
Contents

1	How	Courgette	works
2	Compiled	code
3	More	than	one	executable,	less	than	an
executable
4	Source	Code
5	Summary

The	Chromium	Projects
Home
Chromium
Chromium	OS

Quick	links
Report	bugs
Discuss
Mappa	del	sito

Other	sites
Chromium	Blog
Google	Chrome
Extensions
Google	Chrome	Frame

Except	as	otherwise	noted,	the
content	of	this	page	is	licensed
under	a	Creative	Commons
Attribution	2.5	license,	and
examples	are	licensed	under
the	BSD	License.

For	Developers 	>	 Design	Documents 	>	
Software	Updates:	Courgette

How	Courgette	works

As	I	described	in	Smaller	is	faster	(and	safer	too),	we	wrote	a	new	differential	compression	algorithm	for	making	Google	Chrome	updates
significantly	smaller.

We	want	smaller	updates	because	it	narrows	the	window	of	vulnerability.		If	the	update	is	a	tenth	of	the	size,	we	can	push	ten	times	as	many
per	unit	of	bandwidth.		We	have	enough	users	that	this	means	more	users	will	be	protected	earlier.		A	secondary	benefit	is	that	a	smaller
update	will	work	better	for	users	who	don't	have	great	connectivity.

Rather	than	push	put	a	whole	new	10MB	update,	we	send	out	a	diff	that	takes	the	previous	version	of	Google	Chrome	and	generates	the	new
version.		We	tried	several	binary	diff	algorithms	and	have	been	using	bsdiff	up	until	now.		We	are	big	fans	of	bsdiff	-	it	is	small	and	worked	better
than	anything	else	we	tried.

But	bsdiff	was	still	producing	diffs	that	were	bigger	than	we	felt	were	necessary.		So	we	wrote	a	new	diff	algorithm	that	knows	more	about	the	kind	of	data	we	are	pushing	-	large	files
containing	compiled	executables.		Here	are	the	sizes	in	bytes	for	the	recent	190.1->190.4	update	on	the	developer	channel:

Full	update 10,385,920
bsdiff	update 				704,512
Courgette	update 						78,848

The	small	size	in	combination	with	Google	Chrome's	silent	update	means	we	can	update	as	often	as	necessary	to	keep	users	safe.

Compiled	code

The	problem	with	compiled	applications	is	that	even	a	small	source	code	change	causes	a	disproportional	number	of	byte	level	changes.		When	you	add	a	few	lines	of	code,	for	example,	a
range	check	to	prevent	a	buffer	overrun,	all	the	subsequent	code	gets	moved	to	make	room	for	the	new	instructions.		The	compiled	code	is	full	of	internal	references	where	some	instruction
or	datum	contains	the	address	(or	offset)	of	another	instruction	or	datum.		It	only	takes	a	few	source	changes	before	almost	all	of	these	internal	pointers	have	a	different	value,	and	there	are	a
lot	of	them	-	roughly	half	a	million	in	a	program	the	size	of	chrome.dll.

The	source	code	does	not	have	this	problem	because	all	the	entities	in	the	source	are	symbolic.	Functions	don't	get	committed	to	a	specific	address	until	very	late	in	the	compilation	process,
during	assembly	or	linking.		If	we	could	step	backwards	a	little	and	make	the	internal	pointers	symbolic	again,	could	we	get	smaller	updates?

Courgette	uses	a	primitive	disassembler	to	find	the	internal	pointers.		The	disassembler	splits	the	program	into	three	parts:	a	list	of	the	internal	pointer's	target	addresses,	all	the	other	bytes,
and	an	'instruction'	sequence	that	determines	how	the	plain	bytes	and	the	pointers	need	to	be	interleaved	and	adjusted	to	get	back	the	original	input.		We	call	this	an	'assembly	language'
because	we	can	run	an	'assembler'	to	process	the	instructions	and	emit	a	sequence	of	bytes	to	recover	the	original	file.

