
		

Databases

January	20,	2016
Volume	13,	issue	9

Immutability	Changes	Everything

We	need	it,	we	can	afford	it,	and	the	time	is
now

Pat	Helland

There	is	an	inexorable	trend	toward	storing	and	sending	immutable	data.	We

need	immutability	to	coordinate	at	a	distance,	and	we	can	afford

immutability	as	storage	gets	cheaper.	This	article	is	an	amuse-bouche

sampling	the	repeated	patterns	of	computing	that	leverage	immutability.

Climbing	up	and	down	the	compute	stack	really	does	yield	a	sense	of	déjà	vu

all	over	again.

It	wasn't	that	long	ago	that	computation	was	expensive,	disk	storage	was

expensive,	DRAM	(dynamic	random	access	memory)	was	expensive,	but

coordination	with	latches	was	cheap.	Now	all	these	have	changed	using

cheap	computation	(with	many-core),	cheap	commodity	disks,	and	cheap

DRAM	and	SSDs	(solid-state	drives),	while	coordination	with	latches	has

become	harder	because	latch	latency	loses	lots	of	instruction	opportunities.

Keeping	immutable	copies	of	lots	of	data	is	now	affordable,	and	one	payoff

is	reduced	coordination	challenges.

More	Storage,	Distribution,	and	Ambiguity

Storage	is	increasing	as	the	cost	per	terabyte	of	disk	keeps	dropping.	This

means	a	lot	of	data	can	be	kept	for	a	long	time.	Distribution	is	increasing	as

more	and	more	data	and	work	are	spread	across	a	great	distance.	Data

within	a	data	center	seems	"far	away."	Data	within	a	many-core	chip	may

seem	"far	away."	Ambiguity	is	increasing	when	trying	to	coordinate	with

systems	that	are	far	away—more	stuff	has	happened	since	you've	heard	the

news.	Can	you	take	action	with	incomplete	knowledge?	Can	you	wait	for

enough	knowledge?

Turtles	All	the	Way	Down17

As	various	technological	areas	have	evolved,	they	have	responded	to	these

trends	of	increasing	storage,	distribution,	and	ambiguity	by	using	immutable

data	in	some	very	fun	ways.	This	article	explores	how	apps	use	immutability

in	their	ongoing	work,	how	they	generate	immutable	data	sets	for	later

offline	analysis,	how	SQL	can	expose	and	process	immutable	snapshots,	and

how	massively	parallel	big-data	work	relies	on	immutable	data	sets.	This

leads	to	looking	at	the	ways	in	which	semantically	immutable	data	sets	may

be	altered	while	remaining	immutable.

Next,	the	article	considers	how	updatability	is	layered	atop	the	creation	of

new	immutable	files	via	techniques	such	as	LSF	(log-structured	file	system),

COW	(copy-on-write),	and	LSM	(log-structured	merge-tree).	How	do

replicated	and	distributed	file	systems	depend	on	immutability	to	eliminate

anomalies?	Hardware	folks	have	joined	the	party	by	leveraging	these	tricks

in	SSDs	and	HDDs	(hard-disk	drives).	Immutability	is	a	key	architectural

concept	at	many	layers	of	the	stack,	as	shown	in	figure	1.

Finally,	the	article	looks	at	some	of	the	trade-offs	of	using	immutable	data.

Accountants	Don't	Use	Erasers

Many	kinds	of	computing	are	append-only.	This	section	looks	at	some	of	the

ways	this	is	commonly	accomplished.

Append-only	Computing

In	append-only	computing,	observations	are	recorded	forever	(or	for	a	long

time).	Derived	results	are	calculated	on	demand	(or	periodically

precalculated).

This	is	similar	to	a	DBMS	(database	management	system)	in	which

transaction	logs	record	all	the	changes	made	to	the	database.	High-speed

appends	are	the	only	way	to	change	the	log.	From	this	perspective,	the

contents	of	the	database	hold	a	caching	of	the	latest	record	values	in	the

logs.	The	truth	is	the	log.	The	database	is	a	cache	of	a	subset	of	the	log.

That	cached	subset	happens	to	be	the	latest	value	of	each	record	and	index

value	from	the	log.

Accounting:	Observed	and	Derived	Facts

Accountants	don't	use	erasers;	otherwise	they	may	go	to	jail.	All	entries	in	a

ledger	remain	in	the	ledger.	Corrections	can	be	made	but	only	by	making	new

entries	in	the	ledger.	When	a	company's	quarterly	results	are	published,	they

include	small	corrections	to	the	previous	quarter.	Small	fixes	are	OK.	They

are	append-only,	too.

Some	entries	describe	observed	facts.	For	example,	receiving	a	debit	or

credit	against	a	checking	account	is	an	observed	fact.	Some	entries	describe

derived	facts,	meaning	that,	based	on	the	observations,	something	new	can

be	calculated.	For	example,	amortized	capital	expenses	based	upon	a	rate

and	a	cost	are	derived	facts.	Another	example	is	the	current	bank	account

balance	with	applied	debits	and	credits.

