
CONSOLE	HACKING	2016
PS4:	PC	MASTER	RACE

	

@marcan42

IN	MEMORY	OF	BEN	‘BUSHING’	BYER

It's	a	bit	different	from	previous	consoles

✓	x86	✓	FreeBSD	✓	WebKit

✗	Hypervisor

But	not	completely	different

✓	Security	processor	(that	you	can	just	ignore)

HOW	TO	PWN	A	PS4

	

Step	1:	Write	a	WebKit	exploit

Step	2:	Write	a	FreeBSD	exploit

	

	

HOW	TO	PWN	A	PS4

Step	0.	Dump	the	code

Step	1.	Write	a	WebKit	exploit

Step	2.	Write	a	FreeBSD	exploit

Step	3.	?

Step	4.	PROFIT

BLACK-BOX	CODE	EXTRACTION

THE	FUN	WAY

A	long	time	ago	in	a	hackerspace	far,
far	away....
	

(fail0verflow	got	together	after	31c3)

Liverpool
APU

Aeolia
Southbridge

WiFi
Bluetooth

Blu-Ray

HDD

USB
Ports

Ethernet

RAM

PCIe	x4

GDDR5
USB

USB

SATA

SDIO

GMII

PCIE:	FUN	FOR	THE	WHOLE	FAMILY

Bus	mastering
Complicated
Robust
Delay	tolerant
Drivers	full	of	fail

Liverpool
APU

Aeolia
Southbridge

PC	(Atom)
motherboard

Lattice
ECP3	Versa
FPGA	board

PCIe	slot PCIe	edge

PCIe
x1

Liverpool
APU

Aeolia
Southbridge

PC	(Atom)
motherboard

Lattice
ECP3	Versa
FPGA	board

PCIe	slot PCIe	edge

PCIe
x0.00002

RS232
115200

Liverpool
APU

Aeolia
Southbridge

PC	(Atom)
motherboard

Lattice
ECP3	Versa
FPGA	board

PCIe	slot PCIe	edge

PCIe
x0.00002
x0.5

RS232
115200

GigE

PCIE	101

PCIe	is	a	reliable	switched	packet	network

Transaction	Layer	Packets	(TLPs):

Memory	reads/writes
IO	reads/writes
Configuration	reads/writes
Message	signaled	interrupts	(MSI)	(writes)
Legacy	interrupts
Completions

GO	WILD	WITH	DMA!

Except	there's	an	IOMMU...

void	load_some_stuff(void)
{
				char	buf[32];

				plz2read_from_flash(SOME_ADDRESS,	buf,	32);
}

void	plz2read_from_flash(uint32_t	addr,	void	*buf,	size_t	size)
{
				iommu_map(buf,	size);
				flash_send_read_command(addr,	buf,	size);
				iommu_unmap(buf,	size);
}

✓	Code	execution

✓	FreeBSD	kernel	dump

✓	WebKit	and	OS	libs
dump

HOW	TO	PWN	A	PS4

✓	Step	0.	Dump	the	code

✓	Step	1.	Write	a	WebKit	exploit

✓	Step	2.	Write	a	FreeBSD
exploit

	Step	3.	?ps4-kexec

	Step	4.	PROFIT	(Linux)

FROM	FREEBSD	TO	LINUX

PS4-KEXEC

jmp	linux
Not	so	fast...	we	need	to:

Load	Linux	into	contiguous	physical	RAM
Set	up	Linux	boot	parameters
Shut	down	FreeBSD	cleanly
Halt	secondary	CPUs
Make	new	pagetables	and	GDT
Disable	the	IOMMU
Relocate	various	things	in	memory
And	more...

OKAY,	NOW	jmp	linux,	RIGHT?

Sure,	Linux	will	technically	run

For	a	little	bit	anyway

And	then	it	stops

No	video,	no	serial	output,	nothing

LET'S	TALK	ABOUT	HARDWARE

WHAT	IS	x86?

A	mediocre	instruction	set	architecture

The	PS4	is	x86	(x86-64)

WHAT	IS	A	PC?

