
Figure1.	The	Internet	architecture	as	seen	by
the	INWG

Recursive	InterNetwork	Architecture
(RINA)
From	Wikipedia,	the	free	encyclopedia

The	Recursive	InterNetwork	Architecture	(RINA)	is	a	computer	network
architecture	that	unifies	distributed	computing	and	telecommunications.
RINA's	fundamental	principle	is	that	computer	networking	is	just	Inter-
Process	Communication	or	IPC.	RINA	reconstructs	the	overall	structure	of
the	Internet,	forming	a	model	that	comprises	a	single	repeating	layer,	the
DIF	(Distributed	IPC	Facility),	which	is	the	minimal	set	of	components
required	to	allow	distributed	IPC	between	application	processes.	RINA
inherently	supports	mobility,	multi-homing	and	Quality	of	Service	without
the	need	for	extra	mechanisms,	provides	a	secure	and	programmable
environment,	motivates	for	a	more	competitive	marketplace,	and	allows
for	a	seamless	adoption.

Contents
1	History	and	Motivation
2	Terminology
3	Introduction	to	RINA
4	RINA	compared	to	TCP/IP

4.1	Structure
4.2	Naming,	addressing,	routing,	mobility	and	multi-homing
4.3	Protocol	Design
4.4	Security
4.5	Other	aspects

5	Research	projects
5.1	BU	Research	Team
5.2	FP7	IRATI
5.3	FP7	PRISTINE
5.4	GEANT3+	Open	Call	winner	IRINA

6	References
7	External	links

History	and	Motivation
The	principles	behind	RINA	were	first	presented	by	John	Day	in	his	book
“Patterns	in	Network	Architecture:	A	return	to	Fundamentals”...[1]	This
work	is	a	start	afresh,	taking	into	account	lessons	learned	in	the	35	years
of	TCP/IP’s	existence,	as	well	as	the	lessons	of	OSI’s	failure	and	the
lessons	of	other	network	technologies	of	the	past	few	decades,	such	as
CYCLADES,	DECnet,	and	Xerox	Network	Systems.

From	the	early	days	of	telephony	to	the	present,	the	telecommunications
and	computing	industries	have	evolved	significantly.	However,	they	have
been	following	separate	paths,	without	achieving	full	integration	that	can
optimally	support	distributed	computing;	the	paradigm	shift	from
telephony	to	distributed	applications	is	still	not	complete.	Telecoms	have
been	focusing	on	connecting	devices,	perpetuating	the	telephony	model
where	devices	and	applications	are	the	same.	A	look	at	the	current
Internet	protocol	suite	shows	many	symptoms	of	this	thinking:[2]

The	network	routes	data	between	interfaces	of	computers,	as	the
public	switched	telephone	network	switched	calls	between	phone
terminals.	However,	it	is	not	the	source	and	destination	interfaces
that	wish	to	communicate,	but	the	distributed	applications.
Applications	have	no	way	of	expressing	their	desired	service
characteristics	to	the	network,	other	than	choosing	a	reliable	(TCP)
or	unreliable	(UDP)	type	of	transport.	The	network	assumes	that
applications	are	homogeneous	by	providing	only	a	single	quality	of
service.
The	network	has	no	notion	of	application	names,	and	has	to	use	a
combination	of	the	interface	address	and	transport	layer	port
number	to	identify	different	applications.	In	other	words,	the
network	uses	information	on	“where”	an	application	is	located	to
identify	“which”	application	this	is.	Every	time	the	application
changes	its	point	of	attachment,	it	seems	different	to	the	network,
greatly	complicating	multi-homing,	mobility,	and	security.

Several	attempts	have	been	made	to	propose	architectures	that	overcome
the	current	Internet	limitations,	under	the	umbrella	of	the	Future	Internet
research	efforts.	However,	most	proposals	argue	that	requirements	have
changed,	and	therefore	the	Internet	is	no	longer	capable	to	cope	with
them.	While	it	is	true	that	the	environment	in	which	the	technologies	that
support	the	Internet	today	live	is	very	different	from	when	they	where
conceived	in	the	late	1970s,	changing	requirements	are	not	the	only
reason	behind	the	Internet's	problems	related	to	multihoming,	mobility,
security	or	QoS	to	name	a	few.	The	root	of	the	problems	may	be	attributed
to	the	fact	the	current	Internet	is	based	on	a	tradition	focused	on	keeping
the	original	ARPANET	demo	working	and	fundamentally	unchanged,	as
illustrated	by	the	following	paragraphs.

1972.	Multi-homing	not	supported	by	the	ARPANET.	In	1972	the	Tinker	Air
Force	Base	wanted	connections	to	two	different	IMPs	(Interface	Message
Processors,	the	predecessors	of	today's	routers)	for	redundancy.
ARPANET	designers	realized	that	they	couldn't	support	this	feature
because	host	addresses	were	the	addresses	of	the	IMP	port	number	the
host	was	connected	to	(borrowing	from	telephony).	To	the	ARPANET,	two
interfaces	of	the	same	host	had	different	addresses,	therefore	it	had	no
way	of	knowing	that	they	belong	to	the	same	host.	The	solution	was
obvious:	as	in	operating	systems,	a	logical	address	space	naming	the
nodes	(hosts	and	routers)	was	required	on	top	of	the	physical	interface
address	space.	However,	the	implementation	of	this	solution	was	left	for
future	work,	and	it	is	still	not	done	today:	“IP	addresses	of	all	types	are
assigned	to	interfaces,	not	to	nodes”.[3]	As	a	consequence,	routing	table
sizes	are	orders	of	magnitude	bigger	than	they	would	need	to	be,	and
multi-homing	and	mobility	are	complex	to	achieve,	requiring	both	special
protocols	and	point	solutions.

1978.	Transmission	Control	Protocol	(TCP)	split	from	the	Internet	Protocol
(IP).	Initial	TCP	versions	performed	the	error	and	flow	control	(current
TCP)	and	relaying	and	multiplexing	(IP)	functions	in	the	same	protocol.	In
1978	TCP	was	split	from	IP,	although	the	two	layers	had	the	same	scope.
This	would	not	be	a	problem	if:	i)	the	two	layers	were	independent	and	ii)
the	two	layers	didn't	contain	repeated	functions.	However	none	of	both	is
right:	in	order	to	operate	effectively	IP	needs	to	know	what	TCP	is	doing.
IP	fragmentation	and	the	workaround	of	MTU	discovery	that	TCP	does	in
order	to	avoid	it	to	happen	is	a	clear	example	of	this	issue.	In	fact,	as	early
as	in	1987	the	networking	community	was	well	aware	of	the	IP
fragmentation	problems,	to	the	point	of	considering	it	harmful.[4]
However,	it	was	not	understood	as	a	symptom	that	TCP	and	IP	were
interdependent	and	therefore	splitting	it	into	two	layers	of	the	same
scope	was	not	a	good	decision.

1981.	Watson's	fundamental	results	ignored.	Richard	Watson	in	1981
provided	a	fundamental	theory	of	reliable	transport,[5]	whereby
connection	management	requires	only	timers	bounded	by	a	small	factor	of
the	Maximum	Packet	Lifetime	(MPL).	Based	on	this	theory,	Watson	et	al.
developed	the	Delta-t	protocol	[6]	in	which	the	state	of	a	connection	at	the
sender	and	receiver	can	be	safely	removed	once	the	connection-state
timers	expire	without	the	need	for	explicit	removal	messages.	And	new
connections	are	established	without	an	explicit	handshaking	phase.	On
the	other	hand,	TCP	uses	both	explicit	handshaking	as	well	as	more
limited	timer-based	management	of	the	connection’s	state.	Had	TCP
incorporated	Watson's	results	it	would	be	more	efficient,	robust	and
secure,	eliminating	the	use	of	SYNs	and	FINs	and	therefore	all	the
associated	complexities	and	vulnerabilities	to	attack	(such	as	SYN	flood).