Append-only	Distributed	Single	Master

Single-master	computing	means	changes	are	ordered	somehow.	The	order

can	come	from	a	centralized	master	or	some	Paxos-like11	distributed	protocol

providing	serial	ordering.	Changes	are	semantically	applied	one	at	a	time

and	are	layered	over	their	predecessors.	New	values	supersede	old	ones.	The

granularity	of	this	may	be	a	set	of	records	in	a	relational	store	or	a	new

version	of	a	document.	Distributed	single-master	computing	means	there	is

a	space	of	data	(relational	records,	documents,	export	files,	and	more)	that

emanates	from	one	logical	location	with	new	versions	over	time.

Distributed	Computing	"Back	in	the	Day"

Before	telephones,	people	used	messengers—often	kids	walking	through

town	to	deliver	the	message.	Alternatively,	the	postal	service	delivered	the

messages,	which	took	a	long	time.	Sometimes	people	used	fancy	forms	with

many	layers,	each	a	different	color.	They	had	multiple	sections	on	the	page.

Each	participant	filled	out	a	section	(pressing	hard	with	the	pen),	then	tore

off	the	back	page	of	the	form	and	filed	it.	Each	participant	got	the	data

needed	and	added	more	data	to	the	form.	Earlier	sections	could	not	be

updated;	data	could	only	be	appended	to	the	end.

Before	computers,	workflow	was	frequently	captured	in	paper	forms	with

multiple	parts	on	the	form	and	multiple	pages	(e.g.,	"Fill	out	Part	3	and	keep

the	goldenrod	page	from	the	back").	This	"distributed	computing"	was

append-only.	New	messages	were	new	additions	to	the	form—each	was	a

version	and	each	was	immutable.	You	were	never	allowed	to	overwrite	what

had	been	written.

Data	on	the	Outside	vs.	Data	on	the	Inside

Surprisingly	(to	database	old-timers),	not	all	data	is	kept	in	relational

database	systems.	This	section	(based	on	an	earlier	paper7)	discusses	some

of	the	implications	of	unlocking	data.

Data	on	the	Inside

Data	on	the	inside	refers	to	what	is	kept	and	managed	by	a	classic	relational

database	system	and	its	surrounding	application	code.	Sometimes	this	is

referred	to	as	a	service.

Data	on	the	inside	lives	in	a	transactional	world	with	changes	applied	in	a

serializable	fashion	(or	something	close	to	that).

Data	on	the	Outside

Data	on	the	outside	is	prepared	as	messages,	files,	documents,	and/or	Web

pages.	These	are	sent	out	from	a	service	into	the	world.	It	is	also	possible

that	outside	data	has	been	created	by	some	other	mechanism	than	one

using	databases.

Data	on	the	outside:

*	Is	immutable.	Once	it	is	written,	it	is	never	changed.

*	Is	unlocked.	It	is	not	locked	in	the	database.	A	copy	is	extracted	and	sent

outside.

*	Has	identity.	When	sent	outside,	these	files,	documents,	and	messages

have	a	unique	identity	(perhaps	a	URL).

*	May	be	versioned.	Updates	aren't	updates	but	new	versions	with	a	new

unique	identifier.

Contrasting	Inside	vs.	Outside

There	are	deep	differences	in	the	representation,	meaning,	and	usage	of

inside	data	versus	outside	data.	Increasingly,	data	is	being	kept	as	outside

(immutable)	data	(see	figure	2).

Referencing	Immutable	Data

The	data	set	is	a	collection	of	data	with	a	unique	ID.	Some	data	sets	have

structures	that	look	like	a	number	of	tables	with	schema.	How	are	these

data	sets	referenced	by	a	relational	database,	and	how	do	relational

operators	span	both	the	DBMS	and	data	set?

Data	Sets:	Immutable	Collections	of	Data

A	data	set	is	a	fixed	and	immutable	set	of	tables.	The	schema	for	each	table

is	captured	in	the	data	set.	The	contents	of	each	table	are	captured	when

the	data	set	is	created.	Since	the	data	set	is	immutable,	it	is	created,	may

be	consumed	for	reading,	and	then	deleted.	Data	sets	may	be	relational,	or

they	may	have	some	other	representation	such	as	a	graph,	a	hierarchy	such

as	JSON	(JavaScript	Object	Notation),	or	any	other	representation	(figure	3).

A	data	set	is	a	logical	set	of	immutable	tables	along	with	its	schema.

Data	Sets	Referenced	by	a	Relational	Database

Data	sets	may	be	referenced	by	an	RDBMS	(relational	DBMS).	The	metadata

is	visible	to	the	DBMS.	The	data	can	be	accessed	for	a	read,	even	though	it

may	not	be	updated.	The	data	set	may	be	semantically	present	within	the

relational	system	even	if	it	is	physically	stored	elsewhere.	Because	the	data

set	is	immutable,	there's	no	need	for	locking	and	no	worries	about

controlling	updates.