A	horrible,	horrible	thing	built	upon	piles	and	piles	of	legacy	nonsense	dating	back	to	1981

The	PS4	is	NOT	a	PC

PC	101

8259	Programmable	Interrupt	Controller	(PIC)
8253	Programmable	Interval	Timer	(PIT)
8250	UART	at	I/O	3f8h
8042	PS/2	Keyboard	Controller
MC146818	RTC/CMOS
ISA	bus
VGA

The	PS4	has	none	of	these

AMD	APU
Intel	Core

Intel	PCH
AMD	FCH

WiFi
Bluetooth

Blu-Ray

HDD

USB
Ports

Ethernet

RAM

DMI	(I)
UMI	(A)

DDR3
USB

SATA

SATA

USB

PCIe

Liverpool
APU

Aeolia
Southbridge

WiFi
Bluetooth

Blu-Ray

HDD

USB
Ports

Ethernet

RAM

PCIe	x4

GDDR5
USB

USB

SATA

SDIO

GMII

AMD	FCH	SOUTHBRIDGE

Implements	Intel	legacy	(1981)

	

MARVELL	AEOLIA	SOUTHBRIDGE

Implements	Intel	legacy	(2002)

	

????

THAT'S	NO	SOUTHBRIDGE

THAT'S	A	MARVELL	ARMADA	SOC

Descendant	from	Intel	StrongARM/XScale
ARM	SoC	with	a	bunch	of	peripherals
They	stuck	a	PCIe	bridge	on	it
Exposes	ARM	peripherals	to	the	x86	side
Some	extra	stuff	(e.g.	HPET,	ACPI	stuff)
256MB	DDR	RAM
Also	runs	FreeBSD	in	standby	mode
Batshit	insane

00:01.2

00:	bus	number	(8	bits)

01:	device	number	(5	bits)

2:	function	number	(3	bits)

INTEL	“PANTHER	POINT”	PCH
00:14.0	USB	controller:	Intel	Corporation	7	Series/C210	Series	Chipset	Family	USB	xHCI	Host	Controller	(rev	04)
00:16.0	Communication	controller:	Intel	Corporation	7	Series/C216	Chipset	Family	MEI	Controller	#1	(rev	04)
00:1a.0	USB	controller:	Intel	Corporation	7	Series/C216	Chipset	Family	USB	Enhanced	Host	Controller	#2	(rev	04)
00:1b.0	Audio	device:	Intel	Corporation	7	Series/C216	Chipset	Family	High	Definition	Audio	Controller	(rev	04)
00:1c.0	PCI	bridge:	Intel	Corporation	7	Series/C216	Chipset	Family	PCI	Express	Root	Port	1	(rev	c4)
00:1c.1	PCI	bridge:	Intel	Corporation	7	Series/C210	Series	Chipset	Family	PCI	Express	Root	Port	2	(rev	c4)
00:1c.2	PCI	bridge:	Intel	Corporation	7	Series/C210	Series	Chipset	Family	PCI	Express	Root	Port	3	(rev	c4)
00:1c.3	PCI	bridge:	Intel	Corporation	7	Series/C216	Chipset	Family	PCI	Express	Root	Port	4	(rev	c4)
00:1d.0	USB	controller:	Intel	Corporation	7	Series/C216	Chipset	Family	USB	Enhanced	Host	Controller	#1	(rev	04)
00:1f.0	ISA	bridge:	Intel	Corporation	HM77	Express	Chipset	LPC	Controller	(rev	04)
00:1f.2	SATA	controller:	Intel	Corporation	7	Series	Chipset	Family	6-port	SATA	Controller	[AHCI	mode]	(rev	04)
00:1f.3	SMBus:	Intel	Corporation	7	Series/C216	Chipset	Family	SMBus	Controller	(rev	04)

MARVELL	“AEOLIA”

