
Natural	language	processing
From	OpenCog

Category:	 Natural	Language

This	page	describes	the	current	state	of	affairs	and	future	plans	for	natural	language	processing	(NLP)	within	OpenCog.	A	more	high-level,	general
overview	is	provided	in	OpenCogPrime:NLP.

Much	of	the	NLP	that	is	being	done	in	association	with	OpenCog	is	being	done	outside	of	the	actual	OpenCog	server	implementation,	or	its	associated
AtomSpace	and	PLN	reasoner.	Input	processing	is	in	the	form	of	a	pipeline,	with	the	following	stages:

1.	 sentence	detection	(RelEx)
2.	 spell	checking	(Link	Grammar)
3.	 tokenization	and	morphology	(Link	Grammar)
4.	 link	parsing	(Link	grammar)
5.	 dependency	relations	(RelEx)
6.	 anaphora	resolution	(opencog)
7.	 Relex2Logic	(opencog)
8.	 word-sense	disambiguation	(WSD)	(opencog)
9.	 concept	formation	and	linguistic	interpretation	(opencog)
10.	 Common-sense	data
11.	 Reasoning	(opencog)
12.	 Natural	language	generation

The	output	of	step	6	is	input	into	OpenCog;	the	representation	is	described	in	the	RelEx	OpenCog	format	page.	There	are	also	higher	order	constructs
partially	documented	in	assorted	README	files.

Contents
1	Demonstration
2	Installing/Running	How-To

2.1	Chatbot
2.2	NLP	Experiments

3	Future	work
4	NLP	Tasks
5	References
6	See	Also

Demonstration
A	demonstration	of	the	functionality	is	available	as	an	IPython	Notebook,	which	can	be	viewed	online	here.	To	reproduce	the	demo	on	your	own	computer,
follow	the	instructions	here.

Installing/Running	How-To
Detailed	instructions	for	installing/running	NLP	within	OpenCog	can	be	found	in	the	opencog/nlp/README	file.

The	current	code	"doesn't	do	anything	yet";	rather,	it	is	a	platform	for	running	experiments.	Thus,	what	is	contained	here	should	be	thought	of	as	a	"bag	of
parts".	It	is	up	to	you	to	figure	out	what	these	parts	are,	and	to	assemble	them	into	something	meaningful.	The	chatbot	is	a	good	place	to	start:	it
demonstrates	the	NLP	pipeline	in	action,	and	is	usable	from	an	IRC	chat	channel.

Chatbot

The	chatbot	is	a	demo	of	the	OpenCog	natural-language	processing	pipeline;	it	is	NOT	--	repeat	NOT	--	a	demo	of	OpenCog	reasoning,	deduction,	or	anything
like	that.	The	chatbot	is	as	dumb	as	a	rock,	as	thick	as	a	brick;	it	doesn't	really	do	any	"reasoning".

It	can,	however,	answer	simple	English-language	questions.	It	does	so	by	several	methods.	The	most	straight-forward	is	to	compare	the	syntactical	structure
of	the	question	to	previously	entered	sentences.	Thus,	for	example,	if	the	chatbot	is	told	that	"John	threw	a	rock",	and	then	asked	"Who	threw	a	rock?",
direct	comparison	allows	it	to	equate	"Who"	->	"John".	These	comparisons	are	done	on	the	syntactic	structure	(dependency	parse)	of	the	sentence:	that	is,
the	parsed	form	of	the	sentences	and	questions	are	compared.	This	allows	for	some	sophistication:	the	system	can	correctly	answer	"What	did	John	throw?"
for	the	above	input,	because	dependency	parsing	will	correctly	identify	"throw"	as	the	head	verb	of	the	sentence.	An	additional	layer	of	abstraction,	to	pick
over	and	normalize	prepositional	phrases,	is	described	in	the	opencog/nlp/triples/README	file.

