
Rust	 	Emacs

rust emacs

admin Remove	more	traces	of	unused	gnulib	modules. an	hour	ago

build-aux Merge	https://git.savannah.gnu.org/git/emacs	into	rollup 3	days	ago

doc Merge	https://git.savannah.gnu.org/git/emacs	into	rollup 3	days	ago

etc Merge	https://git.savannah.gnu.org/git/emacs	into	rollup 3	days	ago

leim More	remacs	renaming	and	packaging	path	fixups 6	months	ago

lib-src Handle	remaining	warnings. 3	days	ago

lib Remove	more	traces	of	unused	gnulib	modules. an	hour	ago

lisp Merge	https://git.savannah.gnu.org/git/emacs	into	rollup 3	days	ago

lwlib Merge	https://git.savannah.gnu.org/git/emacs	into	rollup 3	days	ago

m4 Remove	more	traces	of	unused	gnulib	modules. an	hour	ago

modules Integrate	module	test	with	normal	test	suite 3	months	ago

nextstep Merge	emacs/master	into	master 6	months	ago

nt Remove	more	traces	of	unused	gnulib	modules. an	hour	ago

oldXMenu Merge	https://git.savannah.gnu.org/git/emacs	into	rollup 3	days	ago

rust_src Merge	pull	request	#234	from	Wilfred/floatfns 41	seconds	ago

src Merge	pull	request	#234	from	Wilfred/floatfns 41	seconds	ago

test Fixup	tramp	test	to	work	with	a	strict	POSIX	shell. 3	days	ago

.dir-locals.el *	.dir-locals.el	(c-noise-macro-names):	Remove	NONVOLATILE. 11	months	ago

.dockerignore Add	docker	environment a	month	ago

.gitattributes Update	.gitattributes	to	match	sources	better 2	months	ago

.gitignore Merge	https://git.savannah.gnu.org/git/emacs	into	rollup 3	days	ago

.gitlab-ci.yml ;	Spelling	fix 2	months	ago

.travis.sh updated	travis	to	format	remacs-macros	and	updated	README 27	days	ago

.travis.yml Explicitly	pin	a	rustfmt	version 29	days	ago

CONTRIBUTING.md Mention	@birkenfeld 8	days	ago

COPYING Restore	files	that	I	seem	to	have	mistakenly	deleted. 7	years	ago

Dockerfile Add	docker	environment a	month	ago

GNUmakefile Merge	from	origin/emacs-25 7	months	ago

INSTALL Merge	https://git.savannah.gnu.org/git/emacs	into	rollup 3	days	ago

INSTALL.REPO ;	INSTALL.REPO:	Mention	cases	that	'make	bootstrap'	can't	handle	(Bug… 2	months	ago

Makefile.in Merge	https://git.savannah.gnu.org/git/emacs	into	rollup 3	days	ago

README Merge	https://git.savannah.gnu.org/git/emacs	into	rollup 3	days	ago

README.md Highlight	bash	comments	[ci	skip] 11	hours	ago

REMACS_COMPATIBILITY.md Mention	MS-DOS	in	compatibility	docs	[ci	skip] 5	months	ago

autogen.sh Merge	https://git.savannah.gnu.org/git/emacs	into	rollup 3	days	ago

configure.ac Merge	https://git.savannah.gnu.org/git/emacs	into	rollup 3	days	ago

docker-compose.yml Add	docker	environment a	month	ago

make-dist Merge	https://git.savannah.gnu.org/git/emacs	into	rollup 3	days	ago

Wilfred / remacs

	Code 	Issues	 22 	Pull	requests	 3 	Projects	 0 Insights	

Join	GitHub	today
GitHub	is	home	to	over	20	million	developers	working	together	to	host	and

review	code,	manage	projects,	and	build	software	together.

Dismiss

Sign	up

	130,435	commits 	6	branches 	0	releases 	540	contributors 	GPL-3.0

Clone	or	download	Find	file	master	 New	pull	request

Latest	commit	f6c81e1	41	seconds	ago	birkenfeld	committed	on	GitHub	Merge	pull	request	#234	from	Wilfred/floatfns	 …

	README.md

Rust	 	Emacs
chatchat on	gitteron	gitter 	 buildbuild passingpassing

A	community-driven	port	of	Emacs	to	Rust.

GPLv3	license.

Table	of	Contents

Rust	 	Emacs
Why	Emacs?

Why	Rust?

Why	A	Fork?

Getting	Started
Requirements

Building	Remacs

Running	Remacs

Rustdoc	builds

Porting	Elisp	Primitive	Functions:	Walkthrough
Porting	Widely	Used	C	Functions

Design	Goals

Non-Design	Goals

Contributing

Help	Needed

Rust	Porting	Tips
C	Functions

C	Macros

Assertions

Safety

Why	Emacs?

