
Byzantine	fault	tolerance
From	Wikipedia,	the	free	encyclopedia

In	fault-tolerant	computer	systems,	and	in	particular	distributed	computing	systems,	Byzantine	fault	tolerance	(BFT)	is	the	characteristic	of	a	system	that	tolerates
the	class	of	failures	known	as	the	Byzantine	Generals'	Problem,[1]	which	is	a	generalized	version	of	the	Two	Generals'	Problem	–	for	which	there	is	an	unsolvability
proof.	The	phrases	interactive	consistency	or	source	congruency	have	been	used	to	refer	to	Byzantine	fault	tolerance,	particularly	among	the	members	of	some
early	implementation	teams.[2]	It	is	also	referred	to	as	error	avalanche,	Byzantine	agreement	problem,	Byzantine	generals	problem	and	Byzantine	failure.

Byzantine	failures	are	considered	the	most	general	and	most	difficult	class	of	failures	among	the	failure	modes.	The	so-called	fail-stop	failure	mode	occupies	the
simplest	end	of	the	spectrum.	Whereas	fail-stop	failure	model	simply	means	that	the	only	way	to	fail	is	a	node	crash,	detected	by	other	nodes,	Byzantine	failures	imply
no	restrictions,	which	means	that	the	failed	node	can	generate	arbitrary	data,	pretending	to	be	a	correct	one,	which	makes	fault	tolerance	difficult.

Contents

1 Background

2 Byzantine	Generals'	Problem

3 Known	examples	of	Byzantine	failures

4 Early	solutions

5 Practical	Byzantine	fault	tolerance

6 Software

7 In	practice

8 See	also

9 References

10 External	links

Background
A	Byzantine	fault	is	any	fault	presenting	different	symptoms	to	different	observers.[3]	A	Byzantine	failure	is	the	loss	of	a	system	service	due	to	a	Byzantine	fault	in
systems	that	require	consensus.[4]

The	objective	of	Byzantine	fault	tolerance	is	to	be	able	to	defend	against	Byzantine	failures,	in	which	components	of	a	system	fail	with	symptoms	that	prevent	some
components	of	the	system	from	reaching	agreement	among	themselves,	where	such	agreement	is	needed	for	the	correct	operation	of	the	system.	Correctly
functioning	components	of	a	Byzantine	fault	tolerant	system	will	be	able	to	provide	the	system's	service,	assuming	there	are	not	too	many	faulty	components.

The	terms	fault	and	failure	are	used	here	according	to	the	standard	definitions[5]	originally	created	by	a	joint	committee	on	"Fundamental	Concepts	and	Terminology"
formed	by	the	IEEE	Computer	Society's	Technical	Committee	on	Dependable	Computing	and	Fault-Tolerance	and	IFIP	Working	Group	10.4	on	Dependable	Computing
and	Fault	Tolerance.[6]	A	version	of	these	definitions	is	also	described	in	the	Dependability	Wikipedia	page.

Byzantine	Generals'	Problem
Byzantine	refers	to	the	Byzantine	Generals'	Problem,	an	agreement	problem	(described	by	Leslie	Lamport,	Robert	Shostak	and	Marshall	Pease	in	their	1982	paper,
"The	Byzantine	Generals	Problem"	(http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf))[1]	in	which	a	group	of	generals,	each	commanding	a	portion
of	the	Byzantine	army,	encircle	a	city.	These	generals	wish	to	formulate	a	plan	for	attacking	the	city.	In	its	simplest	form,	the	generals	must	only	decide	whether	to
attack	or	retreat.	Some	generals	may	prefer	to	attack,	while	others	prefer	to	retreat.	The	important	thing	is	that	every	general	agrees	on	a	common	decision,	for	a
halfhearted	attack	by	a	few	generals	would	become	a	rout	and	be	worse	than	a	coordinated	attack	or	a	coordinated	retreat.

The	problem	is	complicated	by	the	presence	of	traitorous	generals	who	may	not	only	cast	a	vote	for	a	suboptimal	strategy,	they	may	do	so	selectively.	For	instance,	if
nine	generals	are	voting,	four	of	whom	support	attacking	while	four	others	are	in	favor	of	retreat,	the	ninth	general	may	send	a	vote	of	retreat	to	those	generals	in
favor	of	retreat,	and	a	vote	of	attack	to	the	rest.	Those	who	received	a	retreat	vote	from	the	ninth	general	will	retreat,	while	the	rest	will	attack	(which	may	not	go
well	for	the	attackers).	The	problem	is	complicated	further	by	the	generals	being	physically	separated	and	having	to	send	their	votes	via	messengers	who	may	fail	to
deliver	votes	or	may	forge	false	votes.