The	chatbot	can	also	move	beyond	basic	dependency-grammar	pattern-matching,	just	a	little	bit:	it	attempts	some	basic	concept	formation,	as	documented
in	the	opencog/nlp/seme/README	file.	Another	notable	feature	is	the	goal	of	performing	all	question-answering	by	means	of	pattern	matching.	That	is,	all	work	is
meant	to	be	performed	by	evaluating	IF..THEN..	clauses,	rather	than	by	algorithms	implemented	in	C++	of	scheme.	This	goal	has	not	been	met,	but	the
amount	of	C++	code	is	shrinking,	and	the	number	of	patterns	is	growing.

Since	OpenCog	can	save	its	contents	to	a	database,	it	can	"remember"	a	large	number	of	assertions	that	have	been	previously	entered,	and	answer
questions	about	those.	Currently,	a	pre-parsed	copy	of	the	MIT	ConceptNet	can	be	loaded	into	OpenCog.

See	/opencog/nlp/chatbot/README	for	install	and	architectural	details.

NLP	Experiments

Current	experimental	focus	is	on	establishing	statistical	correlations	between	word	senses	and	gramatical	constructions,	on	reference	resolution,	and	on
reasoning	with	prepositional	relations.

Currently,	the	WSD	experimental	flow	is	as	follows:

Download	and	compile	opencog,	relex,	lexical-attraction	from	launchpad.
Create	a	bunch	of	SQL	tables,	as	specified	in	the	lexical-attr	package.
Parse	a	bunch	of	English	text,	using	relex,	to	obtain	frequency	counts.	Alternately,	download	pre-parsed	texts	from	http://relex.swlabs.org/~linas/	which
contains	several	cpu-years	worth	of	parsed	data.
Run	the	scripts	in	the	wordnet-import	directory	to	load	opencog	with	basic	wordnet	relationships.
Run	"src/nlp/scm/load-nlp.sh"	to	load	basic	scheme	utilities.	Be	sure	to	modify	the	hard-coded	paths	to	point	at	the	actual	location	of	the	parsed	data.
Get	to	the	scheme	prompt,	and	run	"(doit)".	This	will	run	the	current	word-sense	disambiguation	code,	and	will	populate	the	databases	with	statistical
results.	Caution;	this	is	extremely	CPU-intensive.
Read	the	README	in	the	wsd-post	directory	for	latest	info	&	results.

The	triples	experimental	flow	is	similar;	it	attempts	to	extract	simple	semantic	triples	from	text	(is-a,	has-a	relations,	as	well	as	prepositional	relations:
made-of,	next-to,	city-in,	color-of,	etc.)	This	task	is	sometimes	called	"WIE"	or	"Web	Information	Extraction"	by	the	Semantic	Web	industry.	See	the	file
nlp/triples/README	for	details.

The	lexical	attraction	package,	at	https://launchpad.net/relex-statistical	is	used	to	define	SQL	tables	holding	assorted	relationships,	including	tables	of
mutual	information	between	word	pairs,	and	tables	of	conditional	probabilities	of	link-grammar	disjuncts.	These	tables	are	referenced	and/or	generated	by
some	of	the	opencog	code	here.

Database	dumps	of	some	of	the	statistical	datasets	can	be	downloaded	from	http://relex.swlabs.org/~linas/	These	represent	several	CPU-years	of	number-
crunching,	and	so	are	a	short-cut	to	getting	results	more	quickly.

Future	work
One	goal	of	future	work	is	to	move	these	stages	into	OpenCog	proper.	However,	at	this	time,	there	is	no	great	urgency	to	port	the	NLP	processing	to
opencog;	a	far	more	important	task	is	to	actually	get	it	to	"do	something"	..	i.e.	do	something	interesting,	such	as	performing	reasoning.	The	act	of	doing	this
will	make	it	clear	which	of	the	tasks	below	are	important,	and	which	can	be	deferred.

Current	status	is:

11)	There's	some	Java	code.	It	needs	to	be	documented.

