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In	fault-tolerant	computer	systems,	and	in	particular	distributed	computing	systems,	Byzantine	fault	tolerance	(BFT)	is	the	characteristic	of	a	system	that	tolerates
the	class	of	failures	known	as	the	Byzantine	Generals'	Problem,[1]	which	is	a	generalized	version	of	the	Two	Generals'	Problem	–	for	which	there	is	an	unsolvability
proof.	The	phrases	interactive	consistency	or	source	congruency	have	been	used	to	refer	to	Byzantine	fault	tolerance,	particularly	among	the	members	of	some
early	implementation	teams.[2]	It	is	also	referred	to	as	error	avalanche,	Byzantine	agreement	problem,	Byzantine	generals	problem	and	Byzantine	failure.

Byzantine	failures	are	considered	the	most	general	and	most	difficult	class	of	failures	among	the	failure	modes.	The	so-called	fail-stop	failure	mode	occupies	the
simplest	end	of	the	spectrum.	Whereas	fail-stop	failure	model	simply	means	that	the	only	way	to	fail	is	a	node	crash,	detected	by	other	nodes,	Byzantine	failures	imply
no	restrictions,	which	means	that	the	failed	node	can	generate	arbitrary	data,	pretending	to	be	a	correct	one,	which	makes	fault	tolerance	difficult.
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Background
A	Byzantine	fault	is	any	fault	presenting	different	symptoms	to	different	observers.[3]	A	Byzantine	failure	is	the	loss	of	a	system	service	due	to	a	Byzantine	fault	in
systems	that	require	consensus.[4]

The	objective	of	Byzantine	fault	tolerance	is	to	be	able	to	defend	against	Byzantine	failures,	in	which	components	of	a	system	fail	with	symptoms	that	prevent	some
components	of	the	system	from	reaching	agreement	among	themselves,	where	such	agreement	is	needed	for	the	correct	operation	of	the	system.	Correctly
functioning	components	of	a	Byzantine	fault	tolerant	system	will	be	able	to	provide	the	system's	service,	assuming	there	are	not	too	many	faulty	components.

The	terms	fault	and	failure	are	used	here	according	to	the	standard	definitions[5]	originally	created	by	a	joint	committee	on	"Fundamental	Concepts	and	Terminology"
formed	by	the	IEEE	Computer	Society's	Technical	Committee	on	Dependable	Computing	and	Fault-Tolerance	and	IFIP	Working	Group	10.4	on	Dependable	Computing
and	Fault	Tolerance.[6]	A	version	of	these	definitions	is	also	described	in	the	Dependability	Wikipedia	page.

Byzantine	Generals'	Problem
Byzantine	refers	to	the	Byzantine	Generals'	Problem,	an	agreement	problem	(described	by	Leslie	Lamport,	Robert	Shostak	and	Marshall	Pease	in	their	1982	paper,
"The	Byzantine	Generals	Problem"	(http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf))[1]	in	which	a	group	of	generals,	each	commanding	a	portion
of	the	Byzantine	army,	encircle	a	city.	These	generals	wish	to	formulate	a	plan	for	attacking	the	city.	In	its	simplest	form,	the	generals	must	only	decide	whether	to
attack	or	retreat.	Some	generals	may	prefer	to	attack,	while	others	prefer	to	retreat.	The	important	thing	is	that	every	general	agrees	on	a	common	decision,	for	a
halfhearted	attack	by	a	few	generals	would	become	a	rout	and	be	worse	than	a	coordinated	attack	or	a	coordinated	retreat.

The	problem	is	complicated	by	the	presence	of	traitorous	generals	who	may	not	only	cast	a	vote	for	a	suboptimal	strategy,	they	may	do	so	selectively.	For	instance,	if
nine	generals	are	voting,	four	of	whom	support	attacking	while	four	others	are	in	favor	of	retreat,	the	ninth	general	may	send	a	vote	of	retreat	to	those	generals	in
favor	of	retreat,	and	a	vote	of	attack	to	the	rest.	Those	who	received	a	retreat	vote	from	the	ninth	general	will	retreat,	while	the	rest	will	attack	(which	may	not	go
well	for	the	attackers).	The	problem	is	complicated	further	by	the	generals	being	physically	separated	and	having	to	send	their	votes	via	messengers	who	may	fail	to
deliver	votes	or	may	forge	false	votes.