Emacs	will	change	how	you	think	about	programming.

Emacs	is	totally	introspectable.	You	can	always	find	out	'what	code	runs	when	I	press	this	button?'.

Emacs	is	an	incremental	programming	environment.	There's	no	edit-compile-run	cycle.	There	isn't	even	an	edit-run	cycle.
You	can	execute	snippets	of	code	and	gradually	turn	them	into	a	finished	project.	There's	no	distinction	between	your	editor
and	your	interpreter.

Emacs	is	a	mutable	environment.	You	can	set	variables,	tweak	functions	with	advice,	or	redefine	entire	functions.	Nothing	is
off-limits.

Emacs	provides	functionality	without	applications.	Rather	than	separate	applications,	functionality	is	all	integrated	into
your	Emacs	instance.	Amazingly,	this	works.	Ever	wanted	to	use	the	same	snippet	tool	for	writing	C++	classes	as	well	as
emails?

Emacs	is	full	of	incredible	software	concepts	that	haven't	hit	the	mainstream	yet.	For	example:

Many	platforms	have	a	single	item	clipboard.	Emacs	has	an	infinite	clipboard.
If	you	undo	a	change,	and	then	continue	editing,	you	can't	redo	the	original	change.	Emacs	allows	undoing	to	any
historical	state,	even	allowing	tree-based	exploration	of	history.
Emacs	supports	a	reverse	variable	search:	you	can	find	variables	with	a	given	value.
You	can	perform	structural	editing	of	code,	allowing	you	to	make	changes	without	breaking	syntax.	This	works	for	lisps
(paredit)	and	non-lisps	(smartparens).

Many	applications	use	a	modal	GUI:	for	example,	you	can't	do	other	edits	during	a	find-and-replace	operation.	Emacs
provides	recursive	editing	that	allow	you	to	suspend	what	you're	currently	doing,	perform	other	edits,	then	continue	the
original	task.

Emacs	has	a	documentation	culture.	Emacs	includes	a	usage	manual,	a	lisp	programming	manual,	pervasive	docstrings
and	even	an	interactive	tutorial.

Emacs	has	a	broad	ecosystem.	If	you	want	to	edit	code	in	a	niche	language,	there's	probably	an	Emacs	package	for	it.

Emacs	doesn't	have	a	monopoly	on	good	ideas,	and	there	are	other	great	tools	out	there.	Nonetheless,	we	believe	the
Emacs	learning	curve	pays	off.

Why	Rust?

Rust	is	a	great	alternative	to	C.

Rust	has	a	fantastic	learning	curve.	The	documentation	is	superb,	and	the	community	is	very	helpful	if	you	get	stuck.

Rust	has	excellent	tooling.	The	compiler	makes	great	suggestions,	the	unit	test	framework	is	good,	and		rustfmt		helps
ensure	formatting	is	beautiful	and	consistent.

The	Rust	packaging	story	is	excellent.	It's	easy	to	reuse	the	great	libraries	available,	and	just	as	easy	to	factor	out	code	for
the	benefit	of	others.	We	can	replace	entire	C	files	in	Emacs	with	well-maintained	Rust	libraries.

Code	written	in	Rust	easily	interoperates	with	C.	This	means	we	can	port	to	Rust	incrementally,	and	having	a	working
Emacs	at	each	step	of	the	process.

Rust	provides	many	compile-time	checks,	making	it	much	easier	to	write	fast,	correct	code	(even	when	using
multithreading).	This	also	makes	it	much	easier	for	newcomers	to	contribute.

Give	it	a	try.	We	think	you'll	like	it.

Why	A	Fork?

Emacs	is	a	widely	used	tool	with	a	long	history,	broad	platform	support	and	strong	backward	compatibility	requirements.	The
core	team	is	understandably	cautious	in	making	far-reaching	changes.

Forking	is	a	longstanding	tradition	in	the	Emacs	community	for	trying	different	approaches.	Notable	Emacs	forks	include
XEmacs,	Guile	Emacs,	and	emacs-jit.

There	have	also	been	separate	elisp	implementations,	such	as	Deuce,	JEmacs	and	El	Compilador.

By	forking,	we	can	explore	new	development	approaches.	We	can	use	a	pull	request	workflow	with	integrated	CI.

We	can	drop	legacy	platforms	and	compilers.	Remacs	will	never	run	on	MS-DOS,	and	that's	OK.

There's	a	difference	between	the	idea	of	Emacs	and	the	current	implementation	of	Emacs.	Forking	allows	us	to	explore
being	even	more	Emacs-y.

Getting	Started

Requirements

1.	 You	will	need	Rust	installed.	If	you're	on	macOS,	you	will	need	Rust	nightly.

2.	 You	will	need	a	C	compiler	and	toolchain.	On	Linux,	you	can	do	something	like		apt-get	install	build-essential
automake	.	On	macOS,	you'll	need	Xcode.

