
3	THOUGHTS	ON	“I	DON’T	KNOW	WHO	THE	WEB	AUDIO	API	IS	DESIGNED	FOR”

I	don’t	know	who	the	Web	Audio	API	is	designed	for
Posted	on	September	13,	2017

WebGL	is,	all	things	considered,	a	pretty	decent	API.	It’s	not	a	great	API,	but	that’s	just	because	OpenGL	is	also	not	a	great	API.	It	gives	you	raw	access	to	the	GPU	and	is	pretty	low-level.	For	those	intimidated	by
something	so	low-level,	there	are	quite	a	few	higher-level	engines	like	three.js	and	Unity	which	are	easier	to	work	with.	It’s	a	good	API	with	a	tremendous	amount	of	power,	and	it’s	the	best	portable	abstraction	we
have	for	a	good	way	to	work	with	the	GPU	on	the	web.

HTML5	Canvas	is,	all	things	considered,	a	pretty	decent	API.	It	has	plenty	of	warts:	lack	of	colorspace,	you	can’t	directly	draw	DOM	elements	to	a	canvas	without	awkwardly	porting	it	to	an	SVG,	blurs	are	strangely
hidden	from	the	user	into	a	“shadows”	API,	and	a	few	other	things.	But	it’s	honestly	a	good	abstraction	for	drawing	2D	shapes.

Web	Audio,	conversely,	is	an	API	I	do	not	understand.	The	scope	of	Web	Audio	is	hopelessly	huge,	with	features	I	can’t	imagine	anybody	using,	core	abstractions	that	are	hopelessly	expensive,	and	basic
functionality	basically	missing.	To	quote	the	specification	itself:	“It	is	a	goal	of	this	specification	to	include	the	capabilities	found	in	modern	game	audio	engines	as	well	as	some	of	the	mixing,	processing,	and	filtering
tasks	that	are	found	in	modern	desktop	audio	production	applications.”

I	can’t	imagine	any	game	engine	or	music	production	app	that	would	want	to	use	any	of	the	advanced	features	of	Web	Audio.	Something	like	the	DynamicsCompressorNode	is	practically	a	joke:	basic	features	from
a	real	compressor	are	basically	missing,	and	the	behavior	that	is	there	is	underspecified	such	that	I	can’t	even	trust	it	to	sound	correct	between	browsers.	More	than	likely,	such	filters	would	be	written	using	asm.js
or	WebAssembly,	or	ran	as	Web	Workers	due	to	the	rather	stateless,	input/output	nature	of	DSPs.	Math	and	tight	loops	like	this	aren’t	hard,	and	they	aren’t	rocket	science.	It’s	the	only	way	to	ensure	correct
behavior.

For	people	that	do	want	to	do	such	things:	compute	our	audio	samples	and	then	play	it	back,	well,	the	APIs	make	it	near	impossible	to	do	it	in	any	performant	way.

For	those	new	to	audio	programming,	with	a	traditional	sound	API,	you	have	a	buffer	full	of	samples.	The	hardware	speaker	runs	through	these	samples.	When	the	API	thinks	it	is	about	to	run	out,	it	goes	to	the
program	and	asks	for	more.	This	is	normally	done	through	a	data	structure	called	a	“ring	buffer”	where	we	have	the	speakers	“chase”	the	samples	the	app	is	writing	into	the	buffer.	The	gap	between	the	“read
pointer”	and	the	“write	pointer”	speakers	is	important:	too	small	and	the	speakers	will	run	out	if	the	system	is	overloaded,	causing	crackles	and	other	artifacts,	and	too	high	and	there’s	a	noticeable	lag	in	the	audio.

There’s	also	some	details	like	how	many	of	these	samples	we	have	per	second,	or	the	“sample	rate”.	These	days,	there	are	two	commonly	used	sample	rates:	48000Hz,	in	use	by	most	systems	these	days,	and
44100Hz,	which,	while	a	bit	of	a	strange	number,	rose	in	popularity	due	to	its	use	in	CD	Audio	(why	44100Hz	for	CDDA?	Because	Sony,	one	of	the	organizations	involved	with	the	CD,	cribbed	CDDA	from	an	earlier
digital	audio	project	it	had	lying	around,	the	U-matic	tape).	It’s	common	to	see	the	operating	system	have	to	convert	to	a	different	sample	rate,	or	“resample”	audio,	at	runtime.

Here’s	an	example	of	a	theoretical,	non-Web	Audio	API,	to	compute	and	play	a	440Hz	sine	wave.