Byzantine	fault	tolerance	can	be	achieved	if	the	loyal	(non-faulty)	generals	have	a	unanimous	agreement	on	their	strategy.	Note	that	there	can	be	a	default	vote	value
given	to	missing	messages.	For	example,	missing	messages	can	be	given	the	value	<Null>.	Further,	if	the	agreement	is	that	the	<Null>	votes	are	in	the	majority,	a
pre-assigned	default	strategy	can	be	used	(e.g.,	retreat).

The	typical	mapping	of	this	story	onto	computer	systems	is	that	the	computers	are	the	generals	and	their	digital	communication	system	links	are	the	messengers.

Known	examples	of	Byzantine	failures
Several	examples	of	Byzantine	failures	that	have	occurred	are	given	in	two	equivalent	journal	papers.[3][4]	These	and	other	examples	are	described	on	the	NASA
DASHlink	web	pages.[7]	These	web	pages	also	describe	some	phenomenology	that	can	cause	Byzantine	faults.

Byzantine	errors	were	observed	infrequently	and	at	irregular	points	during	endurance	testing	for	the	then-newly	constructed	Virginia	class	submarines,	at	least
through	2005	(when	the	issues	were	publicly	reported).[8]

Early	solutions
Several	solutions	were	described	by	Lamport,	Shostak,	and	Pease	in	1982.[1]	They	began	by	noting	that	the	Generals'	Problem	can	be	reduced	to	solving	a
"Commander	and	Lieutenants"	problem	where	loyal	Lieutenants	must	all	act	in	unison	and	that	their	action	must	correspond	to	what	the	Commander	ordered	in	the
case	that	the	Commander	is	loyal.

One	solution	considers	scenarios	in	which	messages	may	be	forged,	but	which	will	be	Byzantine-fault-tolerant	as	long	as	the	number	of	traitorous	generals	does
not	equal	or	exceed	one	third	of	the	generals.	The	impossibility	of	dealing	with	one-third	or	more	traitors	ultimately	reduces	to	proving	that	the	one	Commander
and	two	Lieutenants	problem	cannot	be	solved,	if	the	Commander	is	traitorous.	To	see	this,	suppose	we	have	a	traitorous	Commander	A,	and	two	Lieutenants,	B
and	C:	when	A	tells	B	to	attack	and	C	to	retreat,	and	B	and	C	send	messages	to	each	other,	forwarding	A's	message,	neither	B	nor	C	can	figure	out	who	is	the
traitor,	since	it	is	not	necessarily	A—another	Lieutenant	could	have	forged	the	message	purportedly	from	A.	It	can	be	shown	that	if	n	is	the	number	of	generals	in
total,	and	t	is	the	number	of	traitors	in	that	n,	then	there	are	solutions	to	the	problem	only	when	n	>	3t	and	the	communication	is	synchronous	(bounded
delay).[9]
A	second	solution	requires	unforgeable	message	signatures.	For	security-critical	systems,	digital	signatures	(in	modern	computer	systems,	this	may	be	achieved
in	practice	using	public-key	cryptography)	can	provide	Byzantine	fault	tolerance	in	the	presence	of	an	arbitrary	number	of	traitorous	generals.	However,	for
safety-critical	systems,	simple	error	detecting	codes,	such	as	CRCs,	provide	weaker	but	often	sufficient	coverage	at	a	much	lower	cost.	This	is	true	for	both
Byzantine	and	non-Byzantine	faults.	Thus,	cryptographic	digital	signature	methods	are	not	a	good	choice	for	safety-critical	systems,	unless	there	is	also	a	specific
security	threat	as	well.[10]	While	error	detecting	codes,	such	as	CRCs,	are	better	than	cryptographic	techniques,	neither	provide	adequate	coverage	for	active
electronics	in	safety-critical	systems.	This	is	illustrated	by	the	Schrödinger	CRC	scenario	where	a	CRC-protected	message	with	a	single	Byzantine	faulty	bit
presents	different	data	to	different	observers	and	each	observer	sees	a	valid	CRC.[3][4]
Also	presented	is	a	variation	on	the	first	two	solutions	allowing	Byzantine-fault-tolerant	behavior	in	some	situations	where	not	all	generals	can	communicate
directly	with	each	other.

Several	system	architectures	were	designed	c.	1980	that	implemented	Byzantine	fault	tolerance.	These	include:	Draper's	FTMP,[11]	Honeywell's	MMFCS,[12]	and	SRI's
SIFT.[13]

Practical	Byzantine	fault	tolerance
In	1999,	Miguel	Castro	and	Barbara	Liskov	introduced	the	"Practical	Byzantine	Fault	Tolerance"	(PBFT)	algorithm,[14]	which	provides	high-performance	Byzantine
state	machine	replication,	processing	thousands	of	requests	per	second	with	sub-millisecond	increases	in	latency.