Byzantine	fault	tolerance	can	be	achieved	if	the	loyal	(non-faulty)	generals	have	a	unanimous	agreement	on	their	strategy.	Note	that	there	can	be	a	default	vote	value
given	to	missing	messages.	For	example,	missing	messages	can	be	given	the	value	<Null>.	Further,	if	the	agreement	is	that	the	<Null>	votes	are	in	the	majority,	a
pre-assigned	default	strategy	can	be	used	(e.g.,	retreat).

The	typical	mapping	of	this	story	onto	computer	systems	is	that	the	computers	are	the	generals	and	their	digital	communication	system	links	are	the	messengers.

Known	examples	of	Byzantine	failures
Several	examples	of	Byzantine	failures	that	have	occurred	are	given	in	two	equivalent	journal	papers.[3][4]	These	and	other	examples	are	described	on	the	NASA
DASHlink	web	pages.[7]	These	web	pages	also	describe	some	phenomenology	that	can	cause	Byzantine	faults.

Byzantine	errors	were	observed	infrequently	and	at	irregular	points	during	endurance	testing	for	the	then-newly	constructed	Virginia	class	submarines,	at	least
through	2005	(when	the	issues	were	publicly	reported).[8]

Early	solutions
Several	solutions	were	described	by	Lamport,	Shostak,	and	Pease	in	1982.[1]	They	began	by	noting	that	the	Generals'	Problem	can	be	reduced	to	solving	a
"Commander	and	Lieutenants"	problem	where	loyal	Lieutenants	must	all	act	in	unison	and	that	their	action	must	correspond	to	what	the	Commander	ordered	in	the
case	that	the	Commander	is	loyal.

One	solution	considers	scenarios	in	which	messages	may	be	forged,	but	which	will	be	Byzantine-fault-tolerant	as	long	as	the	number	of	traitorous	generals	does
not	equal	or	exceed	one	third	of	the	generals.	The	impossibility	of	dealing	with	one-third	or	more	traitors	ultimately	reduces	to	proving	that	the	one	Commander
and	two	Lieutenants	problem	cannot	be	solved,	if	the	Commander	is	traitorous.	To	see	this,	suppose	we	have	a	traitorous	Commander	A,	and	two	Lieutenants,	B
and	C:	when	A	tells	B	to	attack	and	C	to	retreat,	and	B	and	C	send	messages	to	each	other,	forwarding	A's	message,	neither	B	nor	C	can	figure	out	who	is	the
traitor,	since	it	is	not	necessarily	A—another	Lieutenant	could	have	forged	the	message	purportedly	from	A.	It	can	be	shown	that	if	n	is	the	number	of	generals	in
total,	and	t	is	the	number	of	traitors	in	that	n,	then	there	are	solutions	to	the	problem	only	when	n	>	3t	and	the	communication	is	synchronous	(bounded
delay).[9]
A	second	solution	requires	unforgeable	message	signatures.	For	security-critical	systems,	digital	signatures	(in	modern	computer	systems,	this	may	be	achieved
in	practice	using	public-key	cryptography)	can	provide	Byzantine	fault	tolerance	in	the	presence	of	an	arbitrary	number	of	traitorous	generals.	However,	for
safety-critical	systems,	simple	error	detecting	codes,	such	as	CRCs,	provide	weaker	but	often	sufficient	coverage	at	a	much	lower	cost.	This	is	true	for	both
Byzantine	and	non-Byzantine	faults.	Thus,	cryptographic	digital	signature	methods	are	not	a	good	choice	for	safety-critical	systems,	unless	there	is	also	a	specific
security	threat	as	well.[10]	While	error	detecting	codes,	such	as	CRCs,	are	better	than	cryptographic	techniques,	neither	provide	adequate	coverage	for	active
electronics	in	safety-critical	systems.	This	is	illustrated	by	the	Schrödinger	CRC	scenario	where	a	CRC-protected	message	with	a	single	Byzantine	faulty	bit
presents	different	data	to	different	observers	and	each	observer	sees	a	valid	CRC.[3][4]
Also	presented	is	a	variation	on	the	first	two	solutions	allowing	Byzantine-fault-tolerant	behavior	in	some	situations	where	not	all	generals	can	communicate
directly	with	each	other.

