
underscores	get	stripped
I'm	using	 idn2_lookup_u8(...,	IDN2_NFC_INPUT	|	IDN2_NONTRANSITIONAL) .	Initial	underscores	in	labels	get	stripped.	It	this	expected?
Example:

"_443._tcp.fedoraproject.org"	→	"443.tcp.fedoraproject.org"

I'm	using	libidn2-2.0.2-1.fc26.x86_64.

1	Related	Merge	Request

!51 TR46:	Disable	STD3	ASCII	rules	by	default	(/libidn/libidn2/merge_requests/51) Closed

Project	(/libidn/libidn2)
Repository	(/libidn/libidn2/tree/master)
Issues	 5 	(/libidn/libidn2/issues)

Merge	Requests	 0 	(/libidn/libidn2/merge_requests)
Pipelines	(/libidn/libidn2/pipelines)

Members	(/libidn/libidn2/project_members)

Closed

Issue	#30	(https://gitlab.com/libidn/libidn2/issues/30)	opened	a	week	ago	by	 Zbigniew	Jędrzejewski-Szmek	(/keszybz) 

(/rockdaboot)

The	TR46	non-transitional	preprocessing	removes	these	characters	and	also	several	others.	RFC	5890	basically
defines	a	'label'	(the	parts	separated	by	dots	in	a	domain	name)	consisting	only	of	ASCII	letter,	digits	and	hyphens.
So	yes,	this	is	expected	behavior	with	IDN2_NONTRANSITIONAL.

IDN2_TRANSITIONAL	would	leave	those	characters	in	place.	This	is	definitely	more	backward	compatible	to	IDNA
2003	and	obsolete	(by	IDNA	2008)	domain	names.

BTW,	you	can	leave	IDN2_NFC_INPUT	away.	It	is	implicitly	used	by	IDN2_NONTRANSITIONAL	and
IDN2_TRANSITIONAL.

For	more	details	see	answer	2	at	https://stackoverflow.com/questions/2180465/can-domain-name-subdomains-
have-an-underscore-in-it	(https://stackoverflow.com/questions/2180465/can-domain-name-subdomains-have-an-
underscore-in-it).

Edited	a	week	ago	by	Tim	Rühsen	(/rockdaboot)

Tim	Rühsen	@rockdaboot	(/rockdaboot)	commented	a	week	ago
Owner

Tim	Rühsen	@rockdaboot	(/rockdaboot)	closed	a	week	ago

(/keszybz)

Hm,	can	you	describe	where	exactly	in	the	RFC	this	behaviour	is	described?	https://tools.ietf.org/html/rfc5891#section-5.4
(https://tools.ietf.org/html/rfc5891#section-5.4)	gives	a	list	of	specific	disallowed	characters	(which	"_"	is	not	on	afaics),	and
then	says	“The	string	that	has	now	been	validated	for	lookup	is	converted	to	ACE	form	by	applying	the	Punycode	algorithm
to	the	string	and	then	adding	the	ACE	prefix	("xn--").”.	Nowhere	is	stripping	of	characters	mentioned.

Zbigniew	Jędrzejewski-Szmek	@keszybz	(/keszybz)	commented	a	week	ago

(/nmav)

Are	labels	which	contain	underscore	the	only	concern	there?	There	could	be	a	flag	which	skips	these	labels	for
processing,	allowing	behavior	similar	to	libidn	where	one	could	pass	resource	records	similarly	to	hostnames.	A
quick	and	dirty	proof	of	concept	is	attached.

0001-skip-underscore-labels.patch
(https://gitlab.com/libidn/libidn2/uploads/a786edd868e67d57f30b09364489eefd/0001-skip-underscore-labels.patch)

Nikos	Mavrogiannopoulos	@nmav	(/nmav)	commented	a	week	ago
Owner

(/rockdaboot)

We	had	a	similar	issue	with	'whois'.	It	throws	CIDRs	into	toASCII	and	it	came	back	without	/.	Like

$	idn2	192.168.1.0/24
192.168.1.024

So	this	is	general	problem...	but	I	think	TR46	proposes	a	flag	for	that.	Not	sure	if	it	is	functional
(IDN2_ALLOW_UNASSIGNED).