1983.	Internetwork	layer	lost,	the	Internet	ceases	to	be	an	Internet.	Early	in
1972	the	International	Network	Working	Group	(INWG)	was	created	to
bring	together	the	nascent	network	research	community.	One	of	the	early
tasks	it	accomplished	was	voting	an	international	network	transport
protocol,	which	was	approved	in	1976.[2]	A	remarkable	aspect	is	that	the
selected	option,	as	well	as	all	the	other	candidates,	had	an	architecture
composed	of	3	layers	of	increasing	scope:	data	link	(to	handle	different
types	of	physical	medias),	network	(to	handle	different	types	of	networks)
and	internetwork	(to	handle	a	network	of	networks),	each	layer	with	its
own	addresses.	In	fact	when	TCP/IP	was	introduced	it	run	at	the
internetwork	layer	on	top	of	the	Network	Control	Program	and	other
network	technologies.	But	when	NCP	was	shut	down,	TCP/IP	took	the
network	role	and	the	internetwork	layer	was	lost.[7]	As	a	result,	the
Internet	ceased	to	be	an	Internet	and	became	a	concatenation	of	IP
networks	with	an	end-to-end	transport	layer	on	top.	A	consequence	of
this	decision	is	the	complex	routing	system	required	today,	with	both
intra-domain	and	inter-domain	routing	happening	at	the	network	layer	[8]
or	the	use	of	NAT,	Network	Address	Translation,	as	a	mechanism	for
allowing	independent	address	spaces	within	a	single	network	layer.

1983.	First	opportunity	to	fix
addressing	missed.	The	need
for	application	names	and
distributed	directories	that
mapped	application	names
to	internetwork	addresses
was	well	understood	since
mid	1970s.	They	were	not
there	at	the	beginning	since
it	was	a	major	effort	and
there	were	very	few
applications,	but	they	were	expected	to	be	introduced	once	the	“host	file”
was	automated	(the	host	file	was	centrally	maintained	and	mapped
human-readable	synonyms	of	addresses	to	its	numeric	value).	However,
application	names	were	not	introduced	and	DNS,	the	Domain	Name
System,	was	designed	and	deployed,	continuing	to	use	well-known	ports
to	identify	applications.	The	advent	of	the	web	and	HTTP	caused	the	need
for	application	names,	introducing	URLs.	However	the	URL	format	ties
each	application	instance	to	a	physical	interface	of	a	computer	and	a
specific	transport	connection	(since	the	URL	contains	the	DNS	name	of	an
IP	interface	and	TCP	port	number),	making	multi-homing	and	mobility	very
hard	to	achieve.

1986.	Congestion	collapse	takes	the	Internet	by	surprise.	Despite	the	fact
that	the	problem	of	congestion	control	in	datagram	networks	had	been
known	since	the	very	beginning	(in	fact	there	had	been	several
publications	during	the	70s	and	early	80s,[9][10])	the	congestion	collapse
in	1986	caught	the	Internet	by	surprise.	What	is	worse,	it	was	decided	to
adopt	the	congestion	avoidance	scheme	from	Ethernet	networks	with	a
few	modifications,	but	it	was	put	in	TCP.	The	effectiveness	of	a	congestion
control	scheme	is	determined	by	the	time-to-notify,	i.e.	reaction	time.
Putting	congestion	avoidance	in	TCP	maximizes	the	value	of	the
congestion	notification	delay	and	its	variance,	making	it	the	worst	place	it
could	be.	Moreover,	congestion	detection	is	implicit,	causing	several
problems:	i)	congestion	avoidance	mechanisms	are	predatory:	by
definition	they	need	to	cause	congestion	to	act;	ii)	congestion	avoidance
mechanisms	may	be	triggered	when	the	network	is	not	congested,
causing	a	downgrade	in	performance.

1992.	Second	opportunity	to	fix	addressing	missed.	In	1992	the	Internet
Architecture	Board	(IAB)	produced	a	series	of	recommendations	to
resolve	the	scaling	problems	of	the	IPv4	based	Internet:	address	space
consumption	and	routing	information	explosion.	Three	types	of	solutions
were	proposed:	introduce	CIDR	(Classless	Inter-Domain	Routing)	to
mitigate	the	problem,	design	the	next	version	of	IP	(IPv7)	based	on	CLNP
(ConnectionLess	Network	Protocol)	and	continue	the	research	into
naming,	addressing	and	routing.[11]	CNLP	was	an	OSI	based	protocol	that
addressed	nodes	instead	of	interfaces,	solving	the	old	multi-homing
problem	introduced	by	the	ARPANET,	and	allowing	for	better	routing
information	aggregation.	CIDR	was	introduced	but	the	IETF	didn't	accept
an	IPv7	based	on	CLNP.	IAB	reconsidered	its	decision	and	the	IPng
process	started,	culminating	with	IPv6.	One	of	the	rules	for	IPng	was	not
to	change	the	semantics	of	the	IP	address,	which	continues	to	name	the
interface	perpetuating	the	multi-homing	problem.[3]

There	are	still	more	wrong	decisions	that	have	resulted	in	long-term
problems	for	the	current	Internet,	such	as:

In	1988	IAB	recommended	using	the	Simple	Network	Management
Protocol	(SNMP)	as	the	initial	network	management	protocol	for	the
Internet	to	later	transition	to	the	object-oriented	approach	of	the
Common	Management	Information	Protocol	(CMIP).[12]	SNMP	was	a
step	backwards	in	network	management,	justified	as	a	temporal
measure	while	the	required	more	sophisticated	approaches	were
implemented,	but	the	transition	never	happened.
Since	IPv6	didn’t	solve	the	multi-homing	problem	and	naming	the
node	was	not	accepted,	the	major	theory	pursued	by	the	field	is	that
the	IP	address	semantics	are	overloaded	with	both	identity	and
location	information,	and	therefore	the	solution	is	to	separate	the
two,	leading	to	the	work	on	Locator/Identifier	Separation	Protocol
(LISP).	However	all	approaches	based	on	LISP	have	scaling	problems
[13]	because	i)	it	is	based	on	a	false	distinction	(identity	vs.	location)
and	ii)	it	is	not	routing	packets	to	the	end	destination	(LISP	is	using
the	locator	for	routing,	which	is	an	interface	address;	therefore	the
multi-homing	problem	is	still	there).[14]
The	recent	discovery	of	bufferbloat	due	to	the	use	of	large	buffers	in
the	network.	Since	the	beginning	of	the	80s	it	was	already	known
that	the	buffer	size	should	be	the	minimal	to	damp	out	transient
traffic	bursts,[15]	but	no	more	since	buffers	increase	the	transit	delay
of	packets	within	the	network.
The	inability	to	provide	efficient	solutions	to	security	problems	such
as	authentication,	access	control,	integrity	and	confidentiality,	since
they	were	not	part	of	the	initial	design.	As	stated	in	[16]	“experience
has	shown	that	it	is	difficult	to	add	security	to	a	protocol	suite	unless	it	is
built	into	the	architecture	from	the	beginning”.