The	non-pointer	part	is	about	80%	of	the	size	of	the	original	program,	and	because	it	does	not	have	any	pointers	mixed	in,	it	tends	to	be	well	behaved,	having	a	diff	size	that	is	in	line	with	the
changes	in	the	source	code.		Simply	converting	the	program	into	the	assembly	language	form	makes	the	diff	produced	by	bsdiff	about	30%	smaller.

We	bring	the	pointers	under	control	by	introducing	'labels'	for	the	addresses.		The	addresses	are	stored	in	an	array	and	the	list	of	pointers	is	replaced	by	a	list	of	array	indexes.		The	array	is	a
primitive	'symbol	table',	where	the	names	of	the	symbols,	or	'labels'	are	the	integer	indexes	into	the	array.		What	we	get	from	the	symbol	table	is	a	degree	of	freedom	in	how	we	express	the
program.		We	can	move	the	addresses	around	in	the	array	provided	we	make	the	corresponding	changes	to	the	list	of	indexes.

How	do	we	use	this	to	generate	a	better	diff?		With	bsdiff	we	would	compute	the	new	file,	'update'	from	the	'original'	like	this:

				server:
								diff	=	bsdiff(original,	update)
								transmit	diff

				client:
								receive	diff
								update	=	bspatch(original,	diff)

(The	server	would	pre-compute	diff	so	that	it	could	be	transmitted	immediately)

Courgette	transforms	the	program	into	the	primitive	assembly	language	and	does	the	diffing	at	the	assembly	level:

				server:
								asm_old	=	disassemble(original)
								asm_new	=	disassemble(update)
								asm_new_adjusted	=	adjust(asm_new,	asm_old)
								asm_diff	=	bsdiff(asm_old,	asm_new_adjusted)
								transmit	asm_diff

				client:
								receive	asm_diff
								asm_old	=	disassemble(original)
								asm_new_adjusted	=	bspatch(asm_old,	asm_diff)
								update	=	assemble(asm_new_adjusted)

The	special	sauce	is	the	adjust	step.		Courgette	moves	the	addresses	within	the	asm_new	symbol	table	to	minimize	the	size	of	asm_diff.		Addresses	in	the	two	symbol	tables	are	matched	on
their	statistical	properties	which	ensures	the	index	lists	have	many	long	common	substrings.		The	matching	does	not	use	any	heuristics	based	on	the	surrounding	code	or	debugging
information	to	align	the	addresses.

More	than	one	executable,	less	than	an	executable

For	the	above	to	work,	'assemble'	and	'disassemble'	have	to	be	strict	inverses,	and	'original'	and	'update'	have	to	be	single	well-formed	executable	files.		It	is	much	more	useful	if	'original'	and
'update'	can	contain	several	executables	as	well	as	a	lot	of	non-compiled	files	like	JavaScript	and	PNG	images.		For	Google	Chrome,	the	'original'	and	'update'	are	an	archive	file	containing
all	the	files	needed	to	install	and	run	the	browser.

We	can	think	of	a	differential	update	as	a	prediction	followed	by	a	correction,	a	kind	of	guessing	game.		In	its	simplest	form	(just	bsdiff	/	bspatch),	the	client	has	only	a	dumb	guess,	'original',
so	the	server	sends	a	binary	diff	to	correct	'original'	to	the	desired	answer,	'update'.		Now	what	if	the	server	could	pass	a	hint	that	could	be	used	to	generate	a	better	guess,	but	we	are	not
sure	the	guess	will	be	useful?		We	could	insure	against	losing	information	by	using	the	original	and	the	guess	together	as	the	basis	for	the	diff:

				server:
								hint	=	make_hint(original,	update)
								guess	=	make_guess(original,	hint)
								diff	=	bsdiff(concat(original,	guess),	update)
								transmit	hint,	diff

				client
								receive	hint,	diff
								guess	=	make_guess(original,	hint)
								update	=	bspatch(concat(original,	guess),	diff)

This	system	has	some	interesting	properties.		If	the	guess	is	the	empty	string,	then	we	have	the	same	diff	as	with	plain	bsdiff.		If	the	guess	is	perfect,	the	diff	will	be	tiny,	simply	a	directive	to
copy	the	guess.