3.	 You	will	need	some	C	libraries.	On	Linux,	you	can	install	everything	you	need	with:

	apt-get	install	texinfo	libjpeg-dev	libtiff-dev	\
			libgif-dev	libxpm-dev	libgtk-3-dev	libgnutls-dev	\
			libncurses5-dev	libxml2-dev

On	macOS,	you'll	need	libxml2	(via		xcode-select	--install)	and	gnutls	(via		brew	install	gnutls).

Dockerized	development	environment

If	you	don't	want	to	bother	with	the	above	setup	you	can	use	the	provided	docker	environment.	Make	sure	you	have	docker
1.12+	and	docker-compose	1.8+	available.

To	spin	up	the	environment	run

docker-compose	up	-d

First	time	you	run	this	command	docker	will	build	the	image.	After	that	any	subsequent	startups	will	happen	in	less	than	a
second.

The	working	directory	with	remacs	will	be	mounted	under	the	same	path	in	the	container	so	editing	the	files	on	your	host
machine	will	automatically	be	reflected	inside	the	container.	To	build	remacs	use	the	steps	from	Building	Remacs	prefixed
with		docker-compose	exec	remacs	,	this	will	ensure	the	commands	are	executed	inside	the	container.

Building	Remacs

$./autogen.sh
$./configure	--enable-rust-debug
$	make

For	a	release	build,	don't	pass		--enable-rust-debug	.

The	Makefile	obeys	cargo's	RUSTFLAGS	variable	and	additional	options	can	be	passed	to	cargo	with	CARGO_FLAGS.

For	example:

$	make	CARGO_FLAGS="-vv"	RUSTFLAGS="-Zunstable-options	--pretty"

Running	Remacs

You	can	now	run	your	shiny	new	Remacs	build!

#	Using	-q	to	ignore	your	.emacs.d,	so	Remacs	starts	up	quickly.
#	RUST_BACKTRACE	is	optional,	but	useful	if	your	instance	crashes.
$	RUST_BACKTRACE=1	src/remacs	-q

Rustdoc	builds

You	can	use	rustdoc	to	generate	API	docs:

#	http://stackoverflow.com/a/39374515/509706
$	cargo	rustdoc	--	\
				--no-defaults	\
				--passes	strip-hidden	\
				--passes	collapse-docs	\
				--passes	unindent-comments	\
				--passes	strip-priv-imports

You	can	then	open	these	docs	with:

$	cargo	doc	--open

Porting	Elisp	Primitive	Functions:	Walkthrough

Let's	look	at	porting		numberp		to	Rust.

First,	make	sure	you	have	configured	and	built	Remacs	on	your	system.	You'll	probably	want	to	generate	TAGS	too,	so	you
can	jump	to	definitions	of	C	functions.

Emacs	C	uses	a	lot	of	macros,	so	it's	also	useful	to	look	at	the	expanded	version	of	the	code.

Define	a	little	file		src/dummy.c		with	the	C	source	of		numberp	,	along	with	the		lisp.h		header	file:

#include	"lisp.h"

DEFUN	("numberp",	Fnumberp,	Snumberp,	1,	1,	0,
							doc:	/*	Return	t	if	OBJECT	is	a	number	(floating	point	or	integer).		*/
							attributes:	const)
		(Lisp_Object	object)
{
		if	(NUMBERP	(object))
				return	Qt;
		else
				return	Qnil;
}

Then	expand	it	with	GCC:

$	cd	/path/to/remacs
$	gcc	-Ilib	-E	src/dummy.c	>	dummy_exp.c

This	gives	us	a	file	that	ends	with:

static	struct	Lisp_Subr
#	3	"src/dummy.c"	3	4
_Alignas
#	3	"src/dummy.c"
(8)	Snumberp	=	{	{	PVEC_SUBR	<<	PSEUDOVECTOR_AREA_BITS	},	{	.a1	=	Fnumberp	},	1,	1,	"numberp",	0,	0};	Lisp_Object	Fnumberp

		(Lisp_Object	object)
{
		if	(NUMBERP	(object))
				return	Qt;
		else
				return	builtin_lisp_symbol	(0);
}

We	can	see	we	need	to	define	a		Snumberp		and	a		Fnumberp	.	We	define	a		numberp		function	that	does	the	actual	work,
then	use	an	attribute	(implemented	as	a	procedural	macro)	named		lisp_fn		that	handles	these	definitions	for	us:

//	This	is	the	function	that	gets	called	when
//	we	call	numberp	in	elisp.
//
//	`lisp_fn`	defines	a	wrapper	function	that	calls	numberp	with
//	LispObject	values.	It	also	declares	a	struct	that	we	can	pass	to
//	defsubr	so	the	elisp	interpreter	knows	about	this	function.