Terminology
Application	Entity.	A	task	within	a	DAP	directly	involved	with
exchanging	application	information	with	other	DAPs.
Common	Distributed	Application	Process	(CDAP).	CDAP	enables
distributed	applications	to	deal	with	communications	at	an	object
level,	rather	than	forcing	applications	to	explicitly	deal	with
serialization	and	input/output	operations.	CDAP	provides	the
application	protocol	component	of	a	Distributed	Application	Facility
(DAF)	that	can	be	used	to	construct	arbitrary	distributed
applications,	of	which	the	DIF	is	an	example.	CDAP	provides	a
straightforward	and	unifying	approach	to	sharing	data	over	a
network	without	having	to	create	specialized	protocols.
Distributed	Application	Facility	(DAF).	A	collection	of	two	or	more
cooperating	DAPs	in	one	or	more	processing	systems,	which
exchange	information	using	IPC	and	maintain	shared	state.	In	some
Distributed	Applications,	all	members	will	be	the	same,	i.e.	a
homogeneous	DAF,	or	may	be	different,	a	heterogeneous	DAF.
Distributed	Application	Process	(DAP).	The	instantiation	of	a	computer
program	executing	in	a	processing	system	intended	to	accomplish
some	purpose.	A	Distributed	Application	Process	contains	one	or
more	tasks	or	Application-Entities,	as	well	as	functions	for	managing

Figure	2.	Distributed	Application	Processes
(DAPs)	and	their	components

Figure	3.	Example	of	RINA	networks	and	IPC
Process	components

Figure	4.	Functional	layering	of	the	TCP/IP
architecture

the	resources	(processor,	storage,	and	IPC)	allocated	to	this	DAP.
Distributed	IPC	Facility	(DIF),	Layer.	A	collection	of	two	or	more	DAPs
cooperating	to	provide	Interprocess	Communication	(IPC).	A	DIF	is	a
DAF	that	does	IPC.	The	DIF	provides	IPC	services	to	Applications	via
a	set	of	API	primitives	that	are	used	to	exchange	information	with	the
Application’s	peer.
IPC	Process	(IPCP).	An	Application-Process,	which	is	a	member	of	a
DIF	and	implements	locally	the	functionality	to	support	and	manage
IPC	using	multiple	sub-tasks.
Processing	System.	The	hardware	and	software	capable	of	executing
programs	instantiated	as	DAPs	that	can	coordinate	with	the
equivalent	of	a	“test	and	set”	instruction,	i.e.	the	tasks	can	all
atomically	reference	the	same	memory.
Protocol	Data	Unit	(PDU).	The	string	of	octets	exchanged	among	the
Protocol	Machines	(PM).	PDUs	contain	two	parts:	the	PCI,	which	is
understood	and	interpreted	by	the	DIF,	and	User-Data,	that	is
incomprehensible	to	this	PM	and	is	passed	to	its	user.
Resource	Information	Base	(RIB).	For	the	DAF,	the	RIB	is	the	logical
representation	of	the	local	repository	of	the	objects.	Each	member	of
the	DAF	maintains	a	RIB.	A	Distributed	Application	may	define	a	RIB
to	be	its	local	representation	of	its	view	of	the	distributed
application.	From	the	point	of	view	of	the	OS	model,	this	is	storage.
Service	Data	Unit	(SDU).	The	amount	of	data	passed	across	the	(N)-
DIF	interface	to	be	transferred	to	the	destination	application
process.	The	integrity	of	an	SDU	is	maintained	by	the	(N)-DIF.	An
SDU	may	be	fragmented	or	combined	with	other	SDUs	for	sending	as
one	or	more	PDUs.

Introduction	to	RINA
RINA	is	the	result	of	an	effort
that	tries	to	work	out	the
general	principles	in
computer	networking	that
applies	to	everything.	RINA
is	the	specific	architecture,
implementation,	testing
platform	and	ultimately
deployment	of	the	theory.
This	theory	is	informally
known	as	the	Inter-Process
Communication	“IPC	model”
[17]	although	it	also	deals
with	concepts	and	results
that	are	generic	for	any
distributed	application	and
not	just	for	networking.

The	IPC	model	captures	the
common	elements	of	distributed	applications,	called	DAFs	(Distributed
Application	Facilities),	as	illustrated	in	the	Figure	to	the	right.	A	DAF	is
composed	by	two	or	more	Distributed	Application	Processes	or	DAPs,
which	collaborate	to	perform	a	task.	These	DAPs	communicate	using	a
single	application	protocol	called	CDAP	(Common	Distributed	Application
Protocol),	which	enables	two	DAPs	to	exchange	structured	data	in	the
form	of	objects.	All	of	the	DAP’s	externally	visible	information	is
represented	by	objects	and	structured	in	a	Resource	Information	Base
(RIB),	which	provides	a	naming	schema	and	a	logical	organization	to	the
objects	known	by	the	DAP	(for	example	a	naming	tree).	CDAP	allows	the
DAPs	to	perform	six	remote	operations	on	the	peer’s	objects	(create,
delete,	read,	write,	start	and	stop).

In	order	to	exchange	information,	DAPs	need	an	underlying	facility	that
provides	communication	services	to	them.	This	facility	is	another	DAF
whose	task	is	to	provide	and	manage	Inter	Process	Communication
services	over	a	certain	scope	;	hence	this	DAF	is	called	DIF:	Distributed
IPC	Facility	-	the	DIF	can	be	thought	of	as	a	layer.	A	DIF	enables	a	DAP	to
allocate	flows	to	one	or	more	DAPs,	by	just	providing	the	names	of	the
targeted	DAPs	and	the	characteristics	required	for	the	flow	(bounds	on
data	loss	and	delay,	in-order	delivery	of	data,	reliability,	etc.).	DAPs	may
not	trust	the	DIF	they	are	using,	therefore	may	decide	to	protect	their
data	before	writing	it	to	the	flow	-	for	example	using	encryption	-	via	the
SDU	(Service	Data	Unit)	Protection	module.

DIFs	can	also	be	the	users	of
other	underlying	DIFs,
creating	in	this	way	the
recursive	structure	of	the
RINA	architecture.	The	DAPs
that	are	members	of	a	DIF
are	called	IPC	Processes	or
IPCPs.	They	have	the	same
generic	DAP	structure
shown	in	Figure	2,	plus	some
specific	tasks	to	provide	and
manage	IPC.	These	tasks,	as
shown	in	Figure	3,	can	be
divided	into	three
categories:	data	transfer,
data	transfer	control	and
layer	management.	The	elements	are	ordered	in	increasing	complexity
and	frequency	of	use,	with	elements	at	the	far	left	being	used	the	most
(per	packet	processing)	but	the	least	complex,	and	elements	to	the	right
being	not	often	used,	but	very	complex.	All	the	layers	provide	the	same
functions	and	have	the	same	structure	and	components,	however	these
components	are	configured	via	policies	in	order	to	adapt	to	different
operating	environments.