Tim	Rühsen	@rockdaboot	(/rockdaboot)	commented	a	week	ago
Owner

(/nmav)

Hm,	can	you	describe	where	exactly	in	the	RFC	this	behaviour	is	described?

The	RFCs	don't	specifically	say	drop	these	characters	in	processing,	that's	libidn2	behavior.	The	RFCs	define	labels
as	something	containing	only	specific	ascii	chars.

So	this	is	general	problem...	but	I	think	TR46	proposes	a	flag	for	that.	Not	sure	if	it	is	functional
(IDN2_ALLOW_UNASSIGNED).

We	may	want	to	use	this	flag	then	for	that.	I	experimented	passing	verbatim	characters	not	in	a	map	when	this	flag
is	present	but	got	an	error	later	in	processing.

Nikos	Mavrogiannopoulos	@nmav	(/nmav)	commented	a	week	ago
Owner

(/rockdaboot)

I	try	again...	it	is	TR46	that	filters	the	character	out.	From	the	IdnaMappingTable.txt:

005B..0060				;	disallowed_STD3_valid																		#	1.1		LEFT	SQUARE	BRACKET..GRAVE	ACCENT

From	the	spec:

	4.1.1	UseSTD3ASCIIRules

If	UseSTD3ASCIIRules=false,	then	the	validity	tests	for	ASCII	characters	are	not	provided	by	the	table	status	values,	but	are	implementation-dependent.	For	example,	if	an	implementation	allows	the	characters	[\u002Da-zA-Z0-9]	and	also	the	underbar	(	_	),	then	it	needs	to	use	the	table	values	for	UseSTD3ASCIIRules=false,	and	test	for	any	other	ASCII	characters	as	part	of	its	validity	criteria.	These	ASCII	characters	may	have	resulted	from	a	mapping:	for	example,	a	U+005F	(	_	)	LOW	LINE	(underbar)	may	have	originally	been	a	U+FF3F	(	＿	)	FULLWIDTH	LOW	LINE.

There	are	a	very	small	number	of	non-ASCII	characters	with	the	data	file	status	disallowed_STD3_valid:

U+2260	(	≠	)	NOT	EQUAL	TO
U+226E	(	≮	)	NOT	LESS-THAN
U+226F	(	≯	)	NOT	GREATER-THAN

Those	characters	are	disallowed	with	UseSTD3ASCIIRules=true	because	the	set	of	characters	in	their	canonical	decompositions	are	not	entirely	in	the	valid	set	(Step	7	of	the	Table	Derivation).	However,	they	are	allowed	with	UseSTD3ASCIIRules=false,	because	the	base	characters	of	their	canonical	decompositions,	U+003D	(	=	)	EQUALS	SIGN,	U+003C	(	<	)	LESS-THAN	SIGN,	and	U+003E	(	>	)	GREATER-THAN	SIGN,	are	each	valid	under	that	option.	If	an	implementation	uses	UseSTD3ASCIIRules=false	but	disallows	any	of	these	three	ASCII	characters,	then	it	must	also	disallow	the	corresponding	precomposed	character	for	its	negation.

I	think,	we	don't	have	the	STD3ASCII	flag	implemented	yet,	have	we	?

Tim	Rühsen	@rockdaboot	(/rockdaboot)	commented	a	week	ago
Owner

(/rockdaboot)

We	have	these	flags	(TR46_FLG_DISALLOWED_STD3_VALID	and	TR46_FLG_DISALLOWED_STD3_MAPPED)	already	in
the	characte	 map ,	but	just	don't	provide	a	flag	for	the	API.

Tim	Rühsen	@rockdaboot	(/rockdaboot)	commented	a	week	ago
Owner

(/rockdaboot)

@keszybz	(/keszybz)	Allowed	characters	are	first	defined	in	RFC952:

A	"name"	(Net,	Host,	Gateway,	or	Domain	name)	is	a	text	string	up
			to	24	characters	drawn	from	the	alphabet	(A-Z),	digits	(0-9),	minus
			sign	(-),	and	period	(.).		Note	that	periods	are	only	allowed	when
			they	serve	to	delimit	components	of	"domain	style	names".	(See
			RFC-921,	"Domain	Name	System	Implementation	Schedule",	for
			background).		No	blank	or	space	characters	are	permitted	as	part	of	a
			name.	No	distinction	is	made	between	upper	and	lower	case.		The	first
			character	must	be	an	alpha	character.		The	last	character	must	not	be
			a	minus	sign	or	period.