///	Return	t	if	OBJECT	is	a	number.
#[lisp_fn]
fn	numberp(object:	LispObject)	->	LispObject	{
				LispObject::from_bool(object.is_number())
}

The	elisp	name	of	the	function	is	derived	from	the	Rust	name,	with	underscores	replaced	by	hyphens.	If	that	is	not	possible
(like	for	the	function		+),	you	can	give	an	elisp	name	as	an	argument	to		lisp_fn	,	like		#[lisp_fn(name	=	"+")]	.

Optional	arguments	are	also	possible:	to	make	the	minimum	number	of	arguments	from	elisp	different	from	the	number	of
Rust	arguments,	pass	a		min	=	"n"		argument.

The	docstring	of	the	function	should	be	the	same	as	the	docstring	in	the	C	code.	(Don't	wonder	about	it	being	a	comment
there,	Emacs	has	some	magic	that	extracts	it	into	a	separate	file.)

Finally,	we	need	to	delete	the	old	C	definition	and	call		defsubr		inside		rust_init_syms	:

pub	extern	"C"	fn	rust_init_syms()	{
				unsafe	{
								//	...
								defsubr(&*yourmodule::Snumberp);
				}
}

You're	done!	Compile	Remacs,	try	your	function	with		M-x	ielm	,	and	open	a	pull	request.	Fame	and	glory	await!

Porting	Widely	Used	C	Functions

If	your	Rust	function	replaces	a	C	function	that	is	used	elsewhere	in	the	C	codebase,	you	will	need	to	export	it.	The	wrapper
function	needs	to	be	exported	in	lib.rs:

pub	use	yourmodulename::Fnumberp;

and	add	a	declaration	in	the	C	where	the	function	used	to	be:

//	This	should	take	the	same	number	of	arguments	as	the	Rust	function.
Lisp_Object	Fnumberp(Lisp_Object);

Design	Goals

Compatibility:	Remacs	should	not	break	existing	elisp	code,	and	ideally	provide	the	same	FFI	too.

Similar	naming	conventions:	Code	in	Remacs	should	use	the	same	naming	conventions	for	elisp	namespaces,	to	make
translation	straightforward.

This	means	that	an	elisp	function		do-stuff		will	have	a	corresponding	Rust	function		Fdo_stuff	,	and	a	declaration	struct
	Sdo_stuff	.	A	lisp	variable		do-stuff		will	have	a	Rust	variable		Vdo_stuff		and	a	symbol		'do-stuff		will	have	a	Rust
variable		Qdo_stuff	.

Otherwise,	we	follow	Rust	naming	conventions,	with	docstrings	noting	equivalent	functions	or	macros	in	C.	When
incrementally	porting,	we	may	define	Rust	functions	with	the	same	name	as	their	C	predecessors.

Leverage	Rust	itself:	Remacs	should	make	best	use	of	Rust	to	ensure	code	is	robust	and	performant.

Leverage	the	Rust	ecosystem:	Remacs	should	use	existing	Rust	crates	wherever	possible,	and	create	new,	separate
crates	where	our	code	could	benefit	others.

Great	docs:	Emacs	has	excellent	documentation,	Remacs	should	be	no	different.

Non-Design	Goals

	etags	:	The	universal	ctags	project	supports	a	wider	range	of	languages	and	we	recommend	it	instead.

Contributing

Pull	requests	welcome,	no	copyright	assignment	required.	This	project	is	under	the	Rust	code	of	conduct.

Help	Needed

There's	lots	to	do!	We	keep	a	list	of	low	hanging	fruit	here	so	you	can	easily	choose	one.	If	you	do,	please	open	a	new	issue
to	keep	track	of	the	task	and	link	to	it.

Easy	tasks:

	Find	a	small	function	in	lisp.h	and	write	an	equivalent	in	lisp.rs.
	Improve	our	unit	tests.	Currently	we're	passing		Qnil		to	test	functions,	which	isn't	very	useful.
	Add	docstrings	to	public	functions	in	lisp.rs.
	Tidy	up	messy	Rust	that's	been	translated	directly	from	C.	Run		rustfmt	,	add	or	rename	internal	variables,	run		clippy	,
and	so	on.

	Add	Rust-level	unit	tests	to	elisp	functions	defined	in	lib.rs.

Medium	tasks:

	Choose	an	elisp	function	you	like,	and	port	it	to	rust.	Look	at		rust-mod		for	an	example.
	Teach		describe-function		to	find	functions	defined	in	Rust.
	Expand	our	Travis	configuration	to	run	'make	check',	so	we	know	remacs	passes	Emacs'	internal	test	suite.
	Expand	our	Travis	configuration	to	ensure	that	Rust	code	has	been	formatted	with	rustfmt
	Set	up	bors/homu.
	Set	up	a	badge	tracking	pub	struct/function	coverage	using	cargo-doc-coverage.
	Search	the	Rust	source	code	for		TODO		comments	and	fix	them.
	Teach	Emacs	how	to	jump	to	definition	for	Rust	functions.