Several	system	architectures	were	designed	c.	1980	that	implemented	Byzantine	fault	tolerance.	These	include:	Draper's	FTMP,[11]	Honeywell's	MMFCS,[12]	and	SRI's
SIFT.[13]

Practical	Byzantine	fault	tolerance
In	1999,	Miguel	Castro	and	Barbara	Liskov	introduced	the	"Practical	Byzantine	Fault	Tolerance"	(PBFT)	algorithm,[14]	which	provides	high-performance	Byzantine
state	machine	replication,	processing	thousands	of	requests	per	second	with	sub-millisecond	increases	in	latency.

After	PBFT,	several	BFT	protocols	were	introduced	to	improve	its	robustness	and	performance.	For	instance,	Q/U,[15]	HQ,[16]	Zyzzyva,[17]	and	ABsTRACTs[18]	,	etc.,
addressed	the	performance	and	cost	issues;	whereas,	other	protocols,	like	Aardvark[19]	and	RBFT[20]	,	addressed	its	robustness	issues.	Furthermore,	Adapt[21]	tried
to	make	use	of	existing	BFT	protocols,	through	switching	between	them	in	an	adaptive	way,	to	improve	system	robustness	and	performance	as	the	underlying
conditions	change.	Furthermore,	BFT	protocols	were	introduced	that	leverage	trusted	components	to	reduce	the	number	of	replicas,	e.g.,	A2M-PBFT-EA[22]	and
MinBFT.[23]

Software
UpRight[24]	is	an	open	source	library	for	constructing	services	that	tolerate	both	crashes	("up")	and	Byzantine	behaviors	("right")	that	incorporates	many	of	these
protocols'	innovations.

In	addition	to	PBFT	and	UpRight,	there	is	the	BFT-SMaRt	library,[25]	a	high-performance	Byzantine	fault-tolerant	state	machine	replication	library	developed	in	Java.
This	library	implements	a	protocol	very	similar	to	PBFT's,	plus	complementary	protocols	which	offer	state	transfer	and	on-the-fly	reconfiguration	of	hosts.	BFT-SMaRt
is	the	most	recent	effort	to	implement	state	machine	replication,	still	being	actively	maintained.

Archistar[26]	utilizes	a	slim	BFT	layer[27]	for	communication.	It	prototypes	a	secure	multi-cloud	storage	system	using	Java	licensed	under	LGPLv2.	Focus	lies	on
simplicity	and	readability,	it	aims	to	be	the	foundation	for	further	research	projects.

Askemos[28]	is	a	concurrent,	garbage-collected,	persistent	programming	platform	atop	of	replicated	state	machines	which	tolerates	Byzantine	faults.	It	prototypes	an
execution	environment	facilitating	Smart	contracts.

Tendermint[29]	is	general	purpose	software	for	BFT	state	machine	replication.	Using	a	socket	protocol,	it	enables	state	machines	to	be	written	in	any	programming
language,	and	provides	means	for	the	state	machine	to	influence	elements	of	the	consensus,	such	as	the	list	of	active	processes.	Tendermint	is	implemented	in	the
style	of	a	blockchain,	which	amortizes	the	overhead	of	BFT	and	allows	for	faster	recovery	from	failure.

In	practice
One	example	of	BFT	in	use	is	bitcoin,	a	peer-to-peer	digital	currency	system.	The	bitcoin	network	works	in	parallel	to	generate	a	chain	of	Hashcash	style	proof-of-
work.	The	proof-of-work	chain	is	the	key	to	overcome	Byzantine	failures	and	to	reach	a	coherent	global	view	of	the	system	state.

Some	aircraft	systems,	such	as	the	Boeing	777	Aircraft	Information	Management	System	(via	its	ARINC	659	SAFEbus®	network),[30]	[31]	the	Boeing	777	flight	control
system,[32]	and	the	Boeing	787	flight	control	systems,	use	Byzantine	fault	tolerance.	Because	these	are	real-time	systems,	their	Byzantine	fault	tolerance	solutions
must	have	very	low	latency.	For	example,	SAFEbus	can	achieve	Byzantine	fault	tolerance	with	on	the	order	of	a	microsecond	of	added	latency.

Some	spacecraft	such	as	the	SpaceX	Dragon	flight	system[33]	consider	Byzantine	fault	tolerance	in	their	design.