RFC1123	also	allowed	a	digit	as	first	character.

AFAIK,	this	is	still	true.	IDNA	transforms	international	strings/domains	into	this	old	naming	scheme	(doing	some
processing	and	then	using	the	punycode_encode	algorithm).	I	wish	we	could	simply	use	UTF-8	instead.

Tim	Rühsen	@rockdaboot	(/rockdaboot)	commented	a	week	ago
Owner

(/nmav)

Another	patch	which	takes	advantage	of	Tim's	advice	above,	though	most	likely	it	shouldn't	use	the	unassigned	flag
but	another	one.	I	give	up	for	now.

patch.txt	(https://gitlab.com/libidn/libidn2/uploads/3b639dc186af10d299bf4fec0eec8273/patch.txt)

Nikos	Mavrogiannopoulos	@nmav	(/nmav)	commented	a	week	ago
Owner

(/rockdaboot)

@nmav	(/nmav)	Thanks	for	the	patch.	Let	me	check	it	against	the	TR46	spec	in	the	next	1-2	days.
Tim	Rühsen	@rockdaboot	(/rockdaboot)	commented	a	week	ago

Owner

(/keszybz)

I'm	not	sure	what	the	right	solution	is,	so	let	me	describe	the	problem	better:	underscores	are	used	in	DNS	names	for
example	to	specify	service	fields	(_tcp,	_http,	…,	e.g.	RFC	6698).	The	underscore	is	used	because	it	is	not	allowed	in	host
names	(RFC	1123,	§2.1)	[as	you	wrote	above	while	I	was	typing	this...]	but	allowed	in	DNS	labels.	Such	labels	are
automatically	constructed	by	combining	a	user-specified	domain	and	the	prefix	(e.g.	_443._tcp.	to	resolve	TLS	certificates	for
HTTPS).	In	particular,	this	might	be	done	for	a	domain	like	faß.de.

What	we	did	so	far	was	to	take	the	address	and	pass	it	through	IDNA	encoding,	and	resolve	that.	With	libidn,	we	had
_443._tcp.faß.de	encoded	as	_443._tcp.fass.de.	With	libidn2	and	IDN2_NONTRANSITIONAL	I	get	443.tcp.xn--fa-hia.de,	which
cannot	work.	With	libidn2	and	IDN2_TRANSITIONAL	I	get	_443._tcp.fass.de.	But	I	really	need	_443._tcp.xn--fa-hia.de,	i.e.	the
new	rules	but	with	underscores	preserved.

I	have	very	strong	doubts	about	anything	which	is	not	round-trippable,	but	I	need	to	look	at	this	some	more.	I'll	give	your
patch	a	test.

Zbigniew	Jędrzejewski-Szmek	@keszybz	(/keszybz)	commented	a	week	ago

(/rockdaboot)

But	I	really	need	_443._tcp.xn--fa-hia.de

Default	for	IDNA2008/TR46	processing	is	UseSTD3ASCIIRules=true.	What	you	need	is	UseSTD3ASCIIRules=false,
which	we	didn't	implement	yet	(maybe	Nikos's	patch	above	does	it).	With	that	you	have	to	check	your	domain
string	for	validity	yourself	because	you	circumvent	some	of	the	internal	tests.

What	you	could	do	right	now	is	to	pass	only	the	last	part	from	your	string	to	the	idn2_	function.	You	know	already
that	the	first	part	is	fine	and	needs	no	processing	(_443._tcp.).	IDNA	processing	is	always	label-by-label,	so	it's	fine
to	split	the	input	string	that	way.

Tim	Rühsen	@rockdaboot	(/rockdaboot)	commented	a	week	ago
Owner

(/keszybz)

I'll	reopen	this,	at	least	because	a	patch	is	being	discussed…
Zbigniew	Jędrzejewski-Szmek	@keszybz	(/keszybz)	commented	a	week	ago

Zbigniew	Jędrzejewski-Szmek	@keszybz	(/keszybz)	reopened	a	week	ago

(/keszybz)

What	you	could	do	right	now	is	to	pass	only	the	last	part	from	your	string	to	the	idn2_	function.