As	depicted	in	Figure	2	RINA	networks	are	usually	structured	in	DIFs	of
increasing	scope,	starting	from	the	so-called	lower	layers	and	going	up
closer	to	the	applications.	A	provider	network	can	be	formed	by	a
hierarchy	of	DIFs	multiplexing	and	aggregating	traffic	from	upper	layers
into	the	provider’s	backbone.	None	of	the	provider	internal	layers	need	to
be	externally	visible.	Multi-provider	DIFs	(such	as	the	public	Internet	or
others)	float	on	top	of	the	ISP	layers.	Only	three	types	of	systems	are
required:	hosts	(which	contain	applications),	interior	routers	(systems
that	are	internal	to	a	layer)	and	border	routers	(systems	at	the	edges	of	a
layer,	which	go	one	layer	up	or	down).	In	short,	RINA	has	the	following
features:

It	builds	on	a	very	basic	premise,	yet	fresh	perspective	that
networking	is	not	a	layered	set	of	different	functions	but	rather	a
single	layer	of	distributed	Inter-Process	Communication	(IPC)	that
repeats	over	different	scopes.	Each	instance	of	this	repeating	IPC
layer	implements	the	same	functions/mechanisms	but	policies	are
tuned	to	operate	over	different	ranges	of	the	performance	space
(e.g.	capacity,	delay,	loss).

It	is	based	on	a	comprehensive	theory	of	networking;	it	does	not
represent	another	patch,	or	point-solution	to	a	piece	of	the	problem.
RINA	does	not	propose	to	simply	add	a	new	“session	layer”	to
perform	some	extra	functionality	for	bridging	ISP	networks.	Instead	it
takes	a	clean	slate	approach	and	begins	with	a	comprehensive
general	theory	of	IPC	where	the	number	of	IPC	layers	(DIFs)	may	vary
at	different	parts	of	the	Internet	depending	on	the	range	of	the
resource	allocation	problem	that	must	be	addressed.	The	greater	the
operating	ranges	in	a	network,	the	more	IPC	layers	it	may	have.	Thus
configuring	the	appropriate	number	of	IPC	layers	allows	for	more
predictable	services	to	be	delivered	to	users.

This	repeating	structure	scales	indefinitely,	thus	it	avoids	current
problems	of	growing	routing	tables,	and	supports	features	such	as
multi-homing	and	mobility,	with	little	or	no	cost.	By	indefinitely	we
mean	that	the	nature	of	RINA	does	not	impose	any	limits.	There	may
be	physical	limits	and	other	constraints.

An	application	process	using	a	DIF	only	knows	the	name	of	the
destination	application	process.	It	has	no	knowledge	of	addresses
and	there	are	no	so-called	“well-known	ports”.	Joining	a	DIF	requires
that	the	new	member	must	be	authenticated	according	to	the
policies	of	this	particular	facility.	This	yields	a	far	more	secure
architecture.

Stacking	DIFs	on	top	of	each	other	allows	networks	to	be	built	from
smaller	and	more	manageable	layers	of	limited	scope.	This	divide-
and-conquer	strategy	gives	providers	more	resource	management
options	than	just	over-provisioning.	It	also	provides	the	basis	for
operating	subnetworks	at	much	higher	utilization	than	in	the	current
Internet.

RINA	leverages	the	well-known	concept	of	separating	mechanism
from	policy	in	operating	systems.[18]	Applying	this	separation	to
network	protocols	allows	a	DIF	to	provide	a	common	minimal	set	of
mechanisms	that	once	instantiated	with	the	appropriate	policies
allows	any	transport	solution	to	be	realised.[19]	Not	only	the
transport	functions	of	a	DIF	benefit	from	this	approach,	but	also
other	ones	such	as	management,	authentication	or	access	control;
making	the	DIF	a	fully	configurable	container	capable	of	effectively
operating	on	top	of	heterogeneous	physical	medias	and	to	provide
differentiated	levels	of	QoS	to	different	types	of	applications.

DIFs	can	be	configured	to	not	only	provide	the	fundamental	services
of	the	traditional	networking	lower	layers	but	also	the	services	of
application	relaying	(e.g.	mail	distribution	and	similar	services),
transaction	processing,	content	distribution	and	peer-to-peer.	This
removes	the	barrier	created	by	the	Transport	Layer	in	the	current
Internet,	opening	potential	new	markets	for	ISPs	to	provide	IPC
services	directly	to	their	customers	leveraging	their	expertise	in
resource	management	of	lower	layers.

It	turns	out	that	private	networks	(with	private	addresses)	are	the
norm.	IPC	processes	are	identified	by	addresses	internal	to	the	DIF
and	public	networks	are	simply	a	degenerate	case	of	a	private
network.	This	lays	the	foundation	for	major	competition	and
innovation	and	avoids	the	rigidness	of	the	current	Internet	structure.
There's	not	just	a	single	network	where	everybody	has	to	be
attached	to;	with	RINA	network	operators,	service	providers	and
users	have	a	choice	of	which	networks	to	provide	and	which
networks	to	join.

RINA	compared	to	TCP/IP
Structure

While	in	operating	systems	layers	are	a	convenience	-	a	way	to	achieve
modularity	-	in	networks	layers	are	a	necessity,	since	in	networks	there	is
distributed	shared	state	of	different	scopes.	Layers	are	the	tool	for
isolating	distributed	shared	state	of	different	scopes,	nothing	else	is
required.	The	current	Internet	architecture	uses	a	layered	architecture
with	a	fixed	number	of	layers,	every	layer	having	the	responsibility	of	a
different	function,	as	depicted	in	Figure	4	(functional	layering).

The	current	architecture	just
provides	two	scopes:	data
link	(scope	of	layers	1	and	2),
and	global	(scope	of	layers	3
and	4).	However,	layer	4	is
just	implemented	in	the
hosts,	therefore	the
“network	side”	of	the
Internet	ends	at	layer	3.	This
means	that	the	current
Internet	is	able	to	handle	a	network	with	heterogeneous	physical	links,
but	it	is	not	designed	to	handle	heterogeneous	networks,	although	this	is
supposed	to	be	its	operation.	To	be	able	to	do	it,	it	would	require	an
“Internetwork”	scope,	which	is	now	missing.[7]	As	ironic	as	it	may	sound,
the	current	Internet	is	not	really	an	internetwork,	but	a	concatenation	of
IP	networks	with	an	end-to-end	transport	layer	on	top	of	them.	The
consequences	of	this	flaw	are	several:	both	inter-domain	and	intra-domain
routing	have	to	happen	within	the	network	layer,	and	its	scope	had	to	be
artificially	isolated	through	the	introduction	of	the	concept	of
Autonomous	System	(Internet)	and	an	Exterior	Gateway	Protocol;[8]
Network	Address	Translation	(NATs)	appeared	as	middleboxes	in	order	to
have	a	means	of	partitioning	and	reusing	parts	of	the	single	IP	address
space.[20]

With	an	internetwork	layer	none	of	this	would	be	necessary:	inter-domain
routing	would	happen	at	the	internetwork	layer,	while	intra-domain
routing	within	each	network	would	occur	at	each	respective	network
layer.	NATs	would	not	be	required	since	each	network	could	have	its	own
internal	address	space;	only	the	addresses	in	the	internetwork	layer
would	have	to	be	common.	Moreover,	congestion	could	be	confined	to
individual	networks,	instead	of	having	to	deal	with	it	at	a	global	scope	as
it	is	done	today.	The	internetwork	layer	was	there	in	previous
internetwork	architectures,	for	example,	the	INWG	architecture	depicted
in	Figure	3,	which	was	designed	in	1976.	It	was	somehow	lost	when	the
Network	Control	Program	was	phased	out	ant	the	Internet	officially
started	in	1983.