Big	tasks:

	Find	equivalent	Rust	libraries	for	parts	of	Emacs,	and	replace	all	the	relevant	C	code.	Rust	has	great	libraries	for	regular
expressions,	GUI,	terminal	UI,	managing	processes,	amongst	others.

	Change	the	elisp	float	representation	to	use	nan	boxing	rather	than	allocating	floats	on	the	heap.

Rust	Porting	Tips

C	Functions

When	writing	a	Rust	version	of	a	C	function,	give	it	the	same	name	and	same	arguments.	If	this	isn't	appropriate,	docstrings
should	say	the	equivalent	C	function	to	help	future	porters.

For	example,		make_natnum		mentions	that	it	can	be	used	in	place	of		XSETFASTINT	.

C	Macros

For	C	macros,	we	try	to	define	a	fairly	equivalent	Rust	function.	The	docstring	should	mention	the	original	macro	name.

Since	the	Rust	function	is	not	a	drop-in	replacement,	we	prefer	Rust	naming	conventions	for	the	new	function.

For	the	checked	arithmetic	macros	(INT_ADD_WRAPV	,		INT_MULTIPLY_WRAPV		and	so	on),	you	can	simply	use
	.checked_add	,		.checked_mul		from	the	Rust	stdlib.

Assertions

	eassert		in	Emacs	C	should	be		debug_assert!		in	Rust.

	emacs_abort()		in	Emacs	C	should	be		panic!("reason	for	panicking")		in	Rust.

Safety

	LispObject		values	may	represent	pointers,	so	the	usual	safety	concerns	of	raw	pointers	apply.

If	you	can	break	memory	safety	by	passing	a	valid	value	to	a	function,	then	it	should	be	marked	as		unsafe	.	For	example:

//	This	function	is	unsafe	because	it's	dereferencing	the	car
//	of	a	cons	cell.	If	`object`	is	not	a	cons	cell,	we'll	dereference
//	an	invalid	pointer.
unsafe	fn	XCAR(object:	LispObject)	->	LispObject	{
				(*XCONS(object)).car
}

//	This	function	is	safe	because	it	preserves	the	contract
//	of	XCAR:	it	only	passes	valid	cons	cells.	We	just	use
//	unsafe	blocks	instead.
fn	car(object:	LispObject)	->	LispObject	{
				if	CONSP(object)	{
								unsafe	{
												XCAR(object)
								}
				}	else	if	NILP(object)	{
								Qnil
				}	else	{
								unsafe	{
												wrong_type_argument(Qlistp,	object)
								}
				}
}

Contact	GitHub	 API	 Training	 Shop	 Blog	 About©	2017	GitHub,	Inc.	 Terms	 Privacy	 Security	 Status	 Help