This	would	be	problematic.	Right	now	the	client	constructs	a	name	and	send	a	query	to	a	daemon	to	have	it	resolved,	as	utf-
8.	And	the	daemon	takes	care	of	idn	processing	(for	DNS)	or	not	(e.g.	for	LLMNR).	So	doing	that	would	require	both	the	client
to	be	much	smarter,	and	extra	communication	about	the	meaning	of	specific	labels…	I'd	rather	not	go	there.

Another	patch	which	takes	advantage	of	Tim's	advice	above

Yep.	Patch	from	#30	(comment	34723449)	(https://gitlab.com/libidn/libidn2/issues/30#note_34723449)	seems	to	work	fine.

$	systemd-resolve	_443._tcp.faß.de
_443._tcp.faß.de:	72.52.4.119
																			(_443._tcp.xn--fa-hia.de)

--	Information	acquired	via	protocol	DNS	in	1.6ms.
--	Data	is	authenticated:	no

Zbigniew	Jędrzejewski-Szmek	@keszybz	(/keszybz)	commented	a	week	ago

Zbigniew	Jędrzejewski-Szmek	@keszybz	(/keszybz)
mentioned	in	commit	unofficial-mirrors/systemd@7f7ab228	(/unofficial-
mirrors/systemd/commit/7f7ab22892a14ad152d2367b23eeb7df80913ff5)	a	week	ago

(/rockdaboot)

Fixed	up	@nmav	(/nmav)'s	patch,	added	 --usestd3asciirules 	to	idn2,	changing	default	behavior	to	not	use	STD3
ascii	rules.	These	rules	can	be	enabled	with	the	 IDN2_USE_STD3_ASCII_RULES 	flag.

Unicode's	TR46	document	wants	STD3	be	enabled	by	default...	so	I	am	not	sure	if	we	should	work	against	it.	The
plus	is	that	with	patch	!51	(closed)	(/libidn/libidn2/merge_requests/51)	we	follow	old	libidn/IDNA2003	behavior.

Tim	Rühsen	@rockdaboot	(/rockdaboot)	commented	a	week	ago
Owner

(/nmav)

Resolved	by	a5cbc16e	(/libidn/libidn2/commit/a5cbc16efd02adb78d2d082b21c3ac4d3fa88d2e)
Nikos	Mavrogiannopoulos	@nmav	(/nmav)	commented	5	days	ago

Owner

Nikos	Mavrogiannopoulos	@nmav	(/nmav)	closed	5	days	ago

(/nmav)
Nikos	Mavrogiannopoulos	@nmav	(/nmav)	commented	4	days	ago

Assignee
No	assignee

Milestone
None

Time	tracking
No	estimate	or	time	spent

Due	date
No	due	date

Labels
None

Weight
None

3	participants
	(/keszybz) 	 	(/nmav) 	

	(/rockdaboot)