The	second	issue	in	functional	layering	is	that	each	layer	is	supposed	to
provide	a	different	function,	and	that	this	function	must	not	be	repeated
in	the	other	layers	of	the	stack.	A	quick	analysis	on	today’s	protocols
shows	that	there	are	repeated	functions	in	different	layers;	what	is	more
they	tend	to	alternate:	layer	1	provides	multiplexing	and	relaying	over	a
physical	media,	layer	2	provides	error	and	flow	control	over	a	data	link,
layer	3	provides	multiplexing	and	relaying	over	a	network,	layer	4
provides	error	and	flow	control	end-to-end.	Finally,	the	third	issue	is	that
layers	have	to	be	independent,	in	order	to	isolate	the	shared	state	of
different	scopes	and	allow	scalability.	Layer	violations	(layers	that	use
other	layer’s	information	in	order	to	achieve	their	job)	are	in	the	order	of
the	day,	starting	with	the	TCP	pseudo-header	calculated	with	the
information	of	IP	source	and	destination	addresses.

RINA	goes	beyond	the	static	layering	concepts	and	defines	a	layer	as	a
distributed	application	that	provides	IPC	services	to	applications	(or	other
layers)	that	use	it.	In	RINA	layers	are	recursive;	there	is	not	a	fixed
number	of	layers	in	the	stack.	The	number	of	layers	in	any	given	network
is	variable.	There	are	simply	as	many	as	deemed	necessary	by	the
network	designers.	All	layers	use	the	same	protocols	that	can	be	policy-
configured	to	optimally	support	the	operational	requirements	of	each
particular	layer.	The	protocols	running	at	each	layer	have	the	potential	to
provide	all	the	functionality	required	to	allow	the	layer	to	operate
efficiently:	data	transport,	data	transport	control,	multiplexing,	relaying,
congestion	control,	routing,	resource	allocation,	enrollment,
authentication,	access	control,	integrity	and	so	forth.	The	number	of
these	functions	instantiated	at	each	layer	and	how	they	behave	can	be
configured	on	a	layer-by-layer	basis.

Naming,	addressing,	routing,	mobility	and	multi-homing

The	current	Internet	architecture	has	an	incomplete	naming	and
addressing	schema,	which	the	reason	why	mobility	and	multi-homing
require	ad-hoc	solutions	and	protocols	tailored	to	different	operational
environments.	The	only	names	provided	are	Point	of	Attachment	(PoA)
names	(IP	addresses),	which	are	usually	confused	to	be	node	names.	The

Figure	5.	Saltzer's	point	of	view	on	naming	and
addressing	in	computer	networks.

Figure	6.	Placement	of	security	functions	in	the
RINA	architecture.

Figure	7.	Multiple	RINA	networks	supporting
several	internetworks.

result	is	that	the	network	has	no	way	to	understand	that	the	two	or	more
IP	addresses	of	a	multi-homed	node	belong	to	the	same	node,	making
multi-homing	hard.	The	same	choice,	naming	the	interface	and	not	the
node,	forces	the	Internet	to	perform	routing	on	the	interface	level	instead
of	the	node	level,	resulting	in	having	much	bigger	routing	tables	than
they	really	need	to	be.	Mobility,	which	can	be	seen	as	dynamic	multi-
homing,	is	the	next	feature	that	suffers	from	having	an	incomplete
naming	schema.

In	1982,	Jerry	Saltzer	in	his	work	“On	the	Naming	and	Binding	of	network
destinations”	[21]	described	the	entities	and	the	relationships	that	make	a
complete	naming	and	addressing	schema	in	networks.	According	to
Saltzer	four	are	the	elements	that	need	to	be	identified:	applications,
nodes,	points	of	attachment	to	the	network	(PoA)	and	paths.	An
application	can	run	in	one	or	more	nodes	and	should	be	able	to	move	from
one	node	to	another	without	losing	its	identity	in	the	network.	A	node	can
be	connected	to	a	pair	of	PoAs	and	should	be	able	to	move	between	them
without	losing	its	identity	in	the	network.	A	directory	maps	an	application
name	to	a	node	address,	and	routes	are	sequences	of	nodes	addresses
and	point	of	attachments.

Saltzer	took	his	model	from
operating	systems,	but	it
was	not	completely	correct
for	internetworks,	since
there	may	be	more	than	one
path	between	the	same	pair
of	nodes	(even	whole
networks!).	The	obvious
solution	is	that	routes	are
sequences	of	nodes,	and	at
each	hop	each	node	chooses
the	most	appropriate	PoA	(path)	to	forward	the	packet	to	the	next	node.
Therefore,	routing	is	a	two-step	process:	First	the	route	as	a	sequence	of
node	addresses	is	calculated,	and	then,	for	each	hop,	an	appropriate	PoA
to	select	the	specific	path	to	be	traversed	is	chosen.	These	are	the	steps
to	generate	the	forwarding	table,	forwarding	is	still	performed	with	a
single	lookup.	Moreover,	the	last	step	can	be	performed	more	frequently
in	order	to	exploit	multi-homing	for	load-balancing.

With	this	naming	structure,	support	for	mobility	and	multi-homing	is
inherent,	if	the	properties	for	the	names	are	chosen	with	care:	application
names	are	location-independent	to	allow	an	application	to	move	around,
node	addresses	are	location-dependent	but	route-independent.	PoA
addresses	are	by	nature	route-dependent.	Applying	this	naming	scheme
to	RINA,	with	recursive	layers,	an	interesting	observation	can	be	made:
mapping	application	names	to	node	addresses	is	the	same	mapping	than
mapping	node	addresses	to	PoAs.	In	other	words,	for	any	layer	N,	nodes
at	the	layer	N+1	are	applications	and	nodes	at	the	layer	N-1	are	points	of
attachment,	making	this	relationship	relative.

The	Locator/Identifier	Separation	Protocol	(LISP	or	Loc/ID	split)	[22]	has
been	proposed	by	IETF	as	a	solution	to	issues	as	the	scalability	of	the
routing	system.	LISP	main	argument	is	that	the	semantics	of	the	IP
address	are	overloaded	being	to	be	both	locator	and	identifier	of	an
endpoint.	LISP	proposes	to	address	this	issue	by	separating	the	IP
address	into	a	locator	part,	which	is	hierarchical,	and	an	identifier,	which
is	flat.	However	this	is	a	false	distinction:	in	Computer	Science	it	is
impossible	to	locate	something	without	identifying	it	and	to	identify
something	without	locating	it,	since	all	the	names	are	using	for	locating
an	object	within	a	context.[21]	Moreover,	LISP	continues	to	use	the	locator
for	routing,	therefore	routes	are	computed	between	locators	(inter-
faces).	However,	a	path	does	not	end	on	a	locator	but	on	an	identifier,	in
other	words,	the	locator	is	not	the	ultimate	destination	of	the	packet	but
a	point	on	the	path	to	the	ultimate	destination.[14]	This	issue	leads	to
path-discovery	problems,	as	documented	by	[13]	whose	solution	is	known
not	to	scale.