Byzantine	fault	tolerance	mechanisms	use	components	that	repeat	an	incoming	message	(or	just	its	signature)	to	other	recipients	of	that	incoming	message.	All	these
mechanisms	make	the	assumption	that	the	act	of	repeating	a	message	blocks	the	propagation	of	Byzantine	symptoms.	For	systems	that	have	a	high	degree	of	safety
or	security	criticality,	these	assumptions	must	be	proven	to	be	true	to	an	acceptable	level	of	fault	coverage.	When	providing	proof	through	testing,	one	difficulty	is
creating	a	sufficiently	wide	range	of	signals	with	Byzantine	symptoms.[34]	Such	testing	likely	will	require	specialized	fault	injectors.[35][36]

See	also
Atomic	commit
Brooks–Iyengar	algorithm
List	of	mathematical	concepts	named	after	places
List	of	terms	relating	to	algorithms	and	data	structures
Byzantine	Paxos
Quantum	Byzantine	agreement

References
1.	 Lamport,	L.;	Shostak,	R.;	Pease,	M.	(1982).	"The	Byzantine	Generals	Problem"	(http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf)	(PDF).	ACM

Transactions	on	Programming	Languages	and	Systems.	4	(3):	382–401.	doi:10.1145/357172.357176	(https://doi.org/10.1145%2F357172.357176).
2.	 Kirrmann,	Hubert	(n.d.).	"Fault	Tolerant	Computing	in	Industrial	Automation"	(http://lamspeople.epfl.ch/kirrmann/Pubs/FaultTolerance/Fault_Tolerance_Tutorial_
HK.pdf#page=94)	(PDF).	Switzerland:	ABB	Research	Center.	p.	94.	Retrieved	2015-03-02.

3.	 Driscoll,	K.;	Hall,	B.;	Paulitsch,	M.;	Zumsteg,	P.;	Sivencrona,	H.	(2004).	"The	Real	Byzantine	Generals":	6.D.4–61–11.	doi:10.1109/DASC.2004.1390734	(https://doi
.org/10.1109%2FDASC.2004.1390734).

4.	 Driscoll,	Kevin;	Hall,	Brendan;	Sivencrona,	Håkan;	Zumsteg,	Phil	(2003).	"Byzantine	Fault	Tolerance,	from	Theory	to	Reality".	2788:	235–248.	ISSN	0302-9743	(h
ttps://www.worldcat.org/issn/0302-9743).	doi:10.1007/978-3-540-39878-3_19	(https://doi.org/10.1007%2F978-3-540-39878-3_19).

5.	 Avizienis,	A.;	Laprie,	J.-C.;	Randell,	Brian;	Landwehr,	C.	(2004).	"Basic	concepts	and	taxonomy	of	dependable	and	secure	computing".	IEEE	Transactions	on
Dependable	and	Secure	Computing.	1	(1):	11–33.	ISSN	1545-5971	(https://www.worldcat.org/issn/1545-5971).	doi:10.1109/TDSC.2004.2	(https://doi.org/10.1109
%2FTDSC.2004.2).

6.	 "Dependable	Computing	and	Fault	Tolerance"	(http://www.dependability.org).	Retrieved	2015-03-02.
7.	 Driscoll,	Kevin	(2012-12-11).	"Real	System	Failures"	(https://c3.nasa.gov/dashlink/resources/624/).	DASHlink.	NASA.	Retrieved	2015-03-02.
8.	 Walter,	C.;	Ellis,	P.;	LaValley,	B.	(2005).	"The	Reliable	Platform	Service:	A	Property-Based	Fault	Tolerant	Service	Architecture":	34–43.	doi:10.1109/HASE.2005.23	
(https://doi.org/10.1109%2FHASE.2005.23).

9.	 Feldman,	P.;	Micali,	S.	(1997).	"An	optimal	probabilistic	protocol	for	synchronous	Byzantine	agreement"	(http://people.csail.mit.edu/silvio/Selected%20Scientific%
20Papers/Distributed%20Computation/An%20Optimal%20Probabilistic%20Algorithm%20for%20Byzantine%20Agreement.pdf)	(PDF).	SIAM	J.	Computing.	26	(4):
873–933.	doi:10.1137/s0097539790187084	(https://doi.org/10.1137%2Fs0097539790187084).

10.	 Paulitsch,	M.;	Morris,	J.;	Hall,	B.;	Driscoll,	K.;	Latronico,	E.;	Koopman,	P.	(2005).	"Coverage	and	the	Use	of	Cyclic	Redundancy	Codes	in	Ultra-Dependable
Systems":	346–355.	doi:10.1109/DSN.2005.31	(https://doi.org/10.1109%2FDSN.2005.31).

11.	 Hopkins,	Albert	L.;	Lala,	Jaynarayan	H.;	Smith,	T.	Basil	(1987).	"The	Evolution	of	Fault	Tolerant	Computing	at	the	Charles	Stark	Draper	Laboratory,	1955–85".	1:
121–140.	ISSN	0932-5581	(https://www.worldcat.org/issn/0932-5581).	doi:10.1007/978-3-7091-8871-2_6	(https://doi.org/10.1007%2F978-3-7091-8871-2_6).