The	above,	however,	is	nearly	impossible	in	the	Web	Audio	API.	Here	is	the	closest	equivalent	I	can	make.

Seems	similar	enough,	but	there	are	some	important	distinctions.	First,	well,	this	is	deprecated.	Yep.	ScriptProcessorNode	has	been	deprecated	in	favor	of	Audio	Workers	since	2014.	Audio	Workers,	by	the	way,
don’t	exist.	Before	they	were	ever	implemented	in	any	browser,	they	were	replaced	by	the	AudioWorklet	API,	which	doesn’t	have	any	implementation	in	browsers.

Second,	the	sample	rate	is	global	for	the	entire	context.	There	is	no	way	to	get	the	browser	to	resample	dynamically	generated	audio.	Despite	the	browser	requiring	having	fast	resample	code	in	C++,	this	isn’t
exposed	to	the	user	of	ScriptProcessorNode.	The	sample	rate	of	an	AudioContext	isn’t	defined	to	be	44100Hz	or	48000Hz	either,	by	the	way.	It’s	dependent	on	not	just	the	browser,	but	also	the	operating	system
and	hardware	of	the	device.	Connecting	to	Bluetooth	headphones	can	cause	the	sample	rate	of	an	AudioContext	to	change,	without	warning.

So	ScriptProcessorNode	is	a	no	go.	There	is,	however,	an	API	that	lets	us	provide	a	differently	sampled	buffer	and	have	the	Web	Audio	API	play	it.	This,	however,	isn’t	a	“pull”	approach	where	the	browser	fetches
samples	every	once	in	a	while,	it’s	instead	a	“push”	approach	where	we	play	a	new	buffer	of	audio	every	so	often.	This	is	known	as	BufferSourceNode,	and	it’s	what	emscripten’s	SDL	port	uses	to	play	audio.	(they
used	to	use	ScriptProcessorNode	but	then	removed	it	because	it	didn’t	work	good,	consistently)

Let’s	try	using	BufferSourceNode	to	play	our	sine	wave:

There’s	a	few…	unfortunate	things	here.	First,	we’re	basically	relying	on	floating	point	timekeeping	in	seconds	to	keep	our	playback	times	consistent	and	gapless.	There	is	no	way	to	reset	an	AudioContext’s
currentTime	short	of	constructing	a	new	one,	so	if	someone	wanted	to	build	a	professional	Digital	Audio	Workstation	that	was	alive	for	days,	precision	loss	from	floating	point	would	become	a	big	issue.

Second,	and	this	was	also	an	issue	with	ScriptProcessorNode,	the	samples	array	is	full	of	floats.	This	is	a	minor	point,	but	forcing	everybody	to	work	with	floats	is	going	to	be	slow.	16	bits	is	enough	for	everybody
and	for	an	output	format	it’s	more	than	enough.	Integer	Arithmetic	Units	are	very	fast	workers	and	there’s	no	huge	reason	to	shun	them	out	of	the	equation.	You	can	always	have	code	convert	from	a	float	to	an	int16
for	the	final	output,	but	once	something’s	in	a	float,	it’s	going	to	be	slow	forever.

Third,	and	most	importantly,	we’re	allocating	two	new	objects	per	audio	sample!	Each	buffer	is	roughly	85	milliseconds	long,	so	every	85	milliseconds	we	are	allocating	two	new	GC’d	objects.	This	could	be	mitigated
if	we	could	use	an	existing,	large	ArrayBuffer	that	we	slice,	but	we	can’t	provide	our	own	ArrayBuffer:	createBuffer	creates	one	for	us,	for	each	channel	we	request.	You	might	imagine	you	can	createBuffer	with	a
very	large	size	and	play	only	small	slices	in	the	BufferSourceNode,	but	there’s	no	way	to	slice	an	AudioBuffer	object,	nor	is	there	any	way	to	specify	an	offset	into	the	corresponding	with	a	AudioBufferSourceNode.

You	might	imagine	the	best	solution	is	to	simply	keep	a	pool	of	BufferSourceNode	objects	and	recycle	them	after	they	are	finished	playing,	but	BufferSourceNode	is	designed	to	be	a	one-time-use-only,	fire-and-
forget	API.	The	documentation	helpfully	states	that	they	are	“cheap	to	create”	and	they	“will	automatically	be	garbage-collected	at	an	appropriate	time”.

I	know	I’m	fighting	an	uphill	battle	here,	but	a	GC	is	not	what	we	need	during	realtime	audio	playback.