It	clones	itself	across	all	PCI	device	numbers

[...]
00:12.0	System	peripheral:	Sony	Corporation	Aeolia	ACPI
[...]
00:13.0	System	peripheral:	Sony	Corporation	Aeolia	ACPI
[...]
00:14.0	System	peripheral:	Sony	Corporation	Aeolia	ACPI
00:14.1	System	peripheral:	Sony	Corporation	Aeolia	Ethernet	Controller	(Marvell	Yukon	2	Family)
00:14.2	System	peripheral:	Sony	Corporation	Aeolia	SATA	AHCI	Controller
00:14.3	System	peripheral:	Sony	Corporation	Aeolia	SD/MMC	Host	Controller
00:14.4	System	peripheral:	Sony	Corporation	Aeolia	PCI	Express	Glue	and	Miscellaneous	Devices
00:14.5	System	peripheral:	Sony	Corporation	Aeolia	DMA	Controller
00:14.6	System	peripheral:	Sony	Corporation	Aeolia	Memory	(DDR3/SPM)
00:14.7	System	peripheral:	Sony	Corporation	Aeolia	USB	3.0	xHCI	Host	Controller
00:15.0	System	peripheral:	Sony	Corporation	Aeolia	ACPI
[...]
00:16.0	System	peripheral:	Sony	Corporation	Aeolia	ACPI
[...]
00:17.0	System	peripheral:	Sony	Corporation	Aeolia	ACPI
[...]

8	FUNCTIONS	AIN'T	ENOUGH	FOR	EVERYBODY

00:14.4	“PCI	Express	Glue”

PCIe	bridge	config
MSI	interrupt	controller
ICC
HPET
Flash	controller
RTC
Timers
2	serial	ports
I²C

LINUX	MINIMUM	SYSTEM	REQUIREMENTS

A	timer	(PIT)
Interrupts	(PIC)
Some	kind	of	console

PS4:	no	PIT,	no	PIC,	no	standard	serial

Board	has	testpoints	for	an	8250-derived	serial	port

DMESG	PLZ

Linux	earlycon:	early	console	for	debugging

No	IRQs	required

console=uart8250,mmio32,0xd0340000,3200n8
Clock	is	different...	3200	means	115200

This	gets	us	a	boot	log

TIME	STAMP	COUNTER	(TSC)

Newfangled	timer,	in-CPU

PS4	Liverpool	APU	supports	proper	TSC

Linux	tries	to	calibrate	it...

...	against	PIC	or	PMTIMER

Fail

AGAIN,	IT	REALLY	ISN'T	A	PC

Subarch	specified	by	bootloader	(ps4-kexec)

Enables	custom	TSC	calibration	code

Disables	legacy	PIC	and	RTC

	enum	{
									X86_SUBARCH_PC	=	0,
									X86_SUBARCH_LGUEST,
									X86_SUBARCH_XEN,
									X86_SUBARCH_INTEL_MID,
									X86_SUBARCH_CE4100,
+								X86_SUBARCH_PS4,
									X86_NR_SUBARCHS,
	};

ACPI

NOT	JUST	“POWER”

Needed	for	proper	PCI	config,	IOMMU,	CPU	frequency	scaling...

PS4	has	broken	ACPI	tables...

Fix	them	in	ps4-kexec

PCI	MSI	101

MESSAGE	SIGNALED	INTERRUPTS

Device	configuration	registers	for	address	and	value
To	fire	an	interrupt,	devices	write	a	value	to	an	address
CPU	IRQ	controller	(LAPIC)	receives	and	fires	interrupt	vector
The	message	value	directly	defines	the	CPU	IRQ	vector

AEOLIA	MSI	101

Device	MSI	configuration	registers	ignored
Function	4	("glue")	implements	custom	MSI	controller
Each	function	gets	shared	addr	and	top	27	bits	of	data
Each	"sub-function"	only	gets	separate	bottom	5	bits
All	MSIs	originate	from	Function	4

	

(����)��┻━┻

DRIVER	HELL

Sibling	devices	are	inter-dependent
Linux	IRQ	vector	allocation	not	sequential
Need	to	modify	all	drivers	to	use	custom	IRQ	code

AEOLIA	ON	LINUX

Core	driver	implements	IRQ	controller	interface
Linux	probe-defer	mechanism	to	fix	ordering	issue
Some	drivers	(SDHCI,	GigE)	modified	to	request	Aeolia	IRQs
Some	drivers	(serial,	USB)	instantiated	from	wrappers
Each	function	uses	a	single	shared	IRQ	:(

IOMMU	TO	THE	RESCUE

Allows	interrupt	remapping
Consecutive	message	numbering
Can	use	unique	IRQs	per	sub-function	:)
Falls	back	to	shared	IRQs	if	IOMMU	off
The	ACPI	table	for	the	IOMMU	is	missing	:(