Relational	Work	on	Immutable	Data	Sets

A	functional	calculation	takes	a	set	of	inputs	and	predictably	creates	a	set	of

outputs.	This	can	happen	with	a	query	against	locked	or	snapshot	data	in	a

relational	database,	and	it	can	happen	on	a	big-data	MapReduce-style

system.	In	both	cases,	there	is	still	an	unchanging	collection	of	data.	With

snapshots	or	some	form	of	isolation,	database	data	becomes	semantically

immutable	for	the	duration	of	the	calculation.	With	big-data	calculations,	the

inputs	are	typically	stored	in	GFS	(Google	File	System)	or	HDFS	(Hadoop

Distributed	File	System)	files.

There's	no	semantic	obstacle	to	doing	JOINs	across	data	stored	inside	a

relational	database	and	data	stored	in	external	data	sets.	Locking	(or

snapshot	isolation)	provides	a	version	of	the	relational	database,	which	may

be	joined.	Named	and	frozen	data	sets	may	be	joined	with	relational	data

(see	figure	4).	You	can	meaningfully	apply	relational	operations	across	data

held	in	a	DBMS	and	data	held	in	immutable	data	sets.

In	some	ways,	the	ability	to	work	across	immutable	data	sets	and	relational

databases	is	surprising.	An	immutable	data	set	is	defined	with	an	identity

and	an	optional	version.	Its	schema,	which	describes	the	shape	and	form	of

the	data	set	at	the	time	of	its	creation,	is	descriptive,	whereas	the	schema

held	in	the	RDBMS	is	prescriptive.

This	tailoring	of	the	schema	to	meld	the	two	connects	the	schema	of	the

data	set	(describing	its	data	when	written)	with	the	schema	of	the	RDBMS

(describing	its	data	as	of	the	snapshot).	Also,	the	JOINs	and	other	relational

operators	must	necessarily	combine	the	contents	of	the	data	set	as

interpreted	as	a	set	of	relational	tables.	This	sidesteps	the	notion	of	identity

within	the	data	set	and	focuses	exclusively	on	the	tables	as	interpreted	as	a

set	of	values	held	within	rows	and	columns.

Immutability	Is	in	the	Eye	of	the	Beholder

A	consumer	may	see	data	sets	as	immutable	even	if	they	change	under	the

covers.

Data	Sets	Are	Semantically	Immutable

A	data	set	is	semantically	immutable.	It	has	a	set	of	tables,	rows,	and

columns.	It	may	also	have	semi-structured	data	(e.g.,	JSON).	It	may	have

application-specific	data	in	a	proprietary	format.

Data	sets	may	be	defined	as	a	SELECTION,	PROJECTION,	or	JOIN	over

previously	existing	data	sets.	Semantically,	all	that	data	is	now	a	part	of	the

new	data	set.

What's	important	about	a	data	set	is	that	it	appears	to	be	unchanging	from

the	standpoint	of	the	reader.

Optimizing	Data	Sets	for	Read	Patterns

Data	sets	are	semantically	immutable	but	can	be	physically	changed.	You

can	add	an	index	or	two.	It's	OK	to	denormalize	tables	to	optimize	for	read

access.	Data	sets	can	be	partitioned	and	the	pieces	placed	close	to	their

readers.	A	column-oriented	representation	of	a	data	set	may	also	make

sense.

You	can	make	a	copy	of	a	table	with	far	fewer	columns	to	optimize	for	quick

access	(a	skinny	table).	The	column	values	can	be	left	in	both	the	skinny

table	and	fat	table.

By	watching	and	monitoring	the	read	usage	of	a	data	set,	you	may	realize

that	new	optimizations	(e.g.,	new	indices)	are	possible.

Immutability	and	Big	Data

Immutability	is	the	backbone	of	big	data.	Massively	parallel	computations

are	based	on	immutable	inputs	and	functional	calculations.	MapReduce3	and

Dryad9	both	take	immutable	files	as	input.	The	work	is	cut	into	pieces,	each

with	immutable	input.	This	functional	calculation	(using	immutable	inputs)	is

idempotent,	making	it	possible	to	fail	and	restart.	Immutability	is	the

backbone	of	big	data.	MapReduce	performs	functional	computations	over

immutable	data	to	create	immutable	outputs.	Failure	and	restart,	so

essential	to	reliable	big	data,	are	based	on	the	idempotent	nature	of

functional	computation	over	immutable	inputs.

	

Immutability	as	a	Semantic	Prism

Data	sets	show	an	immutable	semantic	prism,	even	if	the	underlying

representation	is	augmented	or	completely	replaced.	The	King	James	Bible

is,	character	for	character,	immutable—even	when	it	is	printed	in	a	different

font;	even	when	digitized;	even	when	accompanied	by	different	pictures.

