
SEDA:	An	Architecture	for	Highly	Concurrent	Server	Applications
Matt	Welsh,	Harvard	University	
Last	updated	9	May	2006

[	SEDA	on	SourceForge	]	[	Papers	and	talks	]	[	Downloads	]

Introduction

My	Ph.D.	thesis	work	at	UC	Berkeley	focused	on	the	development	of	a	robust,	high-performance	platform	for	Internet	services,	called	SEDA.	The
goal	is	to	build	a	system	capable	of	supporting	massive	concurrency	(on	the	order	of	tens	of	thousands	of	simultaneous	client	connections)	and	avoid
the	pitfalls	which	arise	with	traditional	thread	and	event-based	approaches.

SEDA	is	an	acronym	for	staged	event-driven	architecture,	and	decomposes	a	complex,	event-driven	application	into	a	set	of	stages	connected	by
queues.	This	design	avoids	the	high	overhead	associated	with	thread-based	concurrency	models,	and	decouples	event	and	thread	scheduling	from
application	logic.	By	performing	admission	control	on	each	event	queue,	the	service	can	be	well-conditioned	to	load,	preventing	resources	from
being	overcommitted	when	demand	exceeds	service	capacity.	SEDA	employs	dynamic	control	to	automatically	tune	runtime	parameters	(such	as	the
scheduling	parameters	of	each	stage),	as	well	as	to	manage	load,	for	example,	by	performing	adaptive	load	shedding.	Decomposing	services	into	a
set	of	stages	also	enables	modularity	and	code	reuse,	as	well	as	the	development	of	debugging	tools	for	complex	event-driven	applications.

February	19,	2007	-	A	Note	on	the	status	of	SEDA

I	continue	to	receive	many	requests	for	information	about	SEDA.	I	am	no	longer	actively	working	on	this
project,	so	all	of	these	web	pages	should	be	regarded	as	"archival".

It	is	also	worth	noting	that	a	number	of	recent	research	papers	have	demonstrated	that	the	SEDA	prototype
(in	Java)	performs	poorly	compared	to	threaded	or	event-based	systems	implemented	in	C.	This	would	seem	to
contradict	the	findings	in	my	work.	(For	more	information	I	invite	you	to	read	recent	papers	by	Vivek	Pai's
group	at	Princeton	and	the	Capriccio	work	from	UC	Berkeley.)

While	I	do	not	discount	these	later	results,	it	is	important	to	keep	a	few	things	in	mind	when	interpreting
them.	First,	the	SEDA	implementation	in	Java	was	developed	and	tuned	on	a	particular	JVM	implementation
(IBM	JDK	1.3),	on	a	particular	version	of	the	Linux	kernel	(2.2),	using	the	/dev/poll	event	dispatch	mechanism.
More	recent	studies	have	varied	the	environment	substantially.

I	have	several	theories	about	what	could	be	causing	this	poor	performance,	although	I	have	not	had	an
opportunity	to	perform	new	measurements.	I	have	noticed	that	performance	of	the	SEDA	networking	layer	is
highly	dependent	on	a	number	of	parameters,	such	as	the	poll	interval	used	by	the	various	threads.	This	likely
needs	to	be	tuned	or	redesigned	to	support	high	bandwidth	networks	and	more	recent	Linux	and	JVM
implementations.	Also,	SEDA	imposes	a	high	context	switch	overhead	in	certain	cases,	depending	on	the
number	of	threads	and	stages	used,	and	the	processing	granularity	within	each	stage.

Tim	Brecht's	group	at	Waterloo	has	undertaken	a	study	of	competing	Web	server	architectures	and	has	shown
that	a	SEDA	implementation	in	C++,	appropriately	tuned,	performs	comparably	to	alternatives,	so	I	do	not
believe	these	performance	issues	are	fundamental	to	the	architecture.

The	most	fundamental	aspect	of	the	SEDA	architecture	is	the	programming	model	that	supports	stage-level
backpressure	and	load	management.	Our	goal	was	never	to	show	that	SEDA	outperforms	other	server
designs,	but	rather	that	acceptable	performance	can	be	achieved	while	providing	a	disciplined	apporach	to
overload	management.	Clearly	more	work	is	needed	to	show	that	this	goal	can	be	met	in	a	range	of	application
and	server	environments.