CHECKLIST

✓	IRQs	(apcie)

✓	Timer	(TSC)

✓	Early	serial

✓	Late	serial	with	IRQs	(apcie-uart)

✓	Initramfs	userspace

✗	Serial	I/O	hangs	sometimes	:(

MORE	CLEANUP	NEEDED

FreeBSD	masks	some	IRQ	vectors	on	CPU#0	with	nonstandard	AMD	LAPIC	features

Clean	them	up	in	ps4-kexec

✓	Serial	is	stable

This	took	*ages*	to	debug

JUST	ADD	DRIVERS

✓	USB	xHCI	(3	USB	controllers	in	one	function...)

✓	SDHCI	(Nonstandard	PCI	config,	needs	quirks...)

✓	Ethernet	(Driver	needs	hacks;	still	partially
broken...)

Worked	fine	on	Linux	4.4

Failed	on	4.9	-	DMA	broken?

AEOLIA	STRIKES	BACK

MMIO
Registers

PCIe
Window

RAM

MMIO
Registers

RAM

0x00000000

0x80000000

0xc0000000

Aeolia x86

0xffffffff

0xbfffffff

0x7fffffff

Flat	VA
Space

IOMMU

MMIO
Registers

PCIe
Window

RAM

MMIO
Registers

RAM

0x00000000

0x80000000

0xc0000000

Aeolia x86

0xffffffff

0xbfffffff

0x7fffffff

Flat	VA
Space

IOMMU

MMIO
Registers

PCIe
Window

RAM

MMIO
Registers

RAM

0x00000000

0x80000000

0xc0000000

Aeolia x86

0xffffffff

0xbfffffff

0x7fffffff

Flat	VA
Space

IOMMU

MMIO
Registers

PCIe
Window

RAM

MMIO
Registers

RAM

0x00000000

0x80000000

0xc0000000

Aeolia x86

0xffffffff

0xbfffffff

0x7fffffff

31-BIT	DMA

┻━┻	��(`Д´)ﾉ�		┻━┻
More	Linux	driver	patching...

AND	NOW	FOR	SOMETHING	COMPLETELY	DIFFERENT

PS4	RADEON	GRAPHICS

“STARSHA”

dce_ihdef_get_info_crtc_linea_liverpool
"LVP	A0"	StarshaAsicStateRegInfo
ThJStarsha	AGESAThebeJBDK
	

Nobody	(not	even	Sony/AMD)	agrees	on	the	APU	codename

We're	calling	it	Liverpool

LIVERPOOL	GRAPHICS

AMD	GCN	“Sea	Islands”	(CI)	GPU
Similar	to	other	chips	in	the	generation
Some	quirks,	customizations,	oddities
We	used	Bonaire	as	a	base

HACKING	ON	AMD	DRIVERS

AMD	publishes	3D	shader	and	command	queue	documentation

They	do	NOT	publish	register	docs	for	recent	GPUs

That's	what	we	need	to	hack	on	kernel	drivers	:(

“The	code	is	the	documentation”	-	incomplete,	magic	numbers

GOOGLE	TIME

XML	dump	of	Bonaire	register	documentation?

Broken,	incomplete

http://www.siliconkit.com/pragmatic/bonaire.xml

				<field>
								<fname>
												<token>P_ALWAYS_USE_FAST_TXCLK</token>
								</fname>
								<frange>
												<token>13:13</token>
								</frange>
								<ftype>
												<token>ALPHA</token>
												<token>{</token>
												<fieldtexts>
																<fieldtext>
																				<quoted>
																								<token>"TXCLK	will	be	either	250MHz,	500MHz,	or	1GHz
																															depends	on	port	speeds	"</token>
																				</quoted>

https://web.archive.org/web/20161223153306/http://www.siliconkit.com/pragmatic/bonaire.xml

TELL	ME	MORE

WHAT	IS	RAI

AMD	internal	register	description	file?