Features Business Explore Marketplace Pricing This	repository Sign	in	or	Sign	up

98 1,533 111	Watch 	Star 	Fork

https://github.com/search?q=topic%3Arust&type=Repositories
https://github.com/search?q=topic%3Aemacs&type=Repositories
https://github.com/Wilfred/remacs/tree/master/admin
https://github.com/Wilfred/remacs/commit/e9c156ac4da63b1eb48d2632ae25c0868ddf400d
https://github.com/Wilfred/remacs/tree/master/build-aux
https://github.com/Wilfred/remacs/commit/4f155c191490e7efd9b0e425fe2b9bd4175bcf23
https://github.com/Wilfred/remacs/commit/4f155c191490e7efd9b0e425fe2b9bd4175bcf23
https://github.com/Wilfred/remacs/commit/4f155c191490e7efd9b0e425fe2b9bd4175bcf23
https://github.com/Wilfred/remacs/tree/master/doc
https://github.com/Wilfred/remacs/commit/4f155c191490e7efd9b0e425fe2b9bd4175bcf23
https://github.com/Wilfred/remacs/commit/4f155c191490e7efd9b0e425fe2b9bd4175bcf23
https://github.com/Wilfred/remacs/commit/4f155c191490e7efd9b0e425fe2b9bd4175bcf23
https://github.com/Wilfred/remacs/tree/master/etc
https://github.com/Wilfred/remacs/commit/4f155c191490e7efd9b0e425fe2b9bd4175bcf23
https://github.com/Wilfred/remacs/commit/4f155c191490e7efd9b0e425fe2b9bd4175bcf23
https://github.com/Wilfred/remacs/commit/4f155c191490e7efd9b0e425fe2b9bd4175bcf23
https://github.com/Wilfred/remacs/tree/master/leim
https://github.com/Wilfred/remacs/commit/cb62b14c79d10b356bc9f1c0090b241fe831a034
https://github.com/Wilfred/remacs/tree/master/lib-src
https://github.com/Wilfred/remacs/commit/040ca8f1f79c5e02596994e1da25ea3beb0ce344
https://github.com/Wilfred/remacs/tree/master/lib
https://github.com/Wilfred/remacs/commit/e9c156ac4da63b1eb48d2632ae25c0868ddf400d
https://github.com/Wilfred/remacs/tree/master/lisp
https://github.com/Wilfred/remacs/commit/4f155c191490e7efd9b0e425fe2b9bd4175bcf23
https://github.com/Wilfred/remacs/commit/4f155c191490e7efd9b0e425fe2b9bd4175bcf23
https://github.com/Wilfred/remacs/commit/4f155c191490e7efd9b0e425fe2b9bd4175bcf23
https://github.com/Wilfred/remacs/tree/master/lwlib
https://github.com/Wilfred/remacs/commit/4f155c191490e7efd9b0e425fe2b9bd4175bcf23
https://github.com/Wilfred/remacs/commit/4f155c191490e7efd9b0e425fe2b9bd4175bcf23
https://github.com/Wilfred/remacs/commit/4f155c191490e7efd9b0e425fe2b9bd4175bcf23
https://github.com/Wilfred/remacs/tree/master/m4
https://github.com/Wilfred/remacs/commit/e9c156ac4da63b1eb48d2632ae25c0868ddf400d
https://github.com/Wilfred/remacs/tree/master/modules
https://github.com/Wilfred/remacs/commit/bfc0f610bac3f97930941e9a66cbcd11cd382167
https://github.com/Wilfred/remacs/tree/master/nextstep
https://github.com/Wilfred/remacs/commit/80f8981910eb63f199484aa6aa2e61f857d2ec97
https://github.com/Wilfred/remacs/tree/master/nt
https://github.com/Wilfred/remacs/commit/e9c156ac4da63b1eb48d2632ae25c0868ddf400d
https://github.com/Wilfred/remacs/tree/master/oldXMenu
https://github.com/Wilfred/remacs/commit/4f155c191490e7efd9b0e425fe2b9bd4175bcf23
https://github.com/Wilfred/remacs/commit/4f155c191490e7efd9b0e425fe2b9bd4175bcf23
https://github.com/Wilfred/remacs/commit/4f155c191490e7efd9b0e425fe2b9bd4175bcf23
https://github.com/Wilfred/remacs/tree/master/rust_src
https://github.com/Wilfred/remacs/commit/f6c81e1ef2a6a0db5d73ff928f91b50ffd725152
https://github.com/Wilfred/remacs/pull/234
https://github.com/Wilfred/remacs/commit/f6c81e1ef2a6a0db5d73ff928f91b50ffd725152
https://github.com/Wilfred/remacs/tree/master/src
https://github.com/Wilfred/remacs/commit/f6c81e1ef2a6a0db5d73ff928f91b50ffd725152
https://github.com/Wilfred/remacs/pull/234
https://github.com/Wilfred/remacs/commit/f6c81e1ef2a6a0db5d73ff928f91b50ffd725152
https://github.com/Wilfred/remacs/tree/master/test
https://github.com/Wilfred/remacs/commit/eb5ab0cce1706970045183aef06a9b58c44ed23c
https://github.com/Wilfred/remacs/blob/master/.dir-locals.el
https://github.com/Wilfred/remacs/commit/e13c5467fc0c08c6875653df56b8b54185d0c4cc
https://github.com/Wilfred/remacs/blob/master/.dockerignore
https://github.com/Wilfred/remacs/commit/a432de5a93ed2cc142e6d5f706b722dd10a91f60
https://github.com/Wilfred/remacs/blob/master/.gitattributes
https://github.com/Wilfred/remacs/commit/1d5eeb64da5a8b133c559bb01a9e659255a55af4
