,	or	replaced	as
described	in	the	@deprecated	statement,	and	so	on.	We	realize	this	decision	may	make	some
things	more	difficult	for	some	plugin	and	UI	authors,	and	we	apologize	for	that,	but	our	aim	is	to
have	overall	cleaner	documentation	for	everyone.	

Merging	of	Old	Projects
Over	the	years	that	we've	participated	in	Google's	Summer	of	Code	program,	we've	accumulated	a
number	of	branches	that	have	been	sitting	for	quite	some	time.	Most	of	these	need	some	form	of
TLC	and	integration	work.	We	want	to	try	to	incorporate	at	least	some	of	them	into	3.0.0	so	we	can
finally	benefit	from	the	fruits	of	the	students'	labor.	Most	notably,	we've	been	talking	about	merging
the	webkit	integration	branch	into	what	will	become	3.0.0.	Eventually,	this	would	allow	the	support	of
Adium's	message	styles,	although	it	may	not	happen	right	away.	

Another	project	of	notable	interest	is	some	of	the	logging	changes	that	went	on	in	a	previous
Summer	of	Code	project.	One	of	our	new	Crazy	Patch	Writers	took	some	of	that	work	and	made
some	progress	on	it;	we	don't	know	if	this	will	make	it	for	3.0.0	or	not	yet,	but	it	would	be	nice	to
have	some	of	the	features,	such	as	non-blocking	log	writing.	

Other	Changes	As	Wanted
We	may	decide	to	make	other	changes	since	a	major	version	change	gives	us	the	opportunity	to
break	so	much.	There	have	been	a	number	of	ideas	floated,	ranging	from	supporting	that	XDG
directory	spec	that	I	can't	stand	to	doing	away	with	the	xml	files	in	.purple	and	replacing	them	with
something	else	(with	what,	in	particular,	has	not	seriously	been	discussed).	There	is	a	whole	range
of	possibilities	of	things	we	could	do	for	3.0.0;	it's	just	a	matter	of	one	of	us	wanting	it	and	sitting
down	to	write	it.	

So	everyone	should	stay	tuned,	as	we'll	be	making	more	and	more	changes	over	the	course	of	the
3.0.0	development	cycle.	We	don't	yet	know	when	we'll	be	releasing	3.0.0—this	is	another	one	of	our
famous	“when	it's	ready,	and	not	a	minute	before”	time	frames.	We	do	know,	however,	that	it	will
change	a	lot!

Current	AIM	Issues
February	23,	2011	08:50	PM	by	John	Bailey

Over	the	last	couple	hours,	we've	had	nearly	everyone	and	his/her	brother	in	#pidgin	asking	about
connections	to	AIM	causing	a	certificate	prompt.	The	specific	prompt	is	for	bos.oscar.aol.com.	The
issue	here	appears	to	be	that	AOL	has	let	the	certificate	expire.	Because	our	certificate	validation	is
more	strict	than	some	other	applications,	Pidgin	users	will	get	this	prompt	at	every	connection	until
AOL	installs	an	updated	certificate.

To	resolve	the	prompt,	you	can	make	one	of	a	couple	choices.	You	can	choose	to	trust	that	the
connection	is	fine	even	though	the	certificate	is	expired	and	click	Accept,	or	you	can	take	the	safe
route	and	click	Reject	until	AOL	replaces	the	certificate.

To	reiterate,	this	is	not	a	Pidgin	problem,	but	an	AIM	server	problem.

Complex	Transient	Statuses	for	Quick	Effect
February	04,	2011	10:36	PM	by	John	Bailey

In	an	earlier	post,	I	discussed	how	to	take	advantage	of	Pidgin's	"saved	status"	feature.	After	seeing
some	recent	confusion	in	#pidgin	about	our	status	features,	I	decided	it	would	be	a	good	idea	to
give	a	quick	overview	on	how	to	take	advantage	of	a	feature	I	never	use--creating	statuses
(including	complex	statuses)	from	the	status	selector	on	the	buddy	list	window.

The	status	selector	feels	like	it's	been	around	forever.	Prior	to	this,	we	had	a	rather	horrible	interface
to	"status"	whereby	you	could	either	globally	set	all	accounts	to	"away"	or	go	to	each	individual
account	and	configure	a	given	status	(away,	do	not	disturb,	vacation,	etc.).	All	this	was	done	via	a
single	menu.	For	those	of	you	who	don't	remember	it,	let	me	just	say	that	it	sucked.	Someone	(I	think
it	was	Sean	Egan)	threw	that	whole	UI	out	the	window	and	came	up	with	the	current	status	selector
that	reminds	me	a	lot	of	the	old	Windows	ICQ	99	client	that	had	a	pretty	similar	status	selector.	Ours
is	a	bit	more	sophisticated,	though.