RINA	adopts	and	extends	Saltzer’s	model	by	supporting	internetworks,
and	making	it	recursive.	It	has	a	complete	naming	and	addressing
schema,	providing	names	for	the	basic	entities	of	the	network	(nodes,
PoAs	and	applications).	As	a	consequence	RINA	supports	mobility	and
multi-homing	inherently	[23]

Protocol	Design

A	protocol	can	effectively	serve	different	applications	with	a	wide	range	of
requirements	as	long	as	this	is	the	goal	from	the	beginning	of	the
protocol	design.	In	RINA,	policy	and	mechanism	are	separated,	resulting
in	a	framework	than	can	be	fine-tuned	through	policy	specification.	The
mechanism	of	a	protocol	may	be	tightly	bound,	such	as	the	headers	of	a
data	transfer	packet,	or	loosely	bound,	as	in	some	control	and
acknowledgment	messages.	The	use	of	common	mechanisms	in
conjunction	with	different	policies,	rather	than	the	use	of	separate
protocols	brings	greater	flexibility.[18]	Each	DIF	can	use	different	policies
to	provide	different	classes	of	quality	of	service	to	further	adapt	to	the
characteristics	of	the	physical	media	(if	the	DIF	is	close	to	the	lower	end
of	the	stack)	or	to	the	characteristics	of	the	applications	(if	the	DIF	is
close	to	the	upper	end	of	the	stack).

By	separating	mechanism	and	policy,	RINA	dramatically	simplifies
networking.	There	is	no	longer	a	different	set	of	modules	and	protocols
for	each	capability	in	each	layer.	Instead,	the	elements	of	the	DIF	combine
to	accomplish	functions	that	have	previously	required	a	multitude	of
individual	specifications.	The	implications	of	this	are	significant:	rather
than	hundreds	of	handcrafted	protocols	each	with	their	own
optimizations,	there	is	a	consistent	repeating	structure	of	two	protocols
(an	application	protocol,	a	data	transfer	protocol)	and	a	common	header
and	roughly	a	half	dozen	modules.	In	this	approach	there	is	thus	far	less
to	go	wrong.	A	single	replicable	layer	of	a	half	dozen	or	so	modules	can	be
much	more	effectively	engineered	to	be	free	of	bugs	and	security	holes
than	the	literally	hundreds	of	protocols	in	conventional	Internetworking.
Furthermore,	the	inherently	constrained	nature	of	policies	makes	it
possible	to	circumscribe	their	side	effects	and	ensure	their	proper
behaviour.	It	is	possible	to	define	properties	of	policies	that	can	be
proved	or	tested	that	ensure	proper	behaviour.

The	basis	of	the	data	transfer	control	protocol	in	RINA	is	the	Delta-T
protocol.[6]	Watson	proved	that	the	necessary	and	sufficient	conditions
for	reliable	transfer	is	to	bound	three	timers.	Delta-T	is	an	example	of	how
this	should	work.	It	does	not	require	a	connection	setup	(such	as	TCP’s
SYN	handshake)	or	tear-down	(like	TCP’s	FIN	handshake)	for	integrity
purposes.	In	fact,	TCP	uses	the	same	three	timers!	So	RINA	avoids
unnecessary	overhead.	Watson	showed	that	synchronization	and	port
allocation	are	distinct	functions.	Port	allocation	is	part	of	DIF
management,	while	synchronization	is	part	of	the	data	transfer	protocol.
In	fact,	maintaining	the	distinction	also	improves	the	security	of
connection	setup,	and	avoids	the	need	for	separate	protocols	like	IPSec,
since	multiple	transport	connections	can	be	associated	to	the	same	port
allocation.

By	separating	mechanism	from	policy,	RINA	dramatically	reduces	the
number	of	protocols	required	in	the	architecture,	while	still	allowing	each
layer	to	be	customized	to	provide	different	levels	of	quality	of	service.
Applying	Watson’s	theory	of	separating	port	allocation	from
synchronisation	enables	simpler,	more	robust	and	more	reliable	data
transfer	protocols.

Security

The	recursive	model	of	the	RINA	architecture	provides	a	clear	security
model	in	which	the	trust	relationships	between	layers	(DAFs	or	DIFs)	and
between	members	of	a	single	layer	are	well	identified.	Figure	6	illustrates
these	trust	boundaries,	which	facilitate	the	placement	of	the	different
security	functions	in	the	RINA	architecture	-	in	contrast	to	the	Internet
where	security	is	designed	in	every	protocol	instead	of	at	the	system-
level,	making	security	complex,	expensive	and	brittle.	Research	on	RINA
security	properties	to	date	has	already	produced	some	promising	results.

Resiliency	to	data	transport
attacks.	IPCP	(node)
addresses	are	internal	to	a
DIF	and	not	exposed	to
applications,	data
connections	are	dynamically
assigned	connection-
endpoint	ids	(CEP-ids)	that
are	bound	to	dynamically
assigned	ports.	Bodappati	et
al.[24]	showed	that	due	to
this	decoupling	of	transport
port	allocation	and	access
control	from	data	synchronization	and	transfer	RINA	was	much	more
resilient	than	TCP/IP	to	transport-level	attacks	such	as	port-scanning,
connection	opening	or	data-transfer.

DIFs	are	securable	containers,	no	firewalls	are	necessary.	Small	et	al.	[25]
performed	a	threat	analysis	at	the	RINA	architecture	level,	concluding
that	DIFs	are	securable	containers.	That	is,	if	proper	authentication,
authorization,	confidentiality,	integrity	protection	and	auditing	policies
are	put	in	place	(as	identified	in	section	2.1)	a	DIF	is	a	structure	used	to
transport	data	that	can	be	made	to	be	not	subject	to	thread.	No	external
tools	such	as	firewalls	are	required.

Complexity	of	RINA	security	is	lower	than	that	of	the	current	Internet
security.	This	is	a	consequence	of	the	different	approach	to	each	of	the
architectures:	the	system	design	approach	adopted	by	the	RINA
architecture,	is	based	on	identifying	the	proper	placement	of	all	the
functions	within	the	architecture	-	in	contrast	to	the	disorganized
evolution	of	the	Internet	“protocol-suite”	which	leads	to	unnecessary
redundancy	and	complexity.	This	is	particularly	evident	in	comparing	the
number	of	protocols	and	mechanisms	required	to	add	security	to	both
RINA	and	the	Internet:	Small[26]	showed	that	the	current	Internet	security
had	for	4-5	times	the	overhead	of	RINA	security.	Less	overhead	means	not
only	less	cost	but	also	more	effective	security,	since	complexity	is	the
worst	enemy	of	security	[27]

Other	aspects

Quality	of	Service.	Another	shortcoming	of	the	TCP/IP	architecture	is	that
there	is	no	built-in	mechanism	that	allows	the	network	to	provide	specific
QoS	levels.	Applications	have	no	way	of	asking	for	certain	QoS
parameters,	since	the	sockets	API	only	allows	to	specify	a	reliable	(TCP)	or
unreliable	(UDP)	transport	service.	Within	RINA	each	DIF	can	support	a
set	of	QoS	cubes	(QoS	classes	with	different	restrictions	on	several	QoS
parameters	such	as	bandwidth,	delay,	loss	rate,	ordered	or	not	ordered
delivery,	jitter)	and	provide	service	guarantees	to	its	clients.	The	DIF	API
allows	applications	(being	general	applications	or	other	DIFs)	to	provide
QoS	requirements	when	they	request	an	IPC	service.

Greater	robustness	and	more	effective	response	to	change.	Response	to
change	is	far	faster	thanks	to	load	balancing,	quicker	convergence	due	to
much	smaller	routing	table	sizes,	more	responsive	flow	management,	and,
on	the	manpower	side,	simpler	and	more	effective	operational
management.	RINA	provides	all	of	the	flexibility	and	survivability	of
connectionless	networking	while	supporting	all	the	service	capabilities	of
connection-oriented	networking.	Data	flows	under	hostile	environments
are	far	more	reliable	due	to	highly	tuneable,	situation-specific	policies.	As
new	demands	arise,	systems	can	be	quickly	reconfigured	to	accommodate
them	simply	by	configuring	new	policies.