Is	a	data	set	changed	if	there	is	a	lossless	transformation	to	a	new	schema

representation?	Can	the	new	address	field	have	more	capacity?	Can	the

enum	values	be	mapped	to	a	new	underlying	representation?	Can	the	data

be	mapped	from	UTF-8	to	UTF-16	encoding?

Having	the	right	bits	is	not	enough.	You	have	to	know	how	to	interpret	them.

For	example,	"President	Bush"	had	a	different	meaning	in	1990	than	in	2005.

The	word	"napkin"	is	interpreted	differently	in	the	US	and	the	UK.

Descriptive	Metadata	when	Immutable

When	an	immutable	data	set	is	created,	the	semantics	of	the	data	may	not

be	changed.	The	contents	may	only	be	described	as	they	are	at	the	time	the

data	set	is	created.

Most	programmers	are	used	to	SQL	DDL	(Data	Definition	Language)

supporting	dynamic	changes	in	the	metadata	for	their	tables.	This	happens

at	a	transaction	boundary	and	can	prescribe	a	new	schema	for	the	existing

data.	SQL	DDL	can	be	thought	of	as	prescriptive	metadata	since	it	is

prescribing	the	representation	(which	may	change).	Immutable	data	sets

have	descriptive	metadata	that	explains	what's	there.

Of	course,	it	is	possible	to	create	new	data	sets	that	refer	to	one	or	more

existing	data	sets	in	order	to	create	a	new	representation	of	their	data.	Each

new	data	set	has	a	unique	ID.	There's	nothing	wrong	with	having	a	data	set

implemented	by	reference	and	not	by	value.

Normalization	Is	for	Sissies

The	goal	of	normalization	is	to	eliminate	update	anomalies.	When	the	data

is	not	stored	in	a	normalized	fashion,	updates	might	yield	unpleasant

results.	The	classic	example	is	an	imperfectly	normalized	table	in	which	each

employee	has	his	or	her	manager's	name	and	phone	number.	This	makes	it

very	hard	to	update	the	manager's	phone	number	since	it	is	stored	in	many

places.	Normalization	is	very	important	in	a	database	designed	for	updating.

Normalization	is	not	necessary	in	an	immutable	data	set,	however.	The	only

reason	to	normalize	immutable	data	sets	may	be	to	reduce	the	storage

necessary	for	them.	On	the	other	hand,	denormalized	data	sets	may	be

easier	and	faster	to	process	as	inputs	to	a	computation.

Versions	Are	Immutable,	Too!

Each	version	is	immutable.	This	section	looks	first	at	multiversion

concurrency	control;	then	techniques	such	as	LSM	that	provide	a	semantic	of

change	within	a	transactional	space	while	generating	immutable	data	that

describes	the	state	of	these	changes;	finally,	it	looks	at	the	world	through

the	lens	of	COW,	in	which	high-performance	updates	are	implemented	by

writing	new	immutable	data.

Versions	and	History

Versions	should	have	immutable	names.	Other	than	the	first	version	of

something,	a	new	version	captures	a	replacement	for	or	an	augmentation	of

an	earlier	version.	A	linear	version	history	is	sometimes	referred	to	as	being

strongly	consistent:	one	version	replaces	another;	there's	one	parent	and

one	child;	each	version	is	immutable;	each	version	has	an	identity.	The

alternative	to	linear	version	history	is	a	DAG	(directed	acyclic	graph)	of

version	history,	in	which	there	are	many	parents	and/or	many	children.	This

is	sometimes	called	eventual	consistency.

Multiversion	Concurrency	Control

Strongly	consistent,	or	ACID	(atomicity,	consistency,	isolation,	durability),

transactions	appear	as	if	they	run	in	a	serial	order.	This	is	sometimes	called

serializability.2

The	database	changes	version	by	version.	Transaction	T1	is	a	version	and

later	transaction	T2	is	a	version.	Transactions	layer	new	versions	of	record

and	index	changes	atop	earlier	versions.	The	new	versions	can	be	captured

as	snapshots	of	the	entire	database	(although	this	wouldn't	result	in	high

performance).

Alternatively,	the	new	version	can	be	captured	as	changes	to	the	previous

version.	In	this	way,	a	key-value	store	can	be	built,	and	a	relational

database	can	be	built	atop	a	key-value	store.	Records	are	deleted	by	adding

tombstones.	Changing	the	database	is	done	by	adding	new	records	to	the

key-value	store.

If	a	timestamp	is	added	to	each	new	version,	it	is	possible	to	show	the

state	of	the	database	at	a	given	point	in	time.	This	allows	the	user	to

navigate	the	state	of	the	database	to	any	older	version.	Ongoing	work	can

see	a	stable	snapshot	of	a	version	of	the	database.

LSM:	Reorganizing	Immutable	Stuff

LSM	presents	a	façade	of	change	atop	immutable	files.	With	an	LSM	tree,15

changes	to	the	key-value	store	are	accomplished	by	writing	new	versions	of

the	affected	records.	These	new	versions	are	logged	to	an	immutable	file.