10)	User:Linas	is	thinking	about	this,	and	has	some	prototype	code,	in	the	'opencog/nlp/triples'	directory.

9)	A	collection	of	tools	are	implemented	in	the	LexAt	(Lexical	Attraction)	package.	These	are	intended	to	enable	experiments	in	datamining	and
language	learning	using	statistical	corpus	techniques.

8)	WSD	is	begin	done	using	the	Mihalcea	algorithm,	in	the	opencog/nlp/wsd	directory.	Note	that	step	10	should	open	up	new	and	better	ways	of
performing	WSD.

7)	Under	construction.	See	the	Relex2logic	page.

6)	Reference	resolution	is	now	being	performed	in	OpenCog.

5)	Should	be	fairly	easy.	This	is	because	RelEx's	rules	set	is	already	heavily	inspired	by	OpenCog,	and	the	rules	are	already	written	as	ImplicationLinks
acting	on	graphs.	Note	however,	they	are	on	graphs,	not	hypergraphs	...	and	the	notation	used	is	funky.	There	are	also	some	callouts	for	special-case
handling	of	morphology,	abbreviations,	entities,	etc.	that	makes	the	overall	task	messy.

4)	Ideally,	the	link-parsing	should	be	done	inside	of	opencog	itself,	i.e.	by	applying	graph	algorithms	to	the	atomsppace.	But	this	will	be	difficult,	for	a
number	of	reasons.	Some	prototype	work	has	been	done,	for	the	Viterbi	implementation	of	teh	link	parser.	Actually,	there	are	now	two	prototypes	for
this	...

3)	Morphology	analysis	is	now	a	part	of	link-parsing.

2)	Link-grammar	can	run	a	spell-checker	at	a	very	early	stage	of	processing,	before	the	sentence	is	parsed,	when	a	word	cannot	be	found	in	its
dictionaries.	There	are	other	stages	when	a	spell-checker	could	be	used	more	fruitfully,	e.g.	when	parsing	fails.	In	addition,	many	writers	make	frequent
grammatical	errors,	which	disrupt	parsing.	This,	a	grammar-corrector	would	be	quite	useful.	For	example,	if	a	parse	fails,	a	POS	tagger	could	be	run,
nouns	identified,	and	then	the	determiners	"the"	or	"a"	could	be	placed	in	front	of	nouns.	The	parsing	step	would	be	re-rerun,	to	see	if	a	meaningful
result	was	obtained.

1)	-

Please	note	that,	UNTIL	one	has	algorithms	that	are	able	to	accurately	learn	new	frame	rules,	and/or	relex	processing	rules,	and/or	anaphora	resolution
patterns,	and/or	link-grammar	dictionary	entries,	there	is	little	impetus	for	porting	these	technologies	over	into	OpenCog.	That	is,	there	is	little/no	benefit	to
porting,	and	several	strong	downsides:	degraded	performance,	complexity,	maintenance.	Thus,	the	primary	focus	should	be	on	developing	algorithms	that
can	learn	new	NLP	processing	rules.	Only	after	such	algos	exist,	and	can	run	reliably	without	human	intervention	(e.g.	to	weed	out	bad	rules),	does	it	make
sense	to	put	in	a	large	effort	to	port	existing	code.

NLP	Tasks
The	following	is	a	list	of	tasks	commonly	associated	with	NLP	processing:

text	segmentation	(sentence	detection,	paragraph	detection,	list	identification)
morphological	analysis
named-entity	recognition
named-entity	disambiguation
name	variant	recognition	(named-entity	lemmatization)
syntactic	parsing	and	chunking
co-reference	resolution

pronomial	resolution	(he,	she	it)
synonymous	entity	resolution	(different	names	for	same	entity)
synonymous	phrase/synonymous	relationship	resolution
general	reference	resolution

word	sense	disambiguation
textual	entailment
sentiment	summarization
text	classification
knowledge	acquisition,	information	extraction
question	answering
information	retrieval
machine	translation
text	summarization