12.	 Driscoll,	Kevin;	Papadopoulos,	Gregory;	Nelson,	Scott;	Hartmann,	Gary;	Ramohalli,	Gautham	(1984),	Multi-Microprocessor	Flight	Control	System	(Technical
Report),	Wright-Patterson	Air	Force	Base,	OH	45433,	USA:	AFWAL/FIGL	U.S.	Air	Force	Systems	Command,	AFWAL-TR-84-3076

13.	 "SIFT:	design	and	analysis	of	a	fault-tolerant	computer	for	aircraft	control".	Microelectronics	Reliability.	19	(3):	190.	1979.	ISSN	0026-2714	(https://www.worldca
t.org/issn/0026-2714).	doi:10.1016/0026-2714(79)90211-7	(https://doi.org/10.1016%2F0026-2714%2879%2990211-7).

14.	 Castro,	M.;	Liskov,	B.	(2002).	"Practical	Byzantine	Fault	Tolerance	and	Proactive	Recovery".	ACM	Transactions	on	Computer	Systems.	Association	for	Computing
Machinery.	20	(4):	398–461.	CiteSeerX	10.1.1.127.6130	(https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.127.6130)  .	doi:10.1145/571637.571640	(htt
ps://doi.org/10.1145%2F571637.571640).

15.	 Abd-El-Malek,	M.;	Ganger,	G.;	Goodson,	G.;	Reiter,	M.;	Wylie,	J.	(2005).	"Fault-scalable	Byzantine	Fault-Tolerant	Services".	Association	for	Computing	Machinery.
doi:10.1145/1095809.1095817	(https://doi.org/10.1145%2F1095809.1095817).

16.	 Cowling,	James;	Myers,	Daniel;	Liskov,	Barbara;	Rodrigues,	Rodrigo;	Shrira,	Liuba	(2006).	HQ	Replication:	A	Hybrid	Quorum	Protocol	for	Byzantine	Fault
Tolerance	(http://portal.acm.org/citation.cfm?id=1298455.1298473).	Proceedings	of	the	7th	USENIX	Symposium	on	Operating	Systems	Design	and
Implementation.	pp.	177–190.	ISBN	1-931971-47-1.

17.	 Kotla,	Ramakrishna;	Alvisi,	Lorenzo;	Dahlin,	Mike;	Clement,	Allen;	Wong,	Edmund	(December	2009).	"Zyzzyva:	Speculative	Byzantine	Fault	Tolerance".	ACM
Transactions	on	Computer	Systems.	Association	for	Computing	Machinery.	27	(4).	doi:10.1145/1658357.1658358	(https://doi.org/10.1145%2F1658357.1658358).

18.	 Guerraoui,	Rachid;	Kneževic,	Nikola;	Vukolic,	Marko;	Quéma,	Vivien	(2010).	The	Next	700	BFT	Protocols	(http://infoscience.epfl.ch/record/144158).	Proceedings
of	the	5th	European	conference	on	Computer	systems.	EuroSys.

19.	 Clement,	A.;	Wong,	E.;	Alvisi,	L.;	Dahlin,	M.;	Marchetti,	M.	(April	22–24,	2009).	Making	Byzantine	Fault	Tolerant	Systems	Tolerate	Byzantine	Faults	(http://www.u
senix.org/events/nsdi09/tech/full_papers/clement/clement.pdf)	(PDF).	Symposium	on	Networked	Systems	Design	and	Implementation.	USENIX.

20.	 Aublin,	P.-L.;	Ben	Mokhtar,	S.;	Quéma,	V.	(July	8–11,	2013).	RBFT:	Redundant	Byzantine	Fault	Tolerance	(https://web.archive.org/web/20130805115252/http://ww
w.temple.edu/cis/icdcs2013/program.html).	33rd	IEEE	International	Conference	on	Distributed	Computing	Systems.	International	Conference	on	Distributed
Computing	Systems.	Archived	from	the	original	(http://www.temple.edu/cis/icdcs2013/program.html)	on	August	5,	2013.

21.	 Bahsoun,	J.	P.;	Guerraoui,	R.;	Shoker,	A.	(2015-05-01).	"Making	BFT	Protocols	Really	Adaptive"	(http://ieeexplore.ieee.org/document/7161576/).	Parallel	and
Distributed	Processing	Symposium	(IPDPS),	2015	IEEE	International:	904–913.	doi:10.1109/IPDPS.2015.21	(https://doi.org/10.1109%2FIPDPS.2015.21).