Please	feel	free	to	get	in	touch	if	you	have	new	results	or	questions	about	the	SEDA	approach.

Our	current	prototype	of	a	SEDA-based	services	platform	is	called	Sandstorm.	Sandstorm	is	implemented	entirely	in	Java	and	uses	the	NBIO
package	to	provide	nonblocking	I/O	support.	Support	for	the	JDK	1.4	java.nio	package	is	included	as	well.	Despite	using	Java,	we	have	achieved
performance	that	rivals	(and	sometimes	exceeds)	that	of	C/C++.	We	have	also	implemented	a	SEDA-based	asynchronous	SSL	and	TLS	protocol
library,	called	aTLS.	All	of	this	software	is	available	for	download	below.

We	have	built	a	number	of	applications	to	demonstrate	the	SEDA	framework.	Haboob	is	a	a	high-performance	Web	server	including	support	for	both
static	and	dynamic	pages.	Other	applications	include	a	Gnutella	packet	router	and	Arashi,	a	Web-based	email	service	similar	to	Yahoo!	Mail.

The	best	place	to	start	for	more	information	is	the	SOSP'01	paper	on	SEDA	and	the	corresponding	talk	slides.	My	Ph.D.	thesis	has	much	more
information	as	well.	If	you	have	questions,	comments,	or	are	interested	in	collaborations,	please	feel	free	to	contact	me	by	e-mail	(see	my	home
page).

A	number	of	open	source	and	commercial	systems	are	based	on	SEDA	and	NBIO.	These	include:

LimeWire	runs	runs	its	server	based	Web	crawler	on	NBIO.
TerraLycos	runs	its	chat	servers	on	NBIO,	supporting	over	30,000	simultaneous	users
Rimfaxe	Web	Server
Apache	Excalibur	Event	Package
SwiftMQ,	a	JMS	Enterprise	Messaging	Server
MULE	Universal	Message	Objects,	a	distributed	object	broker
OceanStore,	a	global,	secure,	peer-to-peer	filesystem
Various	companies,	both	large	and	small,	are	building	projects	based	on	SEDA/NBIO.

Project	News

July	12,	2002:	Lots	of	updates.	CVS,	release,	and	mailing	list	hosting	is	now	at	http://seda.sourceforge.net.	Now	you	can	access	the	latest	SEDA
codebase	via	anonymous	CVS,	hopefully	encouraging	more	collaborative	development	of	the	code.

The	seda-users	mailing	list	is	back	up	-	please	subscribe.

All	of	the	code	has	been	consolidated	into	a	single	CVS	tree	under	the	package	name	seda	(renamed	from	mdw).	The	Haboob	Web	server	and	aTLS
code	are	also	released	and	more	completely	documented.	And	a	nice	one-line	performance	patch	to	NBIO	is	included	that	increases	network
bandwidth	by	30%	or	so!

Papers

Adaptive	Overload	Control	for	Busy	Internet	Servers,	Matt	Welsh	and	David	Culler.	To	appear	in	Proceedings	of	the	4th	USENIX	Conference
on	Internet	Technologies	and	Systems	(USITS'03),	March	2003.	(PDF)

An	Architecture	for	Highly	Concurrent,	Well-Conditioned	Internet	Services,	Matt	Welsh.	Ph.D.	Thesis,	University	of	California,	Berkeley,
August	2002.	(PDF)

Overload	Management	as	a	Fundamental	Service	Design	Primitive,	Matt	Welsh	and	David	Culler.	To	appear	in	Proceedings	of	the	Tenth
ACM	SIGOPS	European	Workshop,	Saint-Emilion,	France,	September,	2002.	(PDF)

SEDA:	An	Architecture	for	Well-Conditioned,	Scalable	Internet	Services,	Matt	Welsh,	David	Culler,	and	Eric	Brewer.	In	Proceedings	of	the
Eighteenth	Symposium	on	Operating	Systems	Principles	(SOSP-18),	Banff,	Canada,	October,	2001.	(PDF)