http://www.siliconkit.com/pragmatic/RAI/rai.grammar4.txt

root	::=	sections
sections	::=	section	sections
section	::=	'SECTION_START'	'CHIP_INFO'	statements	'SECTION_END'
section	::=	'SECTION_START'	'CHIP_SPACES'	chipspaces	'SECTION_END'
section	::=	'SECTION_START'	'CHIP_STREAMS'	'[a-zA-Z0-9_]*'	'SECTION_END'
section	::=	'SECTION_START'	'CHIP_MEMORIES'	'[a-zA-Z0-9_]*'	'SECTION_END'
section	::=	'SECTION_START'	'CHIP_PARAMETERS'	'[a-zA-Z0-9_]*'	'SECTION_END'
section	::=	'SECTION_START'	'BLOCK_INFO'	statements	'SECTION_END'
section	::=	'SECTION_START'	'BLOCK_REGISTERS'	register	'SECTION_END'
register	::=	title	spaces	size	rattribute	'{'	fields	'}'	';'
register	::=	title	spaces	size	'{'	fields	'}'	';'
title	::=	'[a-zA-Z0-9_]*'
spaces	::=	space	spaces
[...]

https://web.archive.org/web/20161223153334/http://www.siliconkit.com/pragmatic/RAI/rai.grammar4.txt

HMMMMM...

Maybe...

http://www.siliconkit.com/pragmatic/bonaire.rai

Nope

http://www.siliconkit.com/pragmatic/bonaire.xml

http://www.siliconkit.com/pragmatic/RAI/rai.grammar4.txt

http://www.siliconkit.com/pragmatic/RAI/bonaire.rai

https://web.archive.org/web/20161223153306/http://www.siliconkit.com/pragmatic/bonaire.xml
https://web.archive.org/web/20161223153334/http://www.siliconkit.com/pragmatic/RAI/rai.grammar4.txt
https://web.archive.org/web/20160103205924/http://www.siliconkit.com/pragmatic/RAI/bonaire.rai

BINGO
//Version	1.0.1.0
//CL#	890079	
//Version	1.0.0.0
//CL#	883050

SECTION_START	CHIP_INFO

CHIP_NAME	=	"bonaire";
DESCRIPTION	=	"R8xx	GPU	Chip";
RELEASE	=	"Chip	Spec	0.28";
//	Edit	Vendor	ID	Here:	Default(0xFFFF)	means	search	for	all
ASIC_VENDOR_ID	=	0x1002;
[...]

So	I	wrote	a	*working*	parser

Also	does	annotated	register	dumps,	diffs,	#define	generation

4000+	registers	documented	in	GpuF0Reg	alone

$	python	showregname.py	HDP_NONSURFACE_INFO
HDP_NONSURFACE_INFO	(GpuF0Reg:0x2c08,GpuF1Reg:0x2c08)	32bit:
							0		NONSURF_ADDR_TYPE
										-	0:	physical	address	with	no	translation.	
										-	1:	virtual	address,	requires	page	table	translation.	
					4:1		NONSURF_ARRAY_MODE
										-	0:	ARRAY_LINEAR_GENERAL:	Unaligned	linear	array	
										-	1:	ARRAY_LINEAR_ALIGNED:	Aligned	linear	array
[...]

ROAD	TO	THE	FRAMEBUFFER

HDMI	IS	EASY,	RIGHT?

GPU	has	HDMI,	DisplayPort	ports
HDMI	not	connected;	DP
connected

????

EXTERNAL	HDMI	ENCODER

WE	MUST	GO	DEEPER

Panasonic	I²C	DisplayPort	→	HDMI	bridge

Requires	configuration	to	work

Hooked	up	to	the	GPU	I²C	bus?

You	wish

ICC

RPC	protocol	used	to	send	commands	to	system	MCU
Message	box	/	doorbell	protocol
Accessed	via	Aeolia
Used	for	things	like	power,	buttons,	LEDs...
And	the	HDMI	encoder	I²C

ICC	I²C

Let's	build	a	simple	I²C	interface?

Nah,	let's	make	a	bytecode	scripting	engine	to	issue	I²C	commands

	

WHY?!?

Because	ICC	is	too	slow	to	issue	requests	one	by	one

MORE	HACKS...

HDMI	encoder	requires	all	4	DisplayPort	lanes	active
Scanout	memory	bandwidth	calculation	is	broken
Mouse	cursor	size	is	from	previous	generation	(wat?)