After	PBFT,	several	BFT	protocols	were	introduced	to	improve	its	robustness	and	performance.	For	instance,	Q/U,[15]	HQ,[16]	Zyzzyva,[17]	and	ABsTRACTs[18]	,	etc.,
addressed	the	performance	and	cost	issues;	whereas,	other	protocols,	like	Aardvark[19]	and	RBFT[20]	,	addressed	its	robustness	issues.	Furthermore,	Adapt[21]	tried
to	make	use	of	existing	BFT	protocols,	through	switching	between	them	in	an	adaptive	way,	to	improve	system	robustness	and	performance	as	the	underlying
conditions	change.	Furthermore,	BFT	protocols	were	introduced	that	leverage	trusted	components	to	reduce	the	number	of	replicas,	e.g.,	A2M-PBFT-EA[22]	and
MinBFT.[23]

Software
UpRight[24]	is	an	open	source	library	for	constructing	services	that	tolerate	both	crashes	("up")	and	Byzantine	behaviors	("right")	that	incorporates	many	of	these
protocols'	innovations.

In	addition	to	PBFT	and	UpRight,	there	is	the	BFT-SMaRt	library,[25]	a	high-performance	Byzantine	fault-tolerant	state	machine	replication	library	developed	in	Java.
This	library	implements	a	protocol	very	similar	to	PBFT's,	plus	complementary	protocols	which	offer	state	transfer	and	on-the-fly	reconfiguration	of	hosts.	BFT-SMaRt
is	the	most	recent	effort	to	implement	state	machine	replication,	still	being	actively	maintained.

Archistar[26]	utilizes	a	slim	BFT	layer[27]	for	communication.	It	prototypes	a	secure	multi-cloud	storage	system	using	Java	licensed	under	LGPLv2.	Focus	lies	on
simplicity	and	readability,	it	aims	to	be	the	foundation	for	further	research	projects.

Askemos[28]	is	a	concurrent,	garbage-collected,	persistent	programming	platform	atop	of	replicated	state	machines	which	tolerates	Byzantine	faults.	It	prototypes	an
execution	environment	facilitating	Smart	contracts.

Tendermint[29]	is	general	purpose	software	for	BFT	state	machine	replication.	Using	a	socket	protocol,	it	enables	state	machines	to	be	written	in	any	programming
language,	and	provides	means	for	the	state	machine	to	influence	elements	of	the	consensus,	such	as	the	list	of	active	processes.	Tendermint	is	implemented	in	the
style	of	a	blockchain,	which	amortizes	the	overhead	of	BFT	and	allows	for	faster	recovery	from	failure.

In	practice
One	example	of	BFT	in	use	is	bitcoin,	a	peer-to-peer	digital	currency	system.	The	bitcoin	network	works	in	parallel	to	generate	a	chain	of	Hashcash	style	proof-of-
work.	The	proof-of-work	chain	is	the	key	to	overcome	Byzantine	failures	and	to	reach	a	coherent	global	view	of	the	system	state.

Some	aircraft	systems,	such	as	the	Boeing	777	Aircraft	Information	Management	System	(via	its	ARINC	659	SAFEbus®	network),[30]	[31]	the	Boeing	777	flight	control
system,[32]	and	the	Boeing	787	flight	control	systems,	use	Byzantine	fault	tolerance.	Because	these	are	real-time	systems,	their	Byzantine	fault	tolerance	solutions
must	have	very	low	latency.	For	example,	SAFEbus	can	achieve	Byzantine	fault	tolerance	with	on	the	order	of	a	microsecond	of	added	latency.

Some	spacecraft	such	as	the	SpaceX	Dragon	flight	system[33]	consider	Byzantine	fault	tolerance	in	their	design.

Byzantine	fault	tolerance	mechanisms	use	components	that	repeat	an	incoming	message	(or	just	its	signature)	to	other	recipients	of	that	incoming	message.	All	these
mechanisms	make	the	assumption	that	the	act	of	repeating	a	message	blocks	the	propagation	of	Byzantine	symptoms.	For	systems	that	have	a	high	degree	of	safety
or	security	criticality,	these	assumptions	must	be	proven	to	be	true	to	an	acceptable	level	of	fault	coverage.	When	providing	proof	through	testing,	one	difficulty	is
creating	a	sufficiently	wide	range	of	signals	with	Byzantine	symptoms.[34]	Such	testing	likely	will	require	specialized	fault	injectors.[35][36]
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