https://github.com/Wilfred/remacs/blob/master/.gitignore
https://github.com/Wilfred/remacs/commit/4f155c191490e7efd9b0e425fe2b9bd4175bcf23
https://github.com/Wilfred/remacs/commit/4f155c191490e7efd9b0e425fe2b9bd4175bcf23
https://github.com/Wilfred/remacs/commit/4f155c191490e7efd9b0e425fe2b9bd4175bcf23
https://github.com/Wilfred/remacs/blob/master/.gitlab-ci.yml
https://github.com/Wilfred/remacs/commit/d4cac417d6d09004390e929b21cd3a2de9f48e0d
https://github.com/Wilfred/remacs/blob/master/.travis.sh
https://github.com/Wilfred/remacs/commit/fbfabd393856bf922b7e9b61101a177972197064
https://github.com/Wilfred/remacs/blob/master/.travis.yml
https://github.com/Wilfred/remacs/commit/a3f6fd93e11354eb8e40c521059b409aa59a4fb4
https://github.com/Wilfred/remacs/blob/master/CONTRIBUTING.md
https://github.com/Wilfred/remacs/commit/6fcc6aebd155f62893b6542edab11ae45d4e21d1
https://github.com/birkenfeld
https://github.com/Wilfred/remacs/blob/master/COPYING
https://github.com/Wilfred/remacs/commit/067d23c97ab3a4135388d8dd87f1dd04c6248572
https://github.com/Wilfred/remacs/blob/master/Dockerfile
https://github.com/Wilfred/remacs/commit/a432de5a93ed2cc142e6d5f706b722dd10a91f60
https://github.com/Wilfred/remacs/blob/master/GNUmakefile
https://github.com/Wilfred/remacs/commit/bcf244ef9be0fe61f4b9a48d3412b2c8a9f1edb9
https://github.com/Wilfred/remacs/blob/master/INSTALL
https://github.com/Wilfred/remacs/commit/4f155c191490e7efd9b0e425fe2b9bd4175bcf23
https://github.com/Wilfred/remacs/commit/4f155c191490e7efd9b0e425fe2b9bd4175bcf23
https://github.com/Wilfred/remacs/commit/4f155c191490e7efd9b0e425fe2b9bd4175bcf23
https://github.com/Wilfred/remacs/blob/master/INSTALL.REPO
https://github.com/Wilfred/remacs/commit/5772b920f40a8c9f0a5266caf8d0f4729f6d2c13
https://github.com/Wilfred/remacs/blob/master/Makefile.in
https://github.com/Wilfred/remacs/commit/4f155c191490e7efd9b0e425fe2b9bd4175bcf23
https://github.com/Wilfred/remacs/commit/4f155c191490e7efd9b0e425fe2b9bd4175bcf23
https://github.com/Wilfred/remacs/commit/4f155c191490e7efd9b0e425fe2b9bd4175bcf23
https://github.com/Wilfred/remacs/blob/master/README
https://github.com/Wilfred/remacs/commit/4f155c191490e7efd9b0e425fe2b9bd4175bcf23
https://github.com/Wilfred/remacs/commit/4f155c191490e7efd9b0e425fe2b9bd4175bcf23
https://github.com/Wilfred/remacs/commit/4f155c191490e7efd9b0e425fe2b9bd4175bcf23
https://github.com/Wilfred/remacs/blob/master/README.md
https://github.com/Wilfred/remacs/commit/ec1ec8087ad4308fe7e74be6706f850e552f4c0b
https://github.com/Wilfred/remacs/blob/master/REMACS_COMPATIBILITY.md
https://github.com/Wilfred/remacs/commit/7e6357152e6a7ede1edf975e03d45b66202fe2a1
https://github.com/Wilfred/remacs/blob/master/autogen.sh
https://github.com/Wilfred/remacs/commit/4f155c191490e7efd9b0e425fe2b9bd4175bcf23
https://github.com/Wilfred/remacs/commit/4f155c191490e7efd9b0e425fe2b9bd4175bcf23
https://github.com/Wilfred/remacs/commit/4f155c191490e7efd9b0e425fe2b9bd4175bcf23
https://github.com/Wilfred/remacs/blob/master/configure.ac
https://github.com/Wilfred/remacs/commit/4f155c191490e7efd9b0e425fe2b9bd4175bcf23
https://github.com/Wilfred/remacs/commit/4f155c191490e7efd9b0e425fe2b9bd4175bcf23
https://github.com/Wilfred/remacs/commit/4f155c191490e7efd9b0e425fe2b9bd4175bcf23
https://github.com/Wilfred/remacs/blob/master/docker-compose.yml
https://github.com/Wilfred/remacs/commit/a432de5a93ed2cc142e6d5f706b722dd10a91f60
https://github.com/Wilfred/remacs/blob/master/make-dist
https://github.com/Wilfred/remacs/commit/4f155c191490e7efd9b0e425fe2b9bd4175bcf23
https://github.com/Wilfred/remacs/commit/4f155c191490e7efd9b0e425fe2b9bd4175bcf23
https://github.com/Wilfred/remacs/commit/4f155c191490e7efd9b0e425fe2b9bd4175bcf23
https://github.com/Wilfred
https://github.com/Wilfred/remacs
https://github.com/Wilfred/remacs
https://github.com/Wilfred/remacs/issues
https://github.com/Wilfred/remacs/pulls
https://github.com/Wilfred/remacs/projects
https://github.com/join?source=prompt-code
https://github.com/Wilfred/remacs/commits/master
https://github.com/Wilfred/remacs/branches
https://github.com/Wilfred/remacs/releases
https://github.com/Wilfred/remacs/graphs/contributors