The	simple	use	of	the	status	selector	is	fairly	obvious--pick	a	status	and	type	a	message.	In	fact,	this
is	what	the	majority	of	our	users	do	when	they	change	statuses.	This	is	what	is	called	a	transient
status.	What	most	people	don't	know,	however,	is	that	you	can	create	complex	statuses,	such	as
having	your	MSN	account	set	to	"Busy"	while	your	AIM	account	is	set	to	"Invisible."	Let's	give	a	quick
example.

I	have	a	number	of	accounts	in	Pidgin.	Let's	say	I	want	to	have	my	pidgin.im	XMPP	account	set	to
"Available"	but	the	rest	of	my	accounts	set	to	"Away"	to	create	a	simplistic	scenario	that's	really	easy
for	me	to	snag	a	screenshot	of.	To	do	this,	I'll	go	to	the	status	selector	and	select	"New	status..."	like
in	this	picture:

Then	I'll	see	this	window,	where	I've	already	gone	and	entered	a	title	for	the	status.	This	is	the	name
you'll	see	in	the	status	selector	and	in	the	middle	section	of	the	status	selector's	menu.	If	I	wanted	a
message	to	go	with	the	away	status,	I'd	enter	it	here	now,	as	well.

Since	I	want	most	of	my	accounts	to	be	away,	I'll	leave	the	"Status"	selection	as	"Away."	As	you	can
see,	I	have	my	mouse	pointer	over	"Use	a	different	status	for	some	accounts,"	which	when
expanded	will	allow	me	to	set	statuses	for	individual	accounts,	like	so:

I	found	my	pidgin.im	account	in	the	list	already,	so	I'll	check	the	box	in	the	"Different"	collumn.	That
brings	me	to	a	new	window:

Now	I	want	my	pidgin.im	account	to	be	available,	so	I'll	accept	what	I	see.	If	I	wanted	a	message
here,	I'd	type	it	in	the	"Message:"	box.	When	I'm	happy	with	what	I	have,	I'll	click	OK.	Notice	that	the
"Status"	column	in	the	previous	window	changes	to	reflect	what	you	selected	for	the	individual
account.

Since	I'm	happy	with	what	I	have,	I'll	now	click	"Use",	which	applies	the	status.	If	I	wanted	to	make
this	a	saved	status	that	is	saved	permanently,	I	could	click	the	"Save"	button	or	the	"Save	&	Use"
button	if	I	wanted	to	also	immediately	apply	it	when	saving.

That's	all	there	is	to	it!

Fun	at	the	GSoC	Mentors	Summit
November	06,	2010	03:21	AM	by	Elliott	Sales	de	Andrade

Last	weekend	was	the	GSoC	Mentors	Summit.	As	a	mentor	for	the	Pidgin,	Finch	and	libpurple	project,
I	attended	for	the	first	time	this	year.

It	was	pretty	interesting	and	a	lot	of	fun,	but	I	have	to	say	I	didn't	really	feel	like	much	of	a	geek
there!	Everyone's	either	got	an	iPhone	or	a	Droid,	and	they've	all	done	awesome	stuff.	Can	you	say
you've	worked	on	WordPress,	used	by	millions	of	websites,	or	Apache,	serving	even	more	websites,
or	RTEMS,	running	several	space	exploration	instruments	and	other	consumer	products,	or	who
knows	what	else?

Nevertheless,	it	wasn't	like	I	was	totally	unknown.	There	were	quite	a	few	people	who	use	Pidgin,
even	one	or	two	using	Finch.	Oh,	and	some	Mac	users	using	Adium	(using	libpurple),	too.

The	flight	was	fine,	but	the	weather	was	a	bit	disappointed.	It	would	have	been	nicer	to	explore	a	bit
more,	but	at	least	I	got	to	eat	a	ton	of	chocolate.	I'll	try	and	write	a	longer	re-cap	later.

MSNP16	and	SLP-rewrite	merged
November	01,	2010	01:01	AM	by	Jorge	Villaseñor

I	have	just	pushed	the	revision	that	merges	my	MSNP16	and	SLP	branches	to	the	main	development
branch	in	pidgin.	I'm	very	happy	to	have	this	branches	merged	since	they	represent	almost	all	the
code	I	have	been	writing	on	the	last	year.

Yes	I	have	started	coding	MSNP16	support	almost	a	year	ago	and	it	took	a	lot	of	effort,	reverse
engineering,	debugging	Wireshark	dumps	and	a	lot	of	pidgin	debug	logs	to	get	it	working.	That	is	a
lot	of	time!

It	is	true	that	the	MSNP16	code	was	almost	complete	when	I	started	my	SoC	work	but	I	though	it
would	be	better	to	start	the	SLP	rewrite	over	the	MSNP16	branch	to	be	able	to	easily	test	both	codes
at	the	same	time	and	try	to	get	it	in	a	better	shape	before	merging	it	to	i.p.p.