Periodically,	the	new	versions	of	the	key	values	are	sorted	by	key	and

written	to	an	immutable	file	known	as	a	Level	0	file	within	the	LSM	tree.

Level	0	files	are	merged	into	a	collection	of	Level	1	files	(typically	10	Level	1

files,	each	containing	one-tenth	of	the	key	range).	Similarly,	Level	1	files	are

merged	with	Level	2	files	on	a	10-to-1	basis.	As	you	move	down	the	LSM

tree,	each	level	has	10	times	as	many	files.	Reading	a	record	typically

involves	searching	one	file	per	level.	As	the	LSM	files	merge,	new	immutable

files	with	new	identities	can	be	written.

Go	Ahead!	Have	a	COW!

An	LSM	tree	can	create	changeable	data	out	of	immutable	files	by	performing

a	COW.	The	granularity	of	the	copy	is	typically	a	key-value	pair.	For	a

relational	database,	this	can	be	a	key-value	pair	for	each	record	or	each

index	entry.	The	changes	are	copied	into	the	log	and	then	into	the	LSM	tree

(and	copied	a	few	more	times	for	merges).

High-performance	COW	happens	with	logging	and	classic	DBMS	performance

techniques.	The	new	versions	are	captured	in	memory	and	logged	for	failure

recovery.	The	identity	of	each	log	file	is	a	unique	ID,	and	the	log	files	are

immutable.	Each	new	log	file	can	record	the	history	of	its	preceding	log	files

and	even	the	identity	of	upcoming	log	files.	Having	one	of	the	recent	log-file

IDs	means	the	entire	LSM	key-value	store	can	be	reconstructed.

Keeping	the	Stone	Tablets	Safe

Many	file	systems	keep	immutable	files	consisting	of	immutable	blocks.	This

section	explores	at	a	high	level	the	implementation	of	GFS	and	HDFS	and	the

implications	of	what	can	be	done	with	these	files.	It	discusses	the	vagaries

of	files	that	can	be	renamed	and	considers	the	value	of	storing	immutable

data	within	a	consistent	hash	store.

Log-Structured	Files:	Running	in	Circles

An	early	example	of	reifying	change	through	immutability	is	the	log-

structured	file	system.16	In	this	wonderful	invention,	file-system	writes	are

always	appended	to	the	end	of	a	circular	buffer.	Occasionally,	enough

metadata	to	reconstruct	the	file	system	is	added	to	the	circular	buffer.	Old

data	must	be	copied	forward	so	it	is	not	overwritten.

Log-structured	file	systems	have	some	interesting	performance

characteristics,	both	good	and	bad.	Today	they	are	an	important	technique.

As	technology	trends	continue	to	move	in	the	direction	of	recent	years,	they

will	become	even	more	important.

Files,	Blocks,	and	Replication

GFS,5	HDFS,1	and	others	offer	highly	available	files.	Each	file	is	a	bunch	of

blocks	(also	called	chunks).	The	file	consists	of	a	file	name	and	a	description

of	the	blocks	needed	to	provide	a	bytestream.	Each	block	is	replicated	in	the

cluster	for	durability	and	high	availability.	They	are	typically	replicated	three

times	over	different	fault	zones	in	the	data	center.

Each	file	is	immutable	and	(typically)	single-writer.	The	file	is	created,	and

one	process	can	append	to	it.	The	file	lives	for	a	while	and	is	eventually

deleted.	Multiwriters	are	difficult,	and	GFS	had	some	challenges	with	this.13

Immutable	files	and	immutable	blocks	empower	this	replication.	The	file

system	has	no	concept	of	a	change	to	a	complete	file.	Each	block's

immutability	allows	it	to	be	easily	replicated	without	any	update	anomalies

because	it	doesn't	get	updated.

Widely	Sharing	Immutable	Files	Is	Safe

An	immutable	file	has	an	identity	and	contents,	neither	of	which	can	change.

You	can	copy	an	immutable	file	whenever	and	wherever	you	want	and	share

the	immutable	copies	across	users.	As	long	as	you	manage	reference	counts

(so	you	know	when	it's	OK	to	delete	it),	you	can	use	one	copy	of	the	file	to

share	across	many	users.	You	can	distribute	immutable	files	wherever	you

want.	With	the	same	identity	and	same	contents,	the	files	are	location

independent.

Names	and	Immutability...	a	Slippery	Slope

GFS	and	HDFS	both	provide	immutable	files.	Immutable	blocks	(chunks)	are

replicated	across	data	nodes.	Immutable	files	are	a	sequence	of	blocks,	each

of	which	is	identified	with	a	GUID	(globally	unique	identifier).	The	contents

of	a	file	are	immutable	and	labeled	with	a	GUID.	The	file-ID	GUID	always

refers	to	exactly	one	file	and	its	contents.