22.	 Chun,	Byung-Gon;	Maniatis,	Petros;	Shenker,	Scott;	Kubiatowicz,	John	(2007-01-01).	"Attested	Append-only	Memory:	Making	Adversaries	Stick	to	Their	Word"	(ht
tp://doi.acm.org/10.1145/1294261.1294280).	Proceedings	of	Twenty-first	ACM	SIGOPS	Symposium	on	Operating	Systems	Principles.	SOSP	'07.	New	York,	NY,
USA:	ACM:	189–204.	ISBN	9781595935915.	doi:10.1145/1294261.1294280	(https://doi.org/10.1145%2F1294261.1294280).

23.	 Veronese,	G.	S.;	Correia,	M.;	Bessani,	A.	N.;	Lung,	L.	C.;	Verissimo,	P.	(2013-01-01).	"Efficient	Byzantine	Fault-Tolerance"	(http://ieeexplore.ieee.org/document/608
1855/).	IEEE	Transactions	on	Computers.	62	(1):	16–30.	ISSN	0018-9340	(https://www.worldcat.org/issn/0018-9340).	doi:10.1109/TC.2011.221	(https://doi.org/10
.1109%2FTC.2011.221).

24.	 UpRight	(https://code.google.com/p/upright/).	Google	Code	repository	for	the	UpRight	replication	library.
25.	 BFT-SMaRt	(http://bft-smart.github.io/library/).	Google	Code	repository	for	the	BFT-SMaRt	replication	library.
26.	 Archistar	(https://github.com/Archistar/archistar-core).	github	repository	for	the	Archistar	project.
27.	 Archistar-bft	BFT	state-machine	(https://github.com/Archistar/archistar-bft).	github	repository	for	the	Archistar	project.
28.	 Askemos/BALL	(http://ball.askemos.org/)	project	home	page
29.	 Tendermint	(https://github.com/tendermint/tendermint)	github	repository	for	the	Tendermint	project
30.	 M.,	Paulitsch;	Driscoll,	K.	(9	January	2015).	"Chapter	48:SAFEbus".	In	Zurawski,	Richard.	Industrial	Communication	Technology	Handbook,	Second	Edition	(https

://books.google.com/books?id=ppzNBQAAQBAJ).	CRC	Press.	pp.	48–1–48–26.	ISBN	978-1-4822-0733-0.
31.	 Thomas	A.	Henzinger;	Christoph	M.	Kirsch	(26	September	2001).	Embedded	Software:	First	International	Workshop,	EMSOFT	2001,	Tahoe	City,	CA,	USA,

October	8-10,	2001.	Proceedings	(http://www.csl.sri.com/papers/emsoft01/emsoft01.pdf)	(PDF).	Springer	Science	&	Business	Media.	pp.	307–.	ISBN	978-3-540-
42673-8.

32.	 Yeh,	Y.C.	(2001).	"Safety	critical	avionics	for	the	777	primary	flight	controls	system".	1:	1C2/1–1C2/11.	doi:10.1109/DASC.2001.963311	(https://doi.org/10.1109%
2FDASC.2001.963311).

33.	 ELC:	SpaceX	lessons	learned	[LWN.net]	(https://lwn.net/Articles/540368/)
34.	 Nanya,	T.;	Goosen,	H.A.	(1989).	"The	Byzantine	hardware	fault	model".	IEEE	Transactions	on	Computer-Aided	Design	of	Integrated	Circuits	and	Systems.	8	(11):

1226–1231.	ISSN	0278-0070	(https://www.worldcat.org/issn/0278-0070).	doi:10.1109/43.41508	(https://doi.org/10.1109%2F43.41508).
35.	 Martins,	Rolando;	Gandhi,	Rajeev;	Narasimhan,	Priya;	Pertet,	Soila;	Casimiro,	António;	Kreutz,	Diego;	Veríssimo,	Paulo	(2013).	"Experiences	with	Fault-Injection

in	a	Byzantine	Fault-Tolerant	Protocol".	8275:	41–61.	ISSN	0302-9743	(https://www.worldcat.org/issn/0302-9743).	doi:10.1007/978-3-642-45065-5_3	(https://doi.o
rg/10.1007%2F978-3-642-45065-5_3).

36.	 US	patent	7475318	(https://worldwide.espacenet.com/textdoc?DB=EPODOC&IDX=US7475318),	Kevin	R.	Driscoll,	"Method	for	testing	the	sensitive	input	range
of	Byzantine	filters",	issued	2009-01-06,	assigned	to	Honeywell	International	Inc.