http://wiki.opencog.org/wikihome/index.php/Category:Natural_Language
http://wiki.opencog.org/wikihome/index.php/Special:Categories
http://wiki.opencog.org/wikihome/index.php/OpenCog
http://wiki.opencog.org/wikihome/index.php/OpenCogPrime:NLP
http://wiki.opencog.org/wikihome/index.php/OpenCog
http://wiki.opencog.org/wikihome/index.php/AtomSpace
http://wiki.opencog.org/wikihome/index.php/PLN
http://wiki.opencog.org/wikihome/index.php/RelEx
http://wiki.opencog.org/wikihome/index.php/Link_Grammar
http://wiki.opencog.org/wikihome/index.php/Link_Grammar
http://wiki.opencog.org/wikihome/index.php/Link_grammar
http://wiki.opencog.org/wikihome/index.php/Dependency_relations
http://wiki.opencog.org/wikihome/index.php/Anaphora_resolution
http://wiki.opencog.org/wikihome/index.php/Relex2Logic
http://wiki.opencog.org/wikihome/index.php/Word-sense_disambiguation
http://wiki.opencog.org/wikihome/index.php/Concept_formation
http://wiki.opencog.org/wikihome/index.php/Linguistic_interpretation
http://wiki.opencog.org/wikihome/index.php/Reasoning
http://wiki.opencog.org/wikihome/index.php/Natural_language_generation
http://wiki.opencog.org/wikihome/index.php/RelEx_OpenCog_format
http://wiki.opencog.org/w/Natural_language_processing#Demonstration
http://wiki.opencog.org/w/Natural_language_processing#Installing.2FRunning_How-To
http://wiki.opencog.org/w/Natural_language_processing#Chatbot
http://wiki.opencog.org/w/Natural_language_processing#NLP_Experiments
http://wiki.opencog.org/w/Natural_language_processing#Future_work
http://wiki.opencog.org/w/Natural_language_processing#NLP_Tasks
http://wiki.opencog.org/w/Natural_language_processing#References
http://wiki.opencog.org/w/Natural_language_processing#See_Also
http://nbviewer.ipython.org/github/opencog/python-client/blob/master/opencog-nlp.ipynb
https://github.com/opencog/python-client
https://github.com/opencog/opencog/tree/master/opencog/nlp/triples/README
http://wiki.opencog.org/wikihome/index.php/Concept_formation
https://github.com/opencog/opencog/tree/master/opencog/nlp/seme/README
http://wiki.opencog.org/wikihome/index.php/Pattern_matching
http://wiki.opencog.org/wikihome/index.php/ImplicationLink
http://wiki.opencog.org/wikihome/index.php/Scheme
https://github.com/opencog/opencog/tree/master//opencog/nlp/chatbot/README
http://wiki.opencog.org/wikihome/index.php/WSD
http://relex.swlabs.org/~linas/
https://launchpad.net/relex-statistical
http://relex.swlabs.org/~linas/
http://wiki.opencog.org/wikihome/index.php/User:Linas
http://wiki.opencog.org/wikihome/index.php/WSD
http://wiki.opencog.org/wikihome/index.php/Relex2logic
http://wiki.opencog.org/wikihome/index.php/Reference_resolution
http://wiki.opencog.org/wikihome/index.php/Word_sense_disambiguation


References
Alexander	Yates	and	Oren	Etzioni.	Unsupervised	Methods	for	Determining	Object	and	Relation	Synonyms	on	the	Web.	Journal	of	Artificial	Intelligence
Research	34,	March,	2009,	pages	255-296.

See	Also
Linguistic	Interpretation

This	page	was	last	modified	on	22	February	2016,	at	07:14.

Content	is	available	under	GNU	Free	Documentation	License	1.2.

http://www.cis.temple.edu/~yates/papers/resolver-jair09.pdf
http://wiki.opencog.org/wikihome/index.php/Linguistic_Interpretation
http://www.gnu.org/copyleft/fdl.html