GFS	and	HDFS	also	provide	a	namespace	that	can	be	changed.	The	logical

name	of	an	immutable	file	may	be	changed.	File	names	may	be	rebound	to

different	contents.	Users	must	take	great	care	to	ensure	they	have

predictable	results	when	changing	file	names.	Is	something	really	immutable

when	its	name	can	change?

Immutable	Data	and	Consistent	Hashing

Consider	a	strongly	consistent	file	system	in	which	a	single	master	is

controlling	a	namespace	(perhaps	a	Posix-style	namespace).	Looking	up	a

file	results	in	a	GUID	that	is	used	to	find	an	immutable	bytestream.

Now	consider	a	store	implemented	with	consistent	hashing.10	It's	well

understood	that	consistent	hashing	offers	very	robust	rebalancing	under

failures	and/or	additional	capacity.	It	also	has	somewhat	chaotic	placement

behavior	while	the	ring	is	adjusting	to	changes.	At	times,	some	participants

have	seen	the	changes	and	others	have	not.	When	reading	and	updating

within	a	consistent-hashing	key-value	store,	the	read	occasionally	yields	an

older	version	of	the	value.	To	cope	with	this,	the	application	must	be

designed	to	make	the	data	eventually	consistent.4	This	is	a	burden	and

makes	application	development	more	difficult.

When	storing	immutable	data	within	a	consistent-hashing	ring,	you	cannot

get	stale	versions	of	the	data.	Each	block	stored	has	the	only	version	it	will

ever	have.	This	provides	the	advantages	of	a	self-managing	and	master-less

file	store	while	avoiding	the	anomalies	and	challenges	of	eventual

consistency	as	seen	by	the	application	(figure	5).

Using	an	eventually	consistent	store	to	hold	immutable	data	also	means

that	log	writes	can	have	more	predictable	SLAs	(service-level	agreements)	by

allowing	the	replicas	to	land	in	less	predictable	locations	in	the	cluster.	In	a

distributed	cluster,	you	can	know	where	you	are	writing	or	you	can	know

when	the	write	will	complete	but	not	both.8	By	preallocating	files	from	the

strongly	consistent	catalog,	log	writes	using	the	file	IDs	need	only	to	touch

weakly	consistent	servers	to	be	able	to	retry	getting	the	blocks	durable	in	a

bounded	time.

Immutability	and	Decentralized	Recovery

Separating	the	namespace	from	block-placement	control	has	a	number	of

advantages.	The	consistent-hashing	ring	can	take	writes	and	reads	even

when	the	ring	is	in	flux.

Although	the	catalog	is	a	central	point	for	access,	it	does	not	have	the	same

varying	load	that	a	name	node	does	when	handling	failures	in	the	cluster.

The	larger	the	cluster,	the	more	data	nodes	will	fail,	each	necessitating

many	controlling	operations	to	elevate	the	replica	count	back	to	three.	While

this	traffic	happens,	operations	to	read	and	write	from	the	cluster	will

experience	SLA	variation.	Immutability	allows	decentralized	recovery	of	data-

node	failures	with	more	predictable	SLAs.

Hardware	Changes	toward	Unchanging

The	trend	toward	leveraging	immutability	in	new	designs	is	so	pervasive	that

it	can	be	seen	in	a	number	of	hardware	areas.	This	section	examines	the

implementation	of	SSDs	and	some	new	trends	in	hard	disks.

SSDs	and	Wear	Leveling

The	flash	chip	within	most	SSDs	is	broken	into	physical	blocks,	each	of	which

has	a	finite	number	of	times	it	may	be	written	before	it	begins	to	wear	out

and	give	increasingly	unreliable	results.	Consequently,	chip	designers	have	a

feature	known	as	wear	leveling12	to	mitigate	this	aspect	of	flash.	Wear

leveling	is	a	form	of	COW	and	treats	each	version	of	the	block	as	an

immutable	version.

Each	new	block	or	update	to	a	block	in	the	logical	address	space	of	the	flash

chip	is	mapped	to	a	different	physical	block.	Each	new	write	(or	update	to	a

new	block)	is	written	to	a	different	physical	block	in	a	circular	fashion,

evening	out	the	writes	so	each	physical	block	is	written	about	as	often	as

the	others.

Hard	Disks:	Getting	the	Shingles

As	hard-disk	manufacturers	strive	to	increase	the	areal	density	of	the	data

on	disk,	some	physical	headaches	have	intervened.	Current	designs	have	a

much	larger	write	track	than	read	track.	Writes	overlap	the	previous	ones	in

a	fashion	evocative	of	laying	shingles	on	a	roof—hence	the	name	shingled

disk	systems.6

In	shingled	disks,	a	large	band	of	data	is	written	as	layered	write	tracks

forming	a	shingle	pattern,	partially	overwriting	the	preceding	tracks.	The

data	in	the	middle	of	the	band	cannot	be	overwritten	without	trashing	the

remaining	part	of	the	band.