✓	Framebuffer	console	working

✗	X	won't	start	with	radeon	driver

A	TALE	OF	TWO	MEMORIES

PS4	uses	a	unified	memory	architecture

Linux	legacy	driver	expectes	a	usable	amount	of	"video"	memory

PS4	configures	emulated	VRAM	as	16MiB...

Solution:	reconfigure	memory	controller	in	ps4-kexec	to	assign	1GiB	of	RAM	as	VRAM

✓	X	starts

IT'S	3D	TIME

RADEON	GPU	101

Commands	are	sent	to	the	GPU	by	putting	them	in	rings:

Graphics	ring
Compute	rings
DMA	rings

Commands	are	processed	by	the	GPU	Command	Processor

It	contains	multiple	sub-units	(ME,	PFP,	CE),	each	of	which	is	a	custom	‘F32’	CPU	running
microcode	firmware

Rings	can	call	out	to	Indirect	Buffers	(IBs)	with	more	commands

radeon:	ring	0	test	failed
The	graphics	ring	isn't	working

The	ring	test	writes	to	a	GPU	register	from	the	ring,	then	checks	to	see	if	the	write	happened

Debug	registers	(thanks	bonaire.rai!)	show	the	CP	is	stuck...

...	waiting	for	data	in	the	ring...

...	after	a	NOP	command?

WREG32(scratch,	0xCAFEDEAD);
radeon_ring_lock(rdev,	ring,	3);
radeon_ring_write(ring,	PACKET3(PACKET3_SET_UCONFIG_REG,	1));
radeon_ring_write(ring,	((scratch	-	PACKET3_SET_UCONFIG_REG_START)	>>	2));
radeon_ring_write(ring,	0xDEADBEEF);
radeon_ring_unlock_commit(rdev,	ring,	false);

NOP	IS	HARD,	LET'S	GO	STALLING

Packet	headers	have	a	length	field	of	size	-	2
2-word	packet:	size	=	0.

They	added	a	1-word	NOP:	size	=	0x3fff	(-1)

Old	microcode...	interprets	it	as	a	huge	packet

Hawaii	has	the	same	issue	on	old	microcode:

if	(rdev->family	==	CHIP_HAWAII)	{
				if	(rdev->new_fw)
								nop	=	PACKET3(PACKET3_NOP,	0x3FFF);
				else
								nop	=	RADEON_CP_PACKET2;
}	else	{
				nop	=	PACKET3(PACKET3_NOP,	0x3FFF);
}

radeon:	ring	3	test	failed
That's	the	SDMA	ring

Same	idea:	write	a	value	to	memory,	check	for	it

Debugging,	the	write	happens...	but	it	writes	zero?

radeon_ring_write(ring,	SDMA_PACKET(SDMA_OPCODE_WRITE,
																								SDMA_WRITE_SUB_OPCODE_LINEAR,	0));
radeon_ring_write(ring,	lower_32_bits(gpu_addr));
radeon_ring_write(ring,	upper_32_bits(gpu_addr));
radeon_ring_write(ring,	1);	/*	number	of	DWs	to	follow	*/
radeon_ring_write(ring,	0xDEADBEEF);

DOUBLE	IT	UP

So	I	tried	queuing	two	writes	instead:

Now	it	writes...	1	to	the	first	destination?

radeon_ring_write(ring,	SDMA_PACKET(SDMA_OPCODE_WRITE,
																								SDMA_WRITE_SUB_OPCODE_LINEAR,	0));
radeon_ring_write(ring,	lower_32_bits(gpu_addr));
radeon_ring_write(ring,	upper_32_bits(gpu_addr));
radeon_ring_write(ring,	1);	/*	number	of	DWs	to	follow	*/
radeon_ring_write(ring,	0xDEADBEEF);																							<--	What	it	*should*
radeon_ring_write(ring,	SDMA_PACKET(SDMA_OPCODE_WRITE,									write
																								SDMA_WRITE_SUB_OPCODE_LINEAR,	0));
radeon_ring_write(ring,	lower_32_bits(gpu_addr2));
radeon_ring_write(ring,	upper_32_bits(gpu_addr2));
radeon_ring_write(ring,	1);	/*	number	of	DWs	to	follow	*/		<--	What	it	writes
radeon_ring_write(ring,	0x0BADF00D);