Keeping	a	pool	of	AudioBuffers	seems	to	work,	though	in	my	own	test	app	I	still	see	slow	growth	to	12MB	over	time	before	a	major	GC	wipes,	according	to	the	Chrome	profiler.

What	makes	this	so	much	more	ironic	is	that	a	very	similar	API	was	proposed	by	Mozilla,	called	the	Audio	Data	API.	It’s	three	functions:	setup(),	currentSampleOffset(),	and	writeAudio().	It’s	still	a	push	API,	not	a
pull	API,	but	it’s	very	simple	to	use,	supports	resampling	at	runtime,	doesn’t	require	you	to	break	things	up	into	GC’d	buffers,	and	doesn’t	have	any.

Specifications	and	libraries	can’t	be	created	in	a	vacuum.	If	we	instead	got	the	simplest	possible	interface	out	there	and	let	people	play	with	it,	and	then	took	some	of	the	more	slow	bits	people	were	implementing	in
JavaScript	(resampling,	FFT)	and	put	them	in	C++,	I’m	sure	we’d	see	a	lot	more	growth	and	usage	than	what	we	do	today.	And	we’d	have	actual	users	for	this	API,	and	real-world	feedback	from	users	using	it	in
production.	But	instead,	the	biggest	user	of	Web	Audio	right	now	appears	to	be	emscripten,	who	obviously	won’t	care	much	for	any	of	the	graph	routing	nonsense,	and	already	attempts	to	work	around	the	horrible
APIs	themselves.

Can	the	ridiculous	overeagerness	of	Web	Audio	be	reversed?	Can	we	bring	back	a	simple	“play	audio”	API	and	bring	back	the	performance	gains	once	we	see	what	happens	in	the	wild?	I	don’t	know,	I’m	not	on
these	committees,	I	don’t	even	work	in	web	development	other	than	fooling	around	on	nights	and	weekends,	and	I	certainly	don’t	have	the	time	or	patience	to	follow	something	like	this	through.

But	I	would	really,	really	like	to	see	it	happen.

This	entry	was	posted	in	Uncategorized	by	Jasper	St.	Pierre.	Bookmark	the	permalink	[http://blog.mecheye.net/2017/09/i-dont-know-who-the-web-audio-api-is-designed-for/]	.

1
2
3
4
5
6
7
8
9
10
11
12
13

const	frequency	=	440;	//	440Hz	A	note.
	//	1	channel	(mono),	44100Hz	sample	rate
const	stream	=	window.audio.newStream(1,	44100);
stream.onfillsamples	=	function(samples)	{
				//	The	stream	needs	more	samples!
				const	startTime	=	stream.currentTime;	//	Time	in	seconds.
				for	(var	i	=	0;	i	<	samples.length;	i++)	{
								const	t	=	startTime	+	(i	/	stream.sampleRate);
								//	samples	is	an	Int16Array
								samples[i]	=	Math.sin(t	*	frequency)	*	0x7FFF;
				}
};
stream.play();

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

const	frequency	=	440;
const	ctx	=	new	AudioContext();
//	Buffer	size	of	4096,	0	input	channels,	1	output	channel.
const	scriptProcessorNode	=	ctx.createScriptProcessorNode(4096,	0,	1);
scriptProcessorNode.onaudioprocess	=	function(event)	{
				const	startTime	=	ctx.currentTime;
				const	samples	=	event.outputBuffer.getChannelData(0);
				for	(var	i	=	0;	i	<	4096;	i++)	{
								const	t	=	startTime	+	(i	/	ctx.sampleRate);
								//	samples	is	a	Float32Array
								samples[i]	=	Math.sin(t	*	frequency);
				}
};
//	Route	it	to	the	main	output.
scriptProcessorNode.connect(ctx.destination);

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

const	frequency	=	440;
const	ctx	=	new	AudioContext();
let	playTime	=	ctx.currentTime;
function	pumpAudio()	{
				//	The	rough	idea	here	is	that	we	buffer	audio	roughly	a
				//	second	ahead	of	schedule	and	rely	on	AudioContext's
				//	internal	timekeeping	to	keep	it	gapless.	playTime	is
				//	the	time	in	seconds	that	our	stream	is	currently
				//	buffered	to.
	