To	overcome	this,	the	hardware	disk	controllers	implement	log-structured	file

systems	within	the	disk	controller.14	The	operating	system	is	unaware	of	the

use	of	shingles.	What's	written	to	the	disk	(i.e.,	the	band	of	data	written

with	shingles)	remains	unchanged	until	it	is	discarded.	The	user	of	the	disk

(e.g.,	the	operating	system)	perceives	the	ability	to	update	in	place.

Immutability	May	Have	Some	Dark	Sides

As	immutability	is	leveraged	in	all	these	ways,	there	are	tradeoffs	to	be

managed.	Denormalized	documents	help	with	read	performance	at	the

expense	of	extra	storage	cost.	Data	is	copied	many	times	with	COW.	This	is

exacerbated	when	these	mechanisms	are	layered.

Denormalization:	Nimble	but	Fat

Denormalization	consumes	storage	as	a	data	item	is	copied	multiple	times

in	a	data	set.	It's	good	in	that	it	eliminates	JOINs	to	put	the	data	together,

making	the	use	of	the	data	more	efficient.	Immutable	data	has	more	choices

for	its	representation.	It	can	be	normalized	for	space	optimization	or

denormalized	for	read	usage.

Write	Amplification	vs.	Read	Perspiration

Data	may	be	copied	many	times	with	COW	(e.g.,	with	log-structured	file

systems,	log-structured	merge	systems,	wear	leveling	in	SSDs,	and	shingle

management	in	HDD).	This	is	known	as	write	amplification.18

In	many	cases,	there	is	a	relationship	between	the	amount	of	write

amplification	and	the	difficulty	involved	in	reading	the	data	being	managed.

For	example,	some	LSM	systems	will	do	more	or	less	copying	as	the	data	is

reorganized	and	merged.	If	the	data	is	aggressively	merged	and	reorganized,

then	fewer	places	need	checking	to	read	a	record.	This	can	reduce	the	cost	of

reading	at	the	expense	of	additional	writing.

Conclusion

Designs	are	driving	toward	immutability,	which	is	needed	to	coordinate	at

ever	increasing	distances.	Given	space	to	store	data	for	a	long	time,

immutability	is	affordable.	Versioning	provides	a	changing	view,	while	the

underlying	data	is	expressed	with	new	contents	bound	to	a	unique	identifier.

•	Copy-on-Write.	Many	emerging	systems	leverage	COW	semantics	to

provide	a	façade	of	change	while	writing	immutable	files	to	an	underlying

store.	In	turn,	the	underlying	store	offers	robustness	and	scalability	because

it	is	storing	immutable	files.	For	example,	many	key-value	systems	are

implemented	with	LSM	trees	(e.g.,	HBase,	BigTable,	and	LevelDB).

•	Clean	Replication.	When	data	is	immutable	and	has	a	unique	identifier,

many	challenges	with	replication	are	eased.	There's	never	a	worry	about

finding	a	stale	version	of	the	data	because	no	stale	versions	exist.

Consequently,	the	replication	system	may	be	more	fluid	and	less	picky	about

where	it	allows	a	replica	to	land.	There	are	also	fewer	replication	bugs.

•	Immutable	Data	Sets.	Immutable	data	sets	can	be	combined	by	reference

with	transactional	database	data	and	offer	clean	semantics	when	the	data

sets	project	relational	schema	and	tables.	Looking	at	the	semantics

projected	by	an	immutable	data	set,	you	can	create	a	new	version	of	it

optimized	for	a	different	usage	pattern	but	still	projecting	the	same

semantics.	Projections,	redundant	copies,	denormalization,	indexing,	and

column	stores	are	all	examples	of	optimizing	immutable	data	while

preserving	its	semantics.

•	Parallelism	and	Fault	Tolerance.	Immutability	and	functional	computation

are	keys	to	implementing	big	data.

References

1.	Apache	Hadoop;	http://en.wikipedia.org/wiki/Apache_Hadoop.

2.	Bernstein,	P.,	Hadzilacos,	V.,	Goodman,	N.	1987.	Concurrency	Control	and

Recovery	in	Database	Systems.	Addison	Wesley.

3.	Dean,	J.,	Ghemawat,	S.	2004.	MapReduce:	simplified	data	processing	on

large	clusters.	Sixth	Annual	Symposium	on	Operating	System	Design	and

Implementation.

4	.DeCandia,	G.,	Hastorun,	D.,	Jampani,	M.,	Kakulapati,	G.,	Lakshman,	A.,

Pilchin,	A.,	Sivasubramanian,	S.,	Vosshall,	P.,	Vogels,	W.	2007.	Dynamo:

Amazon's	highly	available	key-value	store.	Proceedings	of	the	21st	Annual

ACM	Symposium	on	Operating	Systems	Principles.

5.	Ghemawat,	S.,	Gobioff,	H.,	Leung,	S.	2003.	The	Google	File	System.

Proceedings	of	the	19th	Annual	ACM	Symposium	on	Operating	Systems

Principle.

