
Move	stuff	between	these	two	containers.	Note	how	the	stuff	gets	inserted	near	the	mouse
pointer?	Great	stuff.

You	can	move	these	elements	between
these	two	containers

Moving	them	anywhere	else	isn't	quite
possible

Anything	can	be	moved	around.	That
includes	images,	links,	or	any	other
nested	elements.

(You	can	still	click	on	links,	as	usual!)

There's	also	the	possibility	of	moving
elements	around	in	the	same	container,
changing	their	position

This	is	the	default	use	case.	You	only	need
to	specify	the	containers	you	want	to	use

More	interactive	use	cases	lie	ahead

Moving	<input/>	elements	works	just
fine.	You	can	still	focus	them,	too.

See?

Make	sure	to	check	out	the
documentation	on	GitHub!

						
dragula([document.getElementById(left),	document.getElementById(right)]);
						
				

There	are	plenty	of	events	along	the	lifetime	of	a	drag	event.	Check	out	all	of	them	in	the	docs!

As	soon	as	you	start	dragging	an	element,
a	drag	event	is	fired

Whenever	an	element	is	cloned	because
copy:	true,	a	cloned	event	fires

The	shadow	event	fires	whenever	the
placeholder	showing	where	an	element
would	be	dropped	is	moved	to	a	different
container	or	position

A	drop	event	is	fired	whenever	an
element	is	dropped	anywhere	other	than
its	origin	(where	it	was	initially	dragged
from)

If	the	element	gets	removed	from	the
DOM	as	a	result	of	dropping	outside	of
any	containers,	a	remove	event	gets	fired

A	cancel	event	is	fired	when	an	element
would	be	dropped	onto	an	invalid	target,
but	retains	its	original	placement	instead

The	over	event	fires	when	you	drag
something	over	a	container,	and	out	fires
when	you	drag	it	away	from	the	container

Lastly,	a	dragend	event	is	fired	whenever
a	drag	operation	ends,	regardless	of
whether	it	ends	in	a	cancellation,	removal,
or	drop

						
dragula([document.getElementById(left),	document.getElementById(right)])
		.on('drag',	function	(el)	{
				el.className	=	el.className.replace('ex-moved',	'');
		}).on('drop',	function	(el)	{
				el.className	+=	'	ex-moved';
		}).on('over',	function	(el,	container)	{
				container.className	+=	'	ex-over';
		}).on('out',	function	(el,	container)	{
				container.className	=	container.className.replace('ex-over',	'');
		});
						
				

Need	to	be	able	to	quickly	delete	stuff	when	it	spills	out	of	the	chosen	containers?	Note	how	you
can	easily	sort	the	items	in	any	containers	by	just	dragging	and	dropping.

Anxious	Cab	Driver

Thriving	Venture

Such	a	good	blog

Calm	Clam

Banana	Boat

Orange	Juice

Cuban	Cigar

Terrible	Comedian

						
dragula([document.getElementById(single)],	{
		removeOnSpill:	true
});
						
				

By	default,	dropping	an	element	outside	of	any	known	containers	will	keep	the	element	in	the
last	place	it	went	over.	You	can	make	elements	go	back	to	origin	if	they're	dropped	outside	of
known	containers,	too.

Moving	items	between	containers	works
as	usual

If	you	try	to	drop	an	item	outside	of	any
containers,	though,	it'll	retain	its	original
position

When	that	happens,	a	cancel	event	will
be	raised

Note	that	the	dragged	element	will	go	back
to	the	place	you	originally	dragged	it	from,
even	if	you	move	it	over	other	containers

This	is	useful	if	you	want	to	ensure	drop
events	only	happen	when	the	user	intends
for	them	to	happen	explicitly,	avoiding
surprises

						
dragula([document.getElementById(left),	document.getElementById(right)],	{
		revertOnSpill:	true
});
						
				

Copying	stuff	is	common	too,	so	we	made	it	easy	for	you.

When	elements	are	copyable,	they	can't	be
sorted	in	their	origin	container

Copying	prevents	original	elements	from
being	dragged.	A	copy	gets	created	and
that	gets	dragged	instead

Whenever	that	happens,	a	cloned	event
is	raised

Note	that	the	clones	get	destroyed	if
they're	not	dropped	into	another
container

You'll	be	dragging	a	copy,	so	when	they're
dropped	into	another	container	you'll	see
the	duplication.

						
dragula([document.getElementById(left),	document.getElementById(right)],	{
		copy:	true
});
						
				

Copying	stuff	from	only	one	of	the	containers	and	sorting	on	the	other	one?	No	problem!

When	elements	are	copyable,	they	can't	be
sorted	in	their	origin	container

Copying	prevents	original	elements	from
being	dragged.	A	copy	gets	created	and
that	gets	dragged	instead

Whenever	that	happens,	a	cloned	event
is	raised

Note	that	the	clones	get	destroyed	if
they're	not	dropped	into	another
container

You'll	be	dragging	a	copy,	so	when	they're
dropped	into	another	container	you'll	see
the	duplication.

						
dragula([document.getElementById(left),	document.getElementById(right)],	{
		copy:	function	(el,	source)	{
				return	source	===	document.getElementById(left)
		},
		accepts:	function	(el,	target)	{
				return	target	!==	document.getElementById(left)
		}
});
						
				

Drag	handles	float	your	cruise?

+ Move	me,	but	you	can	use	the	plus	sign
to	drag	me	around.

+ Note	that	handle	element	in	the
moves	handler	is	just	the	original	event
target.

+ This	might	also	be	useful	if	you	want
multiple	children	of	an	element	to	be	able
to	trigger	a	drag	event.

+ You	can	also	use	the	moves	option	to
determine	whether	an	element	can	be
dragged	at	all	from	a	container,	drag
handle	or	not.

						
dragula([document.getElementById(left),	document.getElementById(right)],	{
		moves:	function	(el,	container,	handle)	{
				return	handle.classList.contains('handle');
		}
});
						
				

There	are	a	few	similar	mechanisms	to	determine	whether	an	element	can	be	dragged	from	a
certain	container	(moves),	whether	an	element	can	be	dropped	into	a	certain	container	at	a
certain	position	(accepts),	and	whether	an	element	is	able	to	originate	a	drag	event
(invalid).

Click	or	Drag!	Fires	a	click	when	the	mouse	button	is	released	before	a	mousemove	event,
otherwise	a	drag	event	is	fired.	No	extra	configuration	is	necessary.

Clicking	on	these	elements	triggers	a	regular	click	event	you	can	listen	to.

Try	dragging	or	clicking	on	this	element.

Note	how	you	can	click	normally?

Drags	don't	trigger	click	events.

Clicks	don't	end	up	in	a	drag,	either.

This	is	useful	if	you	have	elements	that	can	be	both	clicked	or	dragged.

						
								dragula([document.getElementById(container)]);
						
				

Who	couldn't	love	a	pun	that	good?	—	The	Next	Web

Get	it	on	GitHub!	bevacqua/dragula

Drag	and	drop	so	simple	it	hurts Join	us	on	Slack

https://github.com/bevacqua/dragula
https://github.com/bevacqua/dragula
https://github.com/bevacqua/dragula#readme
https://github.com/bevacqua/dragula#drakeon-events
http://ponyfoo.com/
https://github.com/bevacqua/dragula#optionsmoves
https://github.com/bevacqua/dragula#optionsaccepts
https://github.com/bevacqua/dragula#optionsinvalid
http://thenextweb.com/dd/2015/07/20/less-of-a-drag-maaaaaaaan
https://github.com/bevacqua/dragula
https://dragula-slackin.herokuapp.com/