A	more	competitive	marketplace.	The	particular	“best-effort”	architecture
adopted	by	the	Internet	does	relegate	providers	to	a	commodity	business.
The	Transport	Layer	(TCP)	effectively	seals	the	providers	off	in	the	lower
layers	with	IP	providing	a	best-effort	service.	This	implies	that	everyone
must	do	the	same	thing	or	nearly	so,	leaving	little	room	for	differentiation
and	competition	and	relegates	them	to	a	commodity	business.	RINA
creates	the	robust	feedback	needed	for	a	healthy	marketplace.[28]	An
application	API	allows	applications	to	request	service	with	specific	QoS
requirements	from	the	layer	below.	Each	DIF	can	be	configured	to	not
only	provide	the	traditional	services	of	lower	networking	layers	but	also
application-support	(transport)	services.	This	removes	the	barrier	created
by	the	Transport	Layer	in	the	current	Internet,	opening	potential	new
markets	for	ISPs	to	provide	IPC	services	directly	to	their	customers,
leveraging	their	expertise	in	resource	management	of	lower	layers	and
creating	new	competition	with	“host”	providers.	This	distributed	IPC	can
be	configured	to	not	only	provide	the	fundamental	services	of	the
traditional	networking	lower	layers	but	also	the	services	of	application
relaying,	e.g.	mail	distribution	and	similar	services;	transaction
processing,	and	peer-to-peer.

Internetworking.	In	RINA	the
public	Internet	can	be	seen
as	a	public	e-mall	floating	on
top	of	multiple	providers.
This	is	what	we	are	trying	to
do	today	but	lacking	the
right	tools	to	do	it.	In	RINA
each	level	of	the	hierarchy
has	an	independent	address
space,	managed	by	the
provider	it	belongs	to.	As	opposed	to	what	we	are	used	today,	other	e-
malls	potentially	more	upscale	are	possible	with	other	characteristics
such	as	tighter	security	for	joining,	perhaps	specialized	to	certain	market
segments,	creating	a	real	Internetwork.	An	example	of	several
Internetworks	is	shown	in	Figure	7.	Lower	level	DIFs	belong	to	ISPs,
which	decide	for	the	configuration,	the	address	space	and	policies	in
these	DIFs.	Higher	layer	DIFs	can	be	accessible	by	everybody.	For
example,	Facebook	could	be	considered	boutique	e-malls	in	contrast	to
the	mega-malls	like	the	Internet.	It	could	benefit	from	the	improved
security	and	ability	to	create	focused	communities	with	tighter	controls.
There	is	no	public	network	or	address	space	to	which	one	must	belong.
Any	network	you	are	part	of	is	by	choice.	Networks	have	considerable
flexibility	in	who	they	provide	their	services.	This	would	encourage
alliances	among	groups	of	providers	with	complementary	interests	to
provide	QoS	services	in	competition	with	groups	of	other	providers.

Research	projects
From	the	publishing	of	the	PNA	book	in	2008	until	2014	a	lot	of	RINA
research	and	development	work	has	been	done.	There	is	a	clear	need	for
an	international	authority	that	coordinates	the	different	ongoing
activities,	make	sure	their	results	are	integrated	in	the	basic	reference
model	but	at	the	same	time	are	able	to	incorporate	new	knowledge	or	fix
inconsistencies.	An	informal	group	known	as	the	Pouzin	Society	(PSOC)
[29]–	named	after	Louis	Pouzin,[30]	the	inventor	of	datagrams	and
connectionless	networking	-	has	been	taking	this	role.

BU	Research	Team

The	RINA	research	team	at	Boston	University	[31]	is	lead	by	Prof.	Abraham
Matta	and	Prof.	John	Day.	BU	has	been	awarded	a	number	of	grants	from

the	National	Science	Foundation	in	order	to	continue	investigating	the
fundamentals	of	RINA,	develop	an	open	source	prototype	implementation
over	UDP/IP	for	Java	[32]	and	experiment	with	it	on	top	of	the	GENI
infrastructure.[33]	BU	is	also	a	member	of	the	Pouzin	Society	and	an	active
contributor	to	the	FP7	IRATI	and	PRISTINE	projects.	In	addition	to	this,	BU
has	incorporated	the	RINA	concepts	and	theory	in	their	computer
networking	courses.

FP7	IRATI

IRATI	[34]	is	an	FP7-funded	project	with	5	partners:	i2CAT,	Nextworks,
iMinds,	Interoute	and	Boston	University,	whose	main	goal	is	to	produce
an	open	source	RINA	implementation	for	the	Linux	OS	on	top	of
Ethernet,.[35][36]	FP7	IRATI	has	already	open-sourced	the	first	release	of
the	RINA	implementation,	called	as	the	project	“IRATI”.[37]	The
implementation	will	be	further	enhanced	by	the	PRISTINE	and	IRINA
projects.

FP7	PRISTINE

PRISTINE	[38]	is	an	FP7-funded	project	with	15	partners:	WIT-TSSG,	i2CAT,
Nextworks,	Telefónica	I+D,	Thales,	Nexedi,	B-ISDN,	Atos,	University	of
Oslo,	Juniper	Networks,	Brno	University,	IMT-TSP,	CREATE-NET,	iMinds
and	UPC;	whose	main	goal	is	to	explore	the	programmability	aspects	of
RINA	to	implement	innovative	policies	for	congestion	control,	resource
allocation,	routing,	security	and	network	management.

GEANT3+	Open	Call	winner	IRINA

IRINA	[39]	was	funded	by	the	GEANT3+	open	call,	and	is	a	project	with
four	partners:	iMinds,	WIT-TSSG,	i2CAT	and	Nextworks.	The	main	goal	of
IRINA	is	to	study	the	use	of	the	Recursive	InterNetwork	Architecture
(RINA)	as	the	foundation	of	the	next	generation	NREN	and	GÉANT
network	architectures.	IRINA	builds	on	the	open	source	RINA	prototype
developed	by	the	FP7	IRATI	project.	IRINA	will	compare	RINA	against
current	networking	state	of	the	art	and	relevant	clean-slate	architecture
under	research;	perform	a	use-case	study	of	how	RINA	could	be	better
used	in	the	NREN	scenarios;	and	showcase	a	laboratory	trial	of	the	study.

References
1.	 Patterns	in	Network	Architecture:	A	Return	to	Fundamentals,	John	Day	(2008),
Prentice	Hall,	ISBN	978-0132252423

2.	 A.	McKenzie,	“INWG	and	the	Conception	of	the	Internet:	An	Eyewitness	Account”;
IEEE	Annals	of	the	History	of	Computing,	vol.	33,	no.	1,	pp.	66-71,	2011

3.	 R.	Hinden	and	S.	Deering.	IP	Version	6	Addressing	Architecture.	RFC	4291	(Draft
Standard),	February	2006.	Updated	by	RFCs	5952,	6052

4.	 C.A.	Kent	and	J.C.	Mogul.	Fragmentation	considered	harmful.	Proceedings	of
Frontiers	in	Computer	Communications	Technologies,	ACM	SIGCOMM,	1987

5.	 R.	Watson.	Timer-based	mechanism	in	reliable	transport	protocol	connection
management.	Computer	Networks,	5:47–56,	1981

6.	 R.	Watson.	Delta-t	protocol	specification.	Technical	Report	UCID-19293,	Lawrence
Livermore	National	Laboratory,	December	1981

7.	 J.	Day.	How	in	the	Heck	Do	You	Lose	a	Layer!?	2nd	IFIP	International	Conference	of
the	Network	of	the	Future,	Paris,	France,	2011

8.	 E.C.	Rosen.	Exterior	Gateway	Protocol	(EGP).	RFC	827,	October	1982.	Updated	by
RFC	904.

9.	 D.	Davies.	Methods,	tools	and	observations	on	flow	control	in	packet-switched	data
networks.	IEEE	Transactions	on	Communications,	20(3):	546–550,	1972

10.	 S.	S.	Lam	and	Y.C.	Luke	Lien.	Congestion	control	of	packet	communication	networks
by	input	buffer	limits	-	a	simulation	study.	IEEE	Transactions	on	Computers,	30(10),
1981.