Between	the	extremes,	the	guess	could	be	a	perfect	subset	of	'update'.		Then	bsdiff	will	construct	a	diff	that	mostly	takes	material	from	the	perfect	prediction	and	the	original	to	construct	the
update.		This	is	how	Courgette	deals	with	inputs	like	tar	files	containing	both	executable	files	and	other	files.		The	hint	is	the	location	of	the	embedded	executables	together	with	the	asm_diff
for	each	one.

Once	we	have	this	prediction	/	correction	scheme	in	place	we	can	use	it	to	reduce	the	amount	of	work	that	the	client	needs	to	do.		Executables	often	have	large	regions	that	do	not	contain
internal	pointers,	like	the	resource	section	which	usually	contains	string	tables	and	various	visual	elements	like	icons	and	bitmaps.		The	disassembler	generates	an	assembly	language
program	which	pretty	much	says	'here	is	a	big	chunk	of	constant	data',	where	the	data	is	identical	to	the	original	file.		bsdiff	then	generates	a	diff	for	the	constant	data.		We	can	get
substantially	the	same	effect	by	omitting	the	pointer-free	regions	from	the	disassembly	and	letting	the	final	diff	do	the	work.

Source	Code

Everyone	loves	source,	so	you	can	find	it	here:
https://chromium.googlesource.com/chromium/src/courgette/+/master

Summary

Courgette	transforms	the	input	into	an	alternate	form	where	binary	diffing	is	more	effective,	does	the	differential	compression	in	the	transformed	space,	and	inverts	the	transform	to	get	the
patched	output	in	the	original	format.		With	careful	choice	of	the	alternate	format	we	can	get	substantially	smaller	updates.

We	are	writing	a	more	detailed	paper	on	Courgette	and	will	post	an	update	when	it	is	ready.

Sign	in | Recent	Site	Activity | Report	Abuse | Print	Page | Powered	By 	Google	Sites

Search	this	site

Comments

You	do	not	have	permission	to	add	comments.

https://www.chromium.org/developers/design-documents/software-updates-courgette#TOC-How-Courgette-works
https://www.chromium.org/developers/design-documents/software-updates-courgette#TOC-Compiled-code
https://www.chromium.org/developers/design-documents/software-updates-courgette#TOC-More-than-one-executable-less-than-an-executable
https://www.chromium.org/developers/design-documents/software-updates-courgette#TOC-Source-Code
https://www.chromium.org/developers/design-documents/software-updates-courgette#TOC-Summary
https://www.chromium.org/
https://www.chromium.org/chromium-projects
https://www.chromium.org/Home
https://www.chromium.org/chromium-os
http://www.chromium.org/for-testers/bug-reporting-guidelines
http://www.chromium.org/developers/discussion-groups
https://www.chromium.org/system/app/pages/sitemap/hierarchy
http://blog.chromium.org/
http://code.google.com/chrome/extensions/
https://developers.google.com/chrome/chrome-frame/
http://developers.google.com/site-policies.html#restrictions
http://creativecommons.org/licenses/by/2.5/
http://src.chromium.org/viewvc/chrome/trunk/src/LICENSE
https://www.chromium.org/developers
https://www.chromium.org/developers/design-documents
http://blog.chromium.org/2009/07/smaller-is-faster-and-safer-too.html
http://www.daemonology.net/bsdiff/
https://chromium.googlesource.com/chromium/src/courgette/+/master
https://www.google.com/a/UniversalLogin?continue=https://sites.google.com/a/chromium.org/dev/developers/design-documents/software-updates-courgette&service=jotspot
https://www.chromium.org/system/app/pages/recentChanges
https://sites.google.com/a/chromium.org/dev/system/app/pages/reportAbuse
javascript:;
http://sites.google.com/