Virtualization	Considered	Harmful:	OS	Design	Directions	for	Well-Conditioned	Services,	Matt	Welsh	and	David	Culler.	In	Proceedings	of
the	8th	Workshop	on	Hot	Topics	in	Operating	Systems	(HotOS	VIII),	Schloss	Elmau,	Germany,	May,	2001.	(PDF)

The	Staged	Event-Driven	Architecture	for	Highly	Concurrent	Server	Applications,	Matt	Welsh.	Ph.D.	Qualifying	Examination	Proposal,
November,	2000.	(PDF)

A	Design	Framework	for	Highly	Concurrent	Systems,	Matt	Welsh,	Steven	D.	Gribble,	Eric	A.	Brewer,	and	David	Culler.	UC	Berkeley
Technical	Report	UCB/CSD-00-1108,	Submitted	for	publication,	April,	2000.	(PDF)

Talks

Building	Dependable	Internet	Services.	Presented	at	the	Tenth	SIGOPS	European	Workshop,	Saint-Emilion,	France,	September	22,	2002.

SEDA:	An	Architecture	for	Well-Conditioned,	Scalable	Internet	Services.	Presented	at	the	Eighteenth	Symposium	on	Operating	Systems
Princples	(SOSP'01),	Lake	Louise,	Canada,	October	24,	2001.

Containment	vs.	Control:	Keeping	Busy	Internet	Servers	Well-Behaved.	Work-in-progress	presentation	at	the	USENIX	2001	Annual	Technical
Conference,	Boston,	June	29,	2001.

Virtualization	Considered	Harmful:	OS	Design	Directions	for	Well-Conditioned	Services.	Presented	at	HotOS-VIII,	Schloss	Elmau,	Germany,	May
23,	2001.

SEDA:	Enabling	Robust	Performance	for	Busy	Internet	Servers.	Presented	at	the	Internet	and	Distributed	Systems	Seminar,	Stanford	University,
April	18,	2001.	Also	presented	at	the	Systems	Seminar,	University	of	Washington,	April	27,	2001.

Dynamic	Resource	Throttling	for	Well-Conditioned	Internet	Services.	Work-in-Progress	presentation	at	the	3rd	USENIX	Symposium	on	Internet
Technologies	and	Systems	(USITS'01),	San	Francisco,	CA,	March	27,	2001.

The	Staged	Event-Driven	Architecture	for	Highly	Concurrent	Servers.	Ph.D.	qualifying	examination,	UC	Berkeley,	December	13,	2000.

Performance	Aspects	of	The	Staged	Event-Driven	Architecture.	UC	Berkeley	Ninja	Project	Retreat,	Lake	Tahoe,	CA,	January	10,	2001.

Designing	Systems	for	High	Concurrency.	Presented	at	BEA	WebLogic,	San	Francisco,	CA,	July	7,	2000.	Also	presented	at	the	UC	Berkeley
Endeavour	Retreat,	Lake	Tahoe,	CA,	June	19,	2000.

Building	Efficient,	Scalable	Systems	in	Java.	Presented	at	IBM	T.J.	Watson	Research	Center,	Hawthorne,	NY,	May	30,	2000.

Software	Downloads

File	downloads	are	hosted	by	SourceForge.net.	Click	here	for	the	SEDA	SourceForge	Page.	You	may	either	download	the	SEDA	software	as	a	set	of
pre-packaged	"official"	releases	(.tar.gz	format,	source	code	included),	or	use	anonymous	CVS	to	access	the	"live"	tree.	The	CVS	tree	will	be	updated
more	frequently	than	the	"official"	releases,	which	are	meant	to	represent	stable,	tested	versions	of	the	software.	The	CVS	tree	is	the	"live	code"	that
is	under	constant	development.

See	the	file	README	in	each	release	for	information	on	compilation	and	usage.	All	of	the	SEDA	code	is	covered	under	an	open-source	license	(see
below).