SDMA:	OFF-BY-FOUR

Linear	writes	from	the	ring	start	4	words	too	late	in	the	ring

IBs	work	fine,	only	the	ring	is	broken

Workaround:	use	FILL	opcode	instead:

radeon_ring_write(ring,	SDMA_PACKET(SDMA_OPCODE_CONSTANT_FILL,	0,
																								SDMA_CONSTANT_FILL_EXTRA_SIZE(2)));
radeon_ring_write(ring,	lower_32_bits(gpu_addr2));
radeon_ring_write(ring,	upper_32_bits(gpu_addr2));
radeon_ring_write(ring,	0xDEADBEEF);	/*	Fill	value	*/
radeon_ring_write(ring,	4);	/*	number	of	bytes	*/

STILL	NO	WORKY

Can't	write	to	pagetable	config	registers	via	GPU	commands	:(

Linux	uses	this	to	configure	pagetables

Special	register	firewall	in	Liverpool?	Security?

Workaround	by	directly	writing	from	CPU,	but	it	sucks

Maybe	the	register	firewall	is	in	the	firmware?

SPEAKING	OF	FIRMWARE

The	Command	Processor	blocks	require	“microcode”

Thus	far	undocumented

We	pull	the	firmware	blobs	from	FreeBSD	in	ps4-kexec	and	pass	them	in	initramfs	(avoids
redistribution	issues)

Let's	dig	deeper

REVERSING	CPU	ARCHITECTURES	101

1.	 Guess	an	instruction
2.	 Try	running	it
3.	 See	what	it	did
4.	 GOTO	1
We	can	upload	custom	F32	firmware	easily	and	have	it	write	to	scratch	regs,	then	read	what	it	wrote

The	basic	"write	to	GPU	reg"	instruction	is	easy	to	find	from	GPU	register	offsets,	in	the	microcode
blobs

F32DIS

Disassembler	for	the	AMD	proprietary	‘F32’	GPU	microcode

Instruction	syntax	shamelessly	stolen	from	ARM

Not	complete,	but	disassembles	all	instructions	used	in	Liverpool	and	Bonaire	firmwares	for	PFP,
ME,	CE,	MEC,	RLC

CLEAR_STATE:
		5e		cc800000	|	stw	r2,	[r0,	#0x0]
		5f		cc400000	|	stw	r1,	[r0,	#0x0]
		60		cc000016	|	stw	r0,	[r0,	#0x16]
		61		80000672	|	b	0x672		

INDEX_BUFFER_SIZE:
		62		cc40002d	|	stw	r1,	[r0,	#0x2d]
		63		7c408001	|	mov	r2,	r1
		64		88000000	|	btab

ALAS

Register	blocking	not	in	the	firmware

It	seems	it	is	blocked	in	hardware,	when	issued	from	GFX	block	(debug	registers	show	an	access
violation)

Haven't	found	how	to	turn	it	off	yet

3D	does	work	with	the	CPU	write	workaround,	though!

CURRENT	CHECKLIST

✓	IRQs	/	Timer
✓	Serial	port
✓	Shutdown	/	reboot
✓	Power	button
✓	USB
✓	HDD
✓	Blu-Ray
✓	WiFi
✓	Bluetooth 	

✓	Ethernet	(mostly)
✓	Framebuffer	/	KMS
✓	HDMI	(basic)
✓	3D	(with	ugly	hack)
✓	S/PDIF	audio

✗	HDMI	audio
✗	RTC

✓	Blinkenlights

CODE

kexec	and	hardware	reconfiguration	/	"bootloader"	code

Kernel	tree

Userspace	library	patches

f32dis	and	RAI	tools

github.com/fail0verflow/ps4-kexec

github.com/fail0verflow/ps4-linux

github.com/fail0verflow/ps4-radeon-patches

github.com/fail0verflow/radeon-tools

https://github.com/fail0verflow/ps4-kexec
https://github.com/fail0verflow/ps4-linux
https://github.com/fail0verflow/ps4-radeon-patches
https://github.com/fail0verflow/radeon-tools

	·	http://fail0verflow.com @fail0verflow

http://fail0verflow.com/
http://twitter.com/@fail0verflow

DEMO	TIME!

Well...