I	know	I	have	announced	this	merge	like	two	weeks	ago,	but	you	know,	I	wanted	this	merge	to	be
followed	by	a	reasonable	"beta"	testing	before	being	released	and	at	that	time	it	got	that	we	had	an
security	issue	and	needed	to	release	2.7.4.	Once	it	was	out,	there	were	some	ICQ	issues	that
needed	a	quick	release	to	fix	that	bugs,	so	we	got	a	2.7.5.	Now	I	was	able	to	merge	and	get	a	normal
release	cycle	to	get	beta	testers	to	find	bugs	in	this	new	and	nice	code.

I	hope	this	code	will	fix	more	issues	than	it	brings	up,	specially	the	ones	related	to	data	transfer.
Since	most	of	the	code	on	this	area	have	changed	due	DirectConn	and	SLP-rewrite,	I	guesss	it	would
be	a	good	idea	to	review	and	close	most	of	the	related	tickets	since	the	traceback	and	debug	output
would	be	really	useless	now.	Yei	for	smashing	tickets!

I	hope	you	all	like	2.7.6	when	it	get	released!

Death	of	a	thousand	tickets
October	26,	2010	02:06	AM	by	John	Bailey

Well,	by	now	it's	obvious	to	the	world	that	I	kicked	Pidgin	2.7.4	out	of	the	nest	last	week.	Although
that	release	included	some	nice	new	features	for	ICQ	users,	lots	of	bug	fixes,	and	some	remote
crash	fixes,	it's	not	without	its	share	of	problems.	Those	problems	are	producing	a	bunch	of
duplicate	tickets	for	us	to	deal	with,	so	I	thought	it	might	be	a	good	idea	to	post	about	them	here	just
in	case	anyone	bothers	to	read	my	rambling.

The	first	problem	is	the	AIM/ICQ	chat	bug.	When	using	a	multi-user	chat	on	AIM	or	ICQ,	no	messages
can	be	sent.	You'll	get	an	error	stating	your	message	was	too	long.	This	was	an	unintended	side
effect	of	merging	the	work	of	one	of	our	Summer	of	Code	students.	Ivan	accidentally	removed	a	line
of	code	that	he	shouldn't	have.	Yes,	you	read	that	right--a	single	line	of	code.	Apparently	it	was
pretty	important!	Ivan	restored	that	line	and	things	will	be	working	as	they	should	in	2.7.5	when	we
release	it.

The	second	problem	is	an	old	one	that's	come	back	with	a	vengeance.	This	one	is	an	ICQ	issue
where	messages	that	contain
disappear	because	they're	treated	as	HTML	tags.	This	seems	to	be	specific	to	combinations	of
Pidgin	and	other	non-official	clients.	Pidgin	recently	gained	some	new	ICQ	protocol-level	features
related	to	formatted	messages;	some	non-official	clients,	including	older	versions	of	Pidgin,	don't
handle	it	gracefully.	At	this	point,	we've	done	all	we	can	do	about	it;	the	other	clients	will	have	to
step	up	and	make	fixes	to	handle	the	messages	correctly	now.

The	next	problem	is	another	wonderful	ICQ	encoding	bug.	I'm	not	sure	if	this	one	is	a	side	effect	of
Ivan's	work	or	not,	but	Ivan	did	do	a	lot	of	work	on	encoding	problems	on	ICQ.	We	all	thought	things
were	improving,	but	apparently	there	are	still	a	few	odd	cases	(and	a	crapton	of	stupid	ICQ	clients
that	should	be	purged	from	existence)	in	which	our	handling	of	encodings	just	isn't	quite	right.	We're
aiming	to	have	this	fixed	for	2.7.5,	but	it's	not	quite	done	yet.

Is	it	obvious	I	wish	ICQ	would	just	disappear	immediately	and	permanently?

The	last	"big"	problem	that	seems	to	be	cropping	up	is	a	crash	related	to	MSN	file	transfers.	When
using	direct-connect	file	transfers,	somewhere	along	the	line	we	do	something	stupid	internally	that
causes	a	crash.	We	thought	we	had	it	fixed	for	2.7.4,	but	alas	it	still	exists.	We're	looking	into	it	and
hope	to	get	it	fixed	soon.	In	the	meantime,	it's	pretty	easy	to	prevent	the	crash--edit	your	MSN
account	and	turn	off	the	direct-connect	file	transfers.	It's	an	option	on	the	advanced	tab	of	the
account	editor.

At	any	rate,	since	we	know	about	these	bugs	already,	please,	please,	please	DON'T	open	new
tickets	about	them!

Last	updated:	June	29,	2015	01:00	PM	(All	times	are	UTC.)

Powered	by:	

	 	 	