External	links
Ocean	Store	(http://oceanstore.cs.berkeley.edu/)	replicates	data	with	a	Byzantine	fault	tolerant	commit	protocol.
Practical	Byzantine	Fault	Tolerance	(http://www.pmg.lcs.mit.edu/bft/)
Byzantine	Fault	Tolerance	in	the	RKBExplorer	(http://www.rkbexplorer.com/explorer/#display=mechanism%2D{http://resex.rkbexplorer.com/id/resilience-mecha
nism-65b5cef4})
UpRight	(https://code.google.com/p/upright)	is	an	open	source	library	for	Crash-tolerant	and	Byzantine-tolerant	state	machine	replication.
Bft-SMaRt	(http://bft-smart.github.io/library/)	is	a	high-performance	Byzantine	fault-tolerant	state	machine	replication	library	developed	in	Java	with	simplicity
and	robustness	as	primary	requirements.

https://en.wikipedia.org/wiki/Fault-tolerant_computer_systems
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#Byzantine_Generals.27_Problem
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-BGP_Paper-1
https://en.wikipedia.org/wiki/Two_Generals%27_Problem
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-2
https://en.wikipedia.org/wiki/Failure_cause
https://en.wikipedia.org/wiki/Node_(computer_science)
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#Background
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#Byzantine_Generals.27_Problem
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#Known_examples_of_Byzantine_failures
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#Early_solutions
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#Practical_Byzantine_fault_tolerance
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#Software
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#In_practice
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#See_also
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#References
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#External_links
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-DriscollHall2004-3
https://en.wikipedia.org/wiki/Consensus_(computer_science)
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-DriscollHall2003-4
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-AvizienisLaprie2004-5
https://en.wikipedia.org/wiki/IEEE
https://en.wikipedia.org/wiki/IFIP
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-6
https://en.wikipedia.org/wiki/Dependability
https://en.wikipedia.org/wiki/Leslie_Lamport
http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-BGP_Paper-1
https://en.wikipedia.org/wiki/Byzantine_army
https://en.wikipedia.org/wiki/Rout
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-DriscollHall2004-3
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-DriscollHall2003-4
https://en.wikipedia.org/wiki/NASA
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-7
https://en.wikipedia.org/wiki/Virginia-class_submarine
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-WalterEllis2005-8
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-BGP_Paper-1
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-9
https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Cyclic_redundancy_check
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-PaulitschMorris2005-10
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-DriscollHall2004-3
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-DriscollHall2003-4
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-HopkinsLala1987-11
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-MMFCS-12
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-13
https://en.wikipedia.org/wiki/Barbara_Liskov
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-14
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-15
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-16
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-17
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-18
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-19
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-20
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-21
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-22
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-23
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-24
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-25
https://en.wikipedia.org/wiki/Archistar
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-26
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-27
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-28
https://en.wikipedia.org/wiki/Smart_contracts
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-29
https://en.wikipedia.org/wiki/Blockchain_(database)
https://en.wikipedia.org/wiki/Bitcoin
https://en.wikipedia.org/wiki/Bitcoin_network
https://en.wikipedia.org/wiki/Hashcash
https://en.wikipedia.org/wiki/Proof-of-work_system
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-Zurawski2015-30
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-HenzingerKirsch2001-31
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-Yeh2001-32
https://en.wikipedia.org/wiki/SpaceX_Dragon
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-33
https://en.wikipedia.org/wiki/Fault_coverage
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-NanyaGoosen1989-34
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-MartinsGandhi2013-35
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#cite_note-36
https://en.wikipedia.org/wiki/Atomic_commit
https://en.wikipedia.org/wiki/Brooks%E2%80%93Iyengar_algorithm