Official	releases

All	files	are	available	from	this	SourceForge	page.	Or,	you	may	click	on	one	of	the	links	below:

Package Latest	version Download

Latest	SEDA	"core"	release:	Includes	the	NBIO
library	and	the	Sandstorm	runtime	environment. v3.0,	July	12,	2002 seda-release-20020712.tar.gz

Latest	NBIO-only	release:	Includes	only	the	NBIO
library. v2.0,	July	12,	2002 nbio-release-20020711.tar.gz

Haboob:	A	high-performance	Web	server	built
using	Sandstorm.
Requires	the	SEDA	"core"	release.

July	12,	2002 haboob-release-20020712.tar.gz

aTLS:	An	asynchronous	TLS	and	SSL	protocol
library	for	Sandstorm.	Requires	the	SEDA	"core"
release.

July	12,	2002 atls-release-20020712.tar.gz

Anonymous	CVS	access

Anonymous	CVS	access	is	available	for	those	users	who	want	to	maintain	a	"live"	source	tree.	To	check	out	the	SEDA	tree	using	anonymous	CVS,	use
the	following	commands:

	
cvs	-d:pserver:anonymous@cvs.seda.sourceforge.net:/cvsroot/seda	login	
								(	Just	press	enter	when	asked	for	a	password	)

cvs	-z3	-d:pserver:anonymous@cvs.seda.sourceforge.net:/cvsroot/seda	co	seda

Javadoc	API	documentation

You	can	browse	the	Javadoc	documentation	for	SEDA.

Call	for	Developers

By	transitioning	the	SEDA	project	to	SourceForge.net,	it	is	now	possible	to	open	up	the	development	of	the	SEDA	code	a	wider	community.	If	you	are
an	active	user	of	the	SEDA	or	NBIO	code	and	would	like	to	contribute,	please	join	the	seda-users	mailing	list.	SourceForge	makes	it	possible	for	all	of
the	developers	to	share	a	single	CVS	tree,	make	code	releases,	and	so	forth.	I	encourage	interested	developers	to	join	the	team!

Performance	Results

The	best	place	to	look	for	performance	information	about	SEDA	is	the	various	papers	about	the	system.	Earlier	(and	somewhat	outdated)
performance	results	are	discussed	in	the	following	web	pages:

I/O	Core	Benchmarks

HTTP	Server	Load	Benchmarks

Copyright	License

The	SEDA	release	is	covered	under	the	following	Open	Source	license:

Copyright	(c)	2002	by	Matt	Welsh	and	The	Regents	of	the	University	of	California.	All	rights	reserved.

Permission	to	use,	copy,	modify,	and	distribute	this	software	and	its	documentation	for	any	purpose,	without	fee,	and	without	written
agreement	is	hereby	granted,	provided	that	the	above	copyright	notice	and	the	following	two	paragraphs	appear	in	all	copies	of	this
software.

IN	NO	EVENT	SHALL	THE	UNIVERSITY	OF	CALIFORNIA	BE	LIABLE	TO	ANY	PARTY	FOR	DIRECT,	INDIRECT,	SPECIAL,	INCIDENTAL,	OR
CONSEQUENTIAL	DAMAGES	ARISING	OUT	OF	THE	USE	OF	THIS	SOFTWARE	AND	ITS	DOCUMENTATION,	EVEN	IF	THE	UNIVERSITY	OF
CALIFORNIA	HAS	BEEN	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

THE	UNIVERSITY	OF	CALIFORNIA	SPECIFICALLY	DISCLAIMS	ANY	WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED
WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.	THE	SOFTWARE	PROVIDED	HEREUNDER	IS	ON	AN
"AS	IS"	BASIS,	AND	THE	UNIVERSITY	OF	CALIFORNIA	HAS	NO	OBLIGATION	TO	PROVIDE	MAINTENANCE,	SUPPORT,	UPDATES,
ENHANCEMENTS,	OR	MODIFICATIONS.

If	you	have	any	questions,	comments,	or	bug	reports,	don't	hesitate	to	get	in	touch	with	me!



Project	hosting	by

	