Reference:	libidn/libidn2#30

https://gitlab.com/libidn/libidn2/pipelines/9969535
https://gitlab.com/libidn/libidn2/merge_requests/51
https://gitlab.com/libidn/libidn2
https://gitlab.com/libidn/libidn2/tree/master
https://gitlab.com/libidn/libidn2/issues
https://gitlab.com/libidn/libidn2/merge_requests
https://gitlab.com/libidn/libidn2/pipelines
https://gitlab.com/libidn/libidn2/project_members
https://gitlab.com/libidn/libidn2/issues/30
https://gitlab.com/keszybz
https://gitlab.com/rockdaboot
https://stackoverflow.com/questions/2180465/can-domain-name-subdomains-have-an-underscore-in-it
https://gitlab.com/rockdaboot
https://gitlab.com/libidn/libidn2/issues/30#note_34669182
https://gitlab.com/rockdaboot
https://gitlab.com/libidn/libidn2/issues/30#note_34669185
https://gitlab.com/rockdaboot
https://gitlab.com/keszybz
https://tools.ietf.org/html/rfc5891#section-5.4
https://gitlab.com/libidn/libidn2/issues/30#note_34711817
https://gitlab.com/keszybz
https://gitlab.com/nmav
https://gitlab.com/libidn/libidn2/uploads/a786edd868e67d57f30b09364489eefd/0001-skip-underscore-labels.patch
https://gitlab.com/libidn/libidn2/issues/30#note_34713830
https://gitlab.com/nmav
https://gitlab.com/rockdaboot
https://gitlab.com/libidn/libidn2/issues/30#note_34714625
https://gitlab.com/rockdaboot
https://gitlab.com/nmav
https://gitlab.com/libidn/libidn2/issues/30#note_34715691
https://gitlab.com/nmav
https://gitlab.com/rockdaboot
https://gitlab.com/libidn/libidn2/issues/30#note_34715911
https://gitlab.com/rockdaboot
https://gitlab.com/rockdaboot
https://gitlab.com/libidn/libidn2/issues/30#note_34717524
https://gitlab.com/rockdaboot
https://gitlab.com/rockdaboot
https://gitlab.com/keszybz
https://gitlab.com/libidn/libidn2/issues/30#note_34722954
https://gitlab.com/rockdaboot
https://gitlab.com/nmav
https://gitlab.com/libidn/libidn2/uploads/3b639dc186af10d299bf4fec0eec8273/patch.txt
https://gitlab.com/libidn/libidn2/issues/30#note_34723026
https://gitlab.com/nmav
https://gitlab.com/rockdaboot
https://gitlab.com/nmav
https://gitlab.com/libidn/libidn2/issues/30#note_34723449
https://gitlab.com/rockdaboot
https://gitlab.com/keszybz
https://gitlab.com/libidn/libidn2/issues/30#note_34723686
https://gitlab.com/keszybz
https://gitlab.com/rockdaboot
https://gitlab.com/libidn/libidn2/issues/30#note_34726130
https://gitlab.com/rockdaboot
https://gitlab.com/keszybz
https://gitlab.com/libidn/libidn2/issues/30#note_35111859
https://gitlab.com/keszybz
https://gitlab.com/libidn/libidn2/issues/30#note_35111860
https://gitlab.com/keszybz
https://gitlab.com/keszybz
https://gitlab.com/libidn/libidn2/issues/30#note_34723449
https://gitlab.com/libidn/libidn2/issues/30#note_35112445
https://gitlab.com/keszybz
https://gitlab.com/unofficial-mirrors/systemd/commit/7f7ab22892a14ad152d2367b23eeb7df80913ff5
https://gitlab.com/libidn/libidn2/issues/30#note_35127849
https://gitlab.com/keszybz
https://gitlab.com/rockdaboot
https://gitlab.com/nmav
https://gitlab.com/libidn/libidn2/merge_requests/51
https://gitlab.com/libidn/libidn2/issues/30#note_35171004
https://gitlab.com/rockdaboot
https://gitlab.com/nmav
https://gitlab.com/libidn/libidn2/commit/a5cbc16efd02adb78d2d082b21c3ac4d3fa88d2e
https://gitlab.com/libidn/libidn2/issues/30#note_35393073
https://gitlab.com/nmav
https://gitlab.com/libidn/libidn2/issues/30#note_35393075
https://gitlab.com/nmav
https://gitlab.com/nmav
https://gitlab.com/libidn/libidn2/issues/30#note_35471777
https://gitlab.com/nmav
https://gitlab.com/keszybz
https://gitlab.com/nmav
https://gitlab.com/rockdaboot


Please	register	(/users/sign_in?redirect_to_referer=yes)	or	sign	in	(/users/sign_in?redirect_to_referer=yes)	to	comment

@keszybz	(/keszybz)	would	a	release	with	this	fix	only	be	sufficient	to	move	systemd	to	libidn2?
Owner

(/keszybz)

I	think	so.	I	haven't	merged	the	corresponding	patch	to	systemd	yet,	but	it's	very	simple.
Zbigniew	Jędrzejewski-Szmek	@keszybz	(/keszybz)	commented	4	days	ago

https://gitlab.com/users/sign_in?redirect_to_referer=yes
https://gitlab.com/users/sign_in?redirect_to_referer=yes
https://gitlab.com/keszybz
https://gitlab.com/keszybz
https://gitlab.com/libidn/libidn2/issues/30#note_35494210
https://gitlab.com/keszybz