https://github.com/Wilfred/remacs/blob/master/COPYING
https://github.com/Wilfred/remacs/find/master
https://github.com/Wilfred/remacs/commit/f6c81e1ef2a6a0db5d73ff928f91b50ffd725152
https://github.com/birkenfeld
https://github.com/Wilfred/remacs/commit/f6c81e1ef2a6a0db5d73ff928f91b50ffd725152
https://github.com/Wilfred/remacs/pull/234
https://github.com/Wilfred/remacs/commit/f6c81e1ef2a6a0db5d73ff928f91b50ffd725152
https://github.com/Wilfred/remacs#rust-heart-emacs
https://github.com/Wilfred/remacs#why-emacs
https://github.com/Wilfred/remacs#why-rust
https://github.com/Wilfred/remacs#why-a-fork
https://github.com/Wilfred/remacs#getting-started
https://github.com/Wilfred/remacs#requirements
https://github.com/Wilfred/remacs#dockerized-development-environment
https://github.com/Wilfred/remacs#building-remacs
https://github.com/Wilfred/remacs#running-remacs
https://github.com/Wilfred/remacs#rustdoc-builds
https://github.com/Wilfred/remacs#porting-elisp-primitive-functions-walkthrough
https://github.com/Wilfred/remacs#porting-widely-used-c-functions
https://github.com/Wilfred/remacs#design-goals
https://github.com/Wilfred/remacs#non-design-goals
https://github.com/Wilfred/remacs#contributing
https://github.com/Wilfred/remacs#help-needed
https://github.com/Wilfred/remacs#rust-porting-tips
https://github.com/Wilfred/remacs#c-functions
https://github.com/Wilfred/remacs#c-macros
https://github.com/Wilfred/remacs#assertions
https://github.com/Wilfred/remacs#safety
https://gitter.im/remacs-discuss/Lobby?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge
https://travis-ci.org/Wilfred/remacs
https://www.gnu.org/software/emacs/
https://www.rust-lang.org/
https://github.com/Wilfred/remacs#rust-heart-emacs
https://github.com/Wilfred/remacs#why-emacs
https://github.com/Wilfred/remacs#why-rust
https://github.com/Wilfred/remacs#why-a-fork
https://github.com/Wilfred/remacs#getting-started
https://github.com/Wilfred/remacs#requirements
https://github.com/Wilfred/remacs#building-remacs
https://github.com/Wilfred/remacs#running-remacs
https://github.com/Wilfred/remacs#rustdoc-builds
https://github.com/Wilfred/remacs#porting-elisp-primitive-functions-walkthrough
https://github.com/Wilfred/remacs#porting-widely-used-c-functions
https://github.com/Wilfred/remacs#design-goals
https://github.com/Wilfred/remacs#non-design-goals
https://github.com/Wilfred/remacs#contributing
https://github.com/Wilfred/remacs#help-needed
https://github.com/Wilfred/remacs#rust-porting-tips
https://github.com/Wilfred/remacs#c-functions
https://github.com/Wilfred/remacs#c-macros
https://github.com/Wilfred/remacs#assertions
https://github.com/Wilfred/remacs#safety
https://i.stack.imgur.com/7Cu9Z.jpg
http://www.xemacs.org/
https://www.emacswiki.org/emacs/GuileEmacs
https://github.com/burtonsamograd/emacs-jit
https://github.com/hraberg/deuce
http://jemacs.sourceforge.net/
https://github.com/tromey/el-compilador
https://www.rust-lang.org/en-US/install.html
https://www.docker.com/
https://github.com/docker/compose
https://github.com/Wilfred/remacs#building-remacs
https://github.com/universal-ctags/ctags
https://www.rust-lang.org/en-US/conduct.html
https://wingolog.org/archives/2011/05/18/value-representation-in-javascript-implementations
https://github.com/contact
https://developer.github.com/
https://training.github.com/
https://shop.github.com/
https://github.com/blog
https://github.com/about
https://github.com/site/terms
https://github.com/site/privacy
https://github.com/security
https://status.github.com/
https://help.github.com/
https://github.com/
https://github.com/features
https://github.com/business
https://github.com/explore
https://github.com/marketplace
https://github.com/pricing
https://github.com/Wilfred/remacs
https://github.com/login?return_to=%2FWilfred%2Fremacs
https://github.com/join?source=header-repo
https://github.com/Wilfred/remacs/watchers
https://github.com/Wilfred/remacs/stargazers
https://github.com/Wilfred/remacs/network
https://github.com/login?return_to=%2FWilfred%2Fremacs
https://github.com/login?return_to=%2FWilfred%2Fremacs
https://github.com/login?return_to=%2FWilfred%2Fremacs