6.	Gibson,	G.,	Ganger,	G.	2011.	Principles	of	operation	for	shingled	disk

devices.	Carnegie	Mellon	University	Parallel	Data	Lab	Technical	Report	CMU-

PDL-11-107.

7.	Helland,	P.	2005.	Data	on	the	outside	versus	data	on	the	inside.

Proceedings	of	the	Conference	on	Innovative	Database	Research.

8.	Helland,	P.	2014.	Heisenberg	was	on	the	write	track.	Abstract:

Proceedings	of	the	Conference	on	Innovative	Database	Research.

9.	Isard,	M.,	Budiu,	M.,	Yu,	Y.,	Birrell,	A.,	Fetterly,	D.	2007.	Dryad:	distributed

data-parallel	programs	from	sequential	building	blocks.	European	Conference

on	Computer	Systems.

10.	Karger,	D.,	Lehman,	E.,	Leighton,	T.,	Panigraphy,	R.,	Levine,	M.,	Lewin,	D.

1997.	Consistent	hashing	and	random	trees:	distributed	caching	protocols	for

relieving	hot	spots	on	the	World	Wide	Web.	Proceedings	of	the	29th	Annual

ACM	Symposium	on	Theory	of	Computing.

11.	Lamport,	L.	1998.	The	part-time	parliament.	ACM	Transactions	on

Computer	Systems	16(2):	133-169.

12.	Lofgren,	K.,	Normal,	R.,	Thelin,	G.,	Gupta,	A.	2003.	Wear-leveling

techniques	for	flash	EEPROM	systems.	US	Patent	#6850443	(SanDisk,

Western	Digital).

13.	McKusick,	M.	Quinlan,	S.	2009.	GFS:	evolution	on	fast	forward.	ACM

Queue	7(7);	http://queue.acm.org/detail.cfm?id=1594206

14.	New,	R.,	Williams,	M.	2003.	Log-structured	file	system	for	disk	drives

with	shingled	writing.	US	Patent	#7996645	(Hitachi).

15.	O'Neil,	P.,	Cheng,	E.,	Gawlick,	D.,	O'Neil,	E.	1996.	The	log-structured

merge-tree	(LSM-tree).	Acta	Informatica	33(4).

16.	Rosenblum,	M.,	Ousterhout,	J.	1992.	The	design	and	implementation	of	a

log-structured	file	system.	ACM	Transactions	on	Computer	Systems	10(1):

26-52.

17.	Wikipedia.	Turtles	all	the	way	down;

http://en.wikipedia.org/wiki/Turtles_all_the_way_down.

18.	Wikipedia.	Write	amplification;

http://en.wikipedia.org/wiki/Write_amplification.

Pat	Helland	has	been	implementing	transaction	systems,	databases,

application	platforms,	distributed	systems,	fault	tolerant	systems,	and

messaging	systems	since	1978.	For	recreation,	he	occasionally	writes

technical	papers.	Pat	currently	works	at	Salesforce.

Copyright	©	2015	held	by	owner/author.	Publication	rights	licensed	to	ACM.

First	printed	in	CIDR	2015.

Originally	published	in	Queue	vol.	13,	no.	9—	

see	this	item	in	the	ACM	Digital	Library

Tw eet 	
	

Related:

R.	V.	Guha,	Dan	Brickley,	Steve	MacBeth	-	Schema.org:	Evolution	of

Structured	Data	on	the	Web	

Big	data	makes	common	schemas	even	more	necessary.

Rick	Richardson	-	Disambiguating	Databases	

Use	the	database	built	for	your	access	model.

Mark	Cavage,	David	Pacheco	-	Bringing	Arbitrary	Compute	to	Authoritative

Data	

Many	disparate	use	cases	can	be	satisfied	with	a	single	storage	system.

Wyatt	Lloyd,	Michael	J.	Freedman,	Michael	Kaminsky,	David	G.	Andersen	-

Don't	Settle	for	Eventual	Consistency	

Stronger	properties	for	low-latency	geo-replicated	storage

Comments

name	|	Fri,	22	Jan	2016	16:08:33	UTC

Post	a	Comment:

name 	

email 	
Comment:	(Required	-	4,000	character	limit	-	HTML	syntax	is	not	allowed	and	will	be
removed)	

Post

	

©	2015	ACM,	Inc.	All	Rights	Reserved.

The	Nov/Dec	issue	of	acmqueue	is	out!	

acmqueue	is	free	for	ACM	professional	members	

Download	the	app	from	iTunes	or	Google	Play,
or	view	within	your	browser.	

More	information	here	

For	more	articles	and	columns	like	this,	check	out	the	latest
issue	of	acmqueue	magazine

7	people	like	this.	Sign	Up	to	see	w hat	your	friends	like.LikeLike

	
Current	Issue			Past	Issues			Topics