11.	 Internet	Architecture	Board.	IP	Version	7	**	DRAFT	8	**.	Draft	IAB	IPversion7,	july
1992

12.	 Internet	Architecture	Board.	IAB	Recommendations	for	the	Development	of
Internet	Network	Management	Standards.	RFC	1052,	april	1988

13.	 D.	Meyer	and	D.	Lewis.	Architectural	implications	of	Locator/ID	separation.	Draft
Meyer	Loc	Id	implications,	january	2009

14.	 J.	Day.	Why	loc/id	split	isn’t	the	answer,	2008.	Available	online	at
http://rina.tssg.org/docs/LocIDSplit090309.pdf

15.	 L.	Pouzin.	Methods,	tools	and	observations	on	flow	control	in	packet-switched	data
networks.	IEEE	Transactions	on	Communications,	29(4):	413–426,	1981

16.	 D.	Clark,	L.	Chapin,	V.	Cerf,	R.	Braden	and	R.	Hobby.	Towards	the	Future	Internet
Architecture.	RFC	1287	(Informational),	December	1991

17.	 John	Day,	Ibrahim	Matta	and	Karim	Mattar.	Networking	is	IPC:	A	guiding	principle
to	a	better	Internet.	In	Proceedings	of	the	2008	ACM	CoNEXT	Conference.	ACM,
2008

18.	 P.	Brinch	Hansen.	The	nucleous	of	a	multiprogramming	system.	Communications	of
the	ACM,	13(4):	238-241,	1970

19.	 I.	Matta,	J.	Day,	V.	Ishakian,	K.	Mattar	and	G.	Gursun.	Declarative	transport:	No
more	transport	protocols	to	design,	only	policies	to	specify.	Technical	Report	BUCS-
TR-2008-014,	CS	Dept,	Boston.	U.,	July	2008

20.	 K.	Egevang	and	P.	Francis.	The	IP	Network	Address	Translator	(NAT).	RFC	1631
(Informational),	May	1994.	Obsoleted	by	RFC	3022

21.	 J.	Saltzer.	On	the	Naming	and	Binding	of	Network	Destinations.	RFC	1498
(Informational),	August	1993

22.	 D.	Farinacci,	V.	Fuller,	D.	Meyer,	and	D.	Lewis.	Locator/ID	Separation	Protocol
(LISP).	Draft	IETF	LISP	18,	december	2011

23.	 V.	Ishakian,	J.	Akinwuni,	F.	Esposito,	I.	Matta,	"On	supporting	mobility	and
multihoming	in	recursive	internet	architectures".	Computer	Communications,
Volume	35,	Issue	13,	July	2012,	pages	1561-1573

24.	 G.	Boddapati,	J.	Day,	I.	Matta,	L.	Chitkushev,	"Assessing	the	security	of	a	clean-slate
Internet	architecture,"	Network	Protocols	(ICNP),	2012	20th	IEEE	International
Conference	on	,	vol.,	no.,	pp.1,6,	Oct.	30	2012-Nov.	2	2012

25.	 J.	Small,	J.	Day,	L.	Chitkushev,	“Threat	analysis	of	Recursive	Inter-Network
Architecture	Distributed	Inter-Process	Communication	Facilities”.	Boston
University	Technical	Note.

26.	 J.	Small.	“Patterns	in	Network	Security:	An	analysis	of	architectural	complexity	in
securing	Recrusive	Inter-Network	Architecture	Networks”.	Master	thesis,	2012.
Boston	University	Library

27.	 B.	Schneier,	“Complexity	the	worst	enemy	of	Security”.	Computer	World,
December	2012.

28.	 J.	Day.	Creating	a	viable	economic	model	for	a	viable	internet,	2008.	Available	online
at	http://rina.tssg.org/docs/PNAEcon080518.pdf

29.	 Pouzin	Society	website:	http://www.pouzinsociety.org
30.	 A.	L.	Russell,	V.	Schaffer.	“In	the	shadow	of	ARPAnet	and	Internet:	Louis	Pouzin	and

the	Cyclades	network	in	the	1970s”.	Available	online	at
http://muse.jhu.edu/journals/technology_and_culture/v055/55.4.russell.html

31.	 Boston	University’s	RINA	research	team	website:	http://csr.bu.edu/rina
32.	 ProtoRINA	github	site:	https://github.com/ProtoRINA/users/wiki
33.	 Yuefeng	Wang,	Ibrahim	Matta	and	Nabeel	Akhtar.	"Experimenting	with	Routing

Policies	Using	ProtoRINA	over	GENI".	The	Third	GENI	Research	and	Educational
Experiment	Workshop	(GREE2014),	March	19–20,	2014,	Atlanta,	Georgia

34.	 The	FP7	IRATI	project	website:	http://irati.eu
35.	 S.	Vrijders,	D.	Staessens,	D.	Colle,	F.	Salvestrini,	E.	Grasa,	M.	Tarzan	and	L.	Bergesio

“Prototyping	the	Recursive	Internetwork	Architecture:	The	IRATI	Project
Approach“,	IEEE	Network,	Vol.	28,	no.	2,	March	2014

36.	 S.	Vrijders,	D.	Staessens,	D.	Colle,	F.	Salvestrini,	V.	Maffione,	L.	Bergesio,	M.	Tarzan,
B.	Gaston,	E.	Grasa;	“Experimental	evaluation	of	a	Recursive	InterNetwork
Architecture	prototype“,	IEEE	Globecom	2014,	Austin,	Texas

37.	 Open	IRATI	github	site,	available	at:	http://irati.github.io/stack
38.	 The	FP7	PRISTINE	project	website:	http://ict-pristine.eu
39.	 The	IRINA	project	website:

http://www.geant.net/opencall/Optical/Pages/IRINA.aspx

External	links
RINA	Education	page	at	the	IRATI	website,	available	online	at
http://irati.eu/education/
RINA	document	repository	run	by	the	TSSG,	available	online	at
http://rina.tssg.org
RINA	tutorial	at	the	IEEE	Globecom	2014	conference,	available	online
at	http://www.slideshare.net/irati-project/rina-tutorial-ieee-globecom-
2014

Retrieved	from	"https://en.wikipedia.org/w/index.php?
title=Recursive_InterNetwork_Architecture_(RINA)&oldid=673298273"

Categories:	Network	architecture

This	page	was	last	modified	on	27	July	2015,	at	12:45.
Text	is	available	under	the	Creative	Commons	Attribution-ShareAlike
License;	additional	terms	may	apply.	By	using	this	site,	you	agree	to
the	Terms	of	Use	and	Privacy	Policy.	Wikipedia®	is	a	registered
trademark	of	the	Wikimedia	Foundation,	Inc.,	a	non-profit
organization.