				//	Buffer	up	audio	for	roughly	a	second	in	advance.
				while	(playTime	-	ctx.currentTime	<	1)	{
								//	1	channel,	buffer	size	of	4096,	at
								//	a	48KHz	sampling	rate.
								const	buffer	=	ctx.createBuffer(1,	4096,	48000);
								const	samples	=	buffer.getChannelData(0);
								for	(let	i	=	0;	i	<	4096;	i++)	{
												const	t	=	playTime	+	Math.sin(i	/	48000);
												samples[i]	=	Math.sin(t	*	frequency);
								}
	
								//	Play	the	buffer	at	some	time	in	the	future.
								const	bsn	=	ctx.createBufferSource();
								bsn.buffer	=	buffer;
								bsn.connect(ctx.destination);
								//	When	a	buffer	is	done	playing,	try	to	queue	up
								//	some	more	audio.
								bsn.onended	=	function()	{
												pumpAudio();
								};
								bsn.start(playTime);
								//	Advance	our	expected	time.
								//	(samples)	/	(samples	per	second)	=	seconds
								playTime	+=	4096	/	48000;
				}
}
pumpAudio();

xiphon
on	September	13,	2017	at	9:33	pm	said:

Totally	agree	with	the	whole	post.	I	felt	the	same	a	while	ago	implementing	real-time	audio	playback	with	Web	Audio	API.	On	the	first
glance	it	looks	like	a	feature-rich	API	designed	by	experienced	audio	engineers	who	know	that	field	well.
But	when	you	are	about	to	start	using	it	in	the	real	project	you	facing	the	completely	broken	interface	by	design.

Alexey
on	September	13,	2017	at	10:40	pm	said:

I	can’t	stop	listening	the	music	from	your	test	app	and	reading	its	source.	Thanks	for	sharing	it!

Jasper	St.	Pierre
on	September	13,	2017	at	10:52	pm	said:

It	was	meant	as	a	testbed	before	I	finished	it,	so	there’s	no	credits	or	any	UI,	but	I	should	point	out	that	the	app	is	an	S-SMP
emulator,	the	sound	chip	for	the	Super	Nintendo.	It’s	quite	a	fun	piece	of	equipment,	with	a	custom	6502-alike	CPU	and	DSP
designed	by	Sony.

The	song	is	the	quite	famous	Stickerbush	Symphony	from	Donkey	Kong	Country	2,	composed	by	David	Wise.

Clean	Rinse
Shampoo	for	your	System

http://blog.mecheye.net/2017/09/i-dont-know-who-the-web-audio-api-is-designed-for/
https://threejs.org/
https://docs.unity3d.com/Manual/webgl-building.html
https://lists.w3.org/Archives/Public/public-whatwg-archive/2014May/0164.html
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Drawing_DOM_objects_into_a_canvas
https://webaudio.github.io/web-audio-api/
https://webaudio.github.io/web-audio-api/#the-dynamicscompressornode-interface
https://en.wikipedia.org/wiki/Circular_buffer
https://en.wikipedia.org/wiki/Compact_Disc_Digital_Audio
https://en.wikipedia.org/wiki/U-matic#Digital_audio
https://www.youtube.com/watch?v=gPBgWWZhcA4
https://developer.mozilla.org/en-US/docs/Web/API/ScriptProcessorNode
https://webaudio.github.io/web-audio-api/#AudioWorklet
https://bugs.webkit.org/show_bug.cgi?id=154538
https://github.com/kripken/emscripten/commit/9440047e4b99425032874d870683ca4a3c833e35
https://people.xiph.org/~xiphmont/demo/neil-young.html
https://www.google.com/search?q=%284096+%2F+48000%29+seconds+in+milliseconds
https://developer.mozilla.org/en-US/docs/Web/API/AudioBufferSourceNode
http://magcius.github.io/spc.js/spc.html
https://wiki.mozilla.org/Audio_Data_API
http://blog.mecheye.net/category/uncategorized/
http://blog.mecheye.net/author/jstpierre/
http://blog.mecheye.net/2017/09/i-dont-know-who-the-web-audio-api-is-designed-for/
http://blog.mecheye.net/2017/09/i-dont-know-who-the-web-audio-api-is-designed-for/#comment-633010
http://blog.mecheye.net/2017/09/i-dont-know-who-the-web-audio-api-is-designed-for/#comment-633012
http://blog.mecheye.net/2017/09/i-dont-know-who-the-web-audio-api-is-designed-for/#comment-633013
https://en.wikipedia.org/wiki/Nintendo_S-SMP
https://www.youtube.com/watch?v=W8zIaaU5i_Q
http://blog.mecheye.net/