https://en.wikipedia.org/wiki/List_of_mathematical_concepts_named_after_places
https://en.wikipedia.org/wiki/List_of_terms_relating_to_algorithms_and_data_structures
https://en.wikipedia.org/wiki/Paxos_(computer_science)#Byzantine_Paxos
https://en.wikipedia.org/wiki/Quantum_Byzantine_agreement
https://en.wikipedia.org/wiki/Leslie_Lamport
http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1145%2F357172.357176
http://lamspeople.epfl.ch/kirrmann/Pubs/FaultTolerance/Fault_Tolerance_Tutorial_HK.pdf#page=94
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1109%2FDASC.2004.1390734
https://en.wikipedia.org/wiki/International_Standard_Serial_Number
https://www.worldcat.org/issn/0302-9743
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1007%2F978-3-540-39878-3_19
https://en.wikipedia.org/wiki/Brian_Randell
https://en.wikipedia.org/wiki/International_Standard_Serial_Number
https://www.worldcat.org/issn/1545-5971
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1109%2FTDSC.2004.2
http://www.dependability.org/
https://c3.nasa.gov/dashlink/resources/624/
https://en.wikipedia.org/wiki/NASA
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1109%2FHASE.2005.23
http://people.csail.mit.edu/silvio/Selected%20Scientific%20Papers/Distributed%20Computation/An%20Optimal%20Probabilistic%20Algorithm%20for%20Byzantine%20Agreement.pdf
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1137%2Fs0097539790187084
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1109%2FDSN.2005.31
https://en.wikipedia.org/wiki/International_Standard_Serial_Number
https://www.worldcat.org/issn/0932-5581
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1007%2F978-3-7091-8871-2_6
https://en.wikipedia.org/wiki/International_Standard_Serial_Number
https://www.worldcat.org/issn/0026-2714
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1016%2F0026-2714%2879%2990211-7
https://en.wikipedia.org/wiki/Association_for_Computing_Machinery
https://en.wikipedia.org/wiki/CiteSeerX
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.127.6130
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1145%2F571637.571640
https://en.wikipedia.org/wiki/Association_for_Computing_Machinery
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1145%2F1095809.1095817
https://en.wikipedia.org/wiki/Barbara_Liskov
http://portal.acm.org/citation.cfm?id=1298455.1298473
https://en.wikipedia.org/wiki/USENIX
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/1-931971-47-1
https://en.wikipedia.org/wiki/Association_for_Computing_Machinery
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1145%2F1658357.1658358
http://infoscience.epfl.ch/record/144158
http://www.usenix.org/events/nsdi09/tech/full_papers/clement/clement.pdf
https://en.wikipedia.org/wiki/USENIX
https://web.archive.org/web/20130805115252/http://www.temple.edu/cis/icdcs2013/program.html
https://en.wikipedia.org/wiki/International_Conference_on_Distributed_Computing_Systems
http://www.temple.edu/cis/icdcs2013/program.html
http://ieeexplore.ieee.org/document/7161576/
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1109%2FIPDPS.2015.21
http://doi.acm.org/10.1145/1294261.1294280
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/9781595935915
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1145%2F1294261.1294280
http://ieeexplore.ieee.org/document/6081855/
https://en.wikipedia.org/wiki/International_Standard_Serial_Number
https://www.worldcat.org/issn/0018-9340
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1109%2FTC.2011.221
https://code.google.com/p/upright/
http://bft-smart.github.io/library/
https://github.com/Archistar/archistar-core
https://github.com/Archistar/archistar-bft
http://ball.askemos.org/
https://github.com/tendermint/tendermint
https://books.google.com/books?id=ppzNBQAAQBAJ
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-1-4822-0733-0
http://www.csl.sri.com/papers/emsoft01/emsoft01.pdf
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-3-540-42673-8
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1109%2FDASC.2001.963311
https://lwn.net/Articles/540368/
https://en.wikipedia.org/wiki/International_Standard_Serial_Number
https://www.worldcat.org/issn/0278-0070
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1109%2F43.41508
https://en.wikipedia.org/wiki/International_Standard_Serial_Number
https://www.worldcat.org/issn/0302-9743
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1007%2F978-3-642-45065-5_3
https://worldwide.espacenet.com/textdoc?DB=EPODOC&IDX=US7475318
http://oceanstore.cs.berkeley.edu/
http://www.pmg.lcs.mit.edu/bft/
http://www.rkbexplorer.com/explorer/#display=mechanism-%7Bhttp://resex.rkbexplorer.com/id/resilience-mechanism-65b5cef4%7D
https://code.google.com/p/upright
http://bft-smart.github.io/library/


Retrieved	from	"https://en.wikipedia.org/w/index.php?title=Byzantine_fault_tolerance&oldid=796431902"

This	page	was	last	edited	on	20	August	2017,	at	20:04.
Text	is	available	under	the	Creative	Commons	Attribution-ShareAlike	License;	additional	terms	may	apply.	By	using	this	site,	you	agree	to	the	Terms	of	Use	and
Privacy	Policy.	Wikipedia®	is	a	registered	trademark	of	the	Wikimedia	Foundation,	Inc.,	a	non-profit	organization.

https://en.wikipedia.org/w/index.php?title=Byzantine_fault_tolerance&oldid=796431902
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://wikimediafoundation.org/wiki/Terms_of_Use
https://wikimediafoundation.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/

