
Jose	Aguinaga
Web	Engineer.	Previously	@numbrs,	@plaidhq,	currently	@getflynt.	Javascript,	#people,	startups,	finte…
Oct	3,	2016 · 13	min	read

Follow

How	it	feels	to	learn	JavaScript	in	2016

No	JavaScript	frameworks	were	created	during	the	writing	of	this

article.

The	following	is	inspired	by	the	article	“It’s	the	future”	from	Circle	CI.

You	can	read	the	original	here.	This	piece	is	just	an	opinion,	and	like

any	JavaScript	framework,	it	shouldn’t	be	taken	too	seriously.

Hey,	I	got	this	new	web	project,	but	to	be	honest	I	haven’t	coded	much

web	in	a	few	years	and	I’ve	heard	the	landscape	changed	a	bit.	You	are

the	most	up-to	date	web	dev	around	here	right?

-The	actual	term	is	Front	End	engineer,	but	yeah,	I’m	the	right	guy.	I

do	web	in	2016.	Visualisations,	music	players,	flying	drones	that	play

football,	you	name	it.	I	just	came	back	from	JsConf	and	ReactConf,	so

I	know	the	latest	technologies	to	create	web	apps.

Cool.	I	need	to	create	a	page	that	displays	the	latest	activity	from	the

users,	so	I	just	need	to	get	the	data	from	the	REST	endpoint	and

display	it	in	some	sort	of	filterable	table,	and	update	it	if	anything

changes	in	the	server.	I	was	thinking	maybe	using	jQuery	to	fetch	and

display	the	data?

-Oh	my	god	no,	no	one	uses	jQuery	anymore.	You	should	try	learning

React,	it’s	2016.

Oh,	OK.	What’s	React?

-It’s	a	super	cool	library	made	by	some	guys	at	Facebook,	it	really

brings	control	and	performance	to	your	application,	by	allowing	you

to	handle	any	view	changes	very	easily.

That	sounds	neat.	Can	I	use	React	to	display	data	from	the	server?

-Yeah,	but	first	you	need	to	add	React	and	React	DOM	as	a	library	in

your	webpage.

Wait,	why	two	libraries?

-So	one	is	the	actual	library	and	the	second	one	is	for	manipulating

the	DOM,	which	now	you	can	describe	in	JSX.

JSX?	What	is	JSX?

-JSX	is	just	a	JavaScript	syntax	extension	that	looks	pretty	much	like

XML.	It’s	kind	of	another	way	to	describe	the	DOM,	think	of	it	as	a

better	HTML.

What’s	wrong	with	HTML?

-It’s	2016.	No	one	codes	HTML	directly	anymore.

Right.	Anyway,	if	I	add	these	two	libraries	then	I	can	use	React?

-Not	quite.	You	need	to	add	Babel,	and	then	you	are	able	to	use	React.

Another	library?	What’s	Babel?

-Oh,	Babel	is	a	transpiler	that	allows	you	to	target	specific	versions	of

JavaScript,	while	you	code	in	any	version	of	JavaScript.	You	don’t

HAVE	to	include	Babel	to	use	ReactJS,	but	unless	you	do,	you	are

stuck	with	using	ES5,	and	let’s	be	real,	it’s	2016,	you	should	be	coding

in	ES2016+	like	the	rest	of	the	cool	kids	do.

ES5?	ES2016+?	I’m	getting	lost	over	here.	What’s	ES5	and	ES2016+?

-ES5	stands	for	ECMAScript	5.	It’s	the	edition	that	has	most	people

target	since	it	has	been	implemented	by	most	browsers	nowadays.

ECMAScript?

-Yes,	you	know,	the	scripting	standard	JavaScript	was	based	on	in

1999	after	its	initial	release	in	1995,	back	then	when	JavaScript	was

named	Livescript	and	only	ran	in	the	Netscape	Navigator.	That	was

very	messy	back	then,	but	thankfully	now	things	are	very	clear	and

we	have,	like,	7	editions	of	this	implementation.

7	editions.	For	real.	And	ES5	and	ES2016+	are?

-The	fifth	and	seventh	edition	respectively.

Wait,	what	happened	with	the	sixth?

-You	mean	ES6?	Yeah,	I	mean,	each	edition	is	a	superset	of	the

previous	one,	so	if	you	are	using	ES2016+,	you	are	using	all	the

features	of	the	previous	versions.

Right.	And	why	use	ES2016+	over	ES6	then?

-Well,	you	COULD	use	ES6,	but	to	use	cool	features	like	async	and

await,	you	need	to	use	ES2016+.	Otherwise	you	are	stuck	with	ES6

generators	with	coroutines	to	block	asynchronous	calls	for	proper

control	flow.

I	have	no	idea	what	you	just	said,	and	all	these	names	are	confusing.

Look,	I’m	just	loading	a	bunch	of	data	from	a	server,	I	used	to	be	able

to	just	include	jQuery	from	a	CDN	and	just	get	the	data	with	AJAX

calls,	why	can’t	I	just	do	that?

-It’s	2016	man,	no	one	uses	jQuery	anymore,	it	ends	up	in	a	bunch	of

spaghetti	code.	Everyone	knows	that.

Right.	So	my	alternative	is	to	load	three	libraries	to	fetch	data	and

display	a	HTML	table.

-Well,	you	include	those	three	libraries	but	bundle	them	up	with	a

module	manager	to	load	only	one	file.

I	see.	And	what’s	a	module	manager?

-The	definition	depends	on	the	environment,	but	in	the	web	we

usually	mean	anything	that	supports	AMD	or	CommonJS	modules.

Riiight.	And	AMD	and	CommonJS	are…?

-Definitions.	There	are	ways	to	describe	how	multiple	JavaScript

libraries	and	classes	should	interact.	You	know,	exports	and

requires?	You	can	write	multiple	JavaScript	files	defining	the	AMD	or

CommonJS	API	and	you	can	use	something	like	Browserify	to	bundle

them	up.

OK,	that	makes	sense…	I	think.	What	is	Browserify?

-It’s	a	tool	that	allows	you	to	bundle	CommonJS	described

dependencies	to	files	that	can	be	run	in	the	browser.	It	was	created

because	most	people	publish	those	dependencies	in	the	npm	registry.

npm	registry?

-It’s	a	very	big	public	repository	where	smart	people	put	code	and

dependencies	as	modules.

Like	a	CDN?

-Not	really.	It’s	more	like	a	centralised	database	where	anyone	can

publish	and	download	libraries,	so	you	can	use	them	locally	for

development	and	then	upload	them	to	a	CDN	if	you	want	to.

Oh,	like	Bower!

-Yes,	but	it’s	2016	now,	no	one	uses	Bower	anymore.

Oh,	I	see…	so	I	need	to	download	the	libraries	from	npm	then?

-Yes.	So	for	instance,	if	you	want	to	use	React	,	you	download	the

React	module	and	import	it	in	your	code.	You	can	do	that	for	almost

every	popular	JavaScript	library.

Oh,	like	Angular!

-Angular	is	so	2015.	But	yes.	Angular	would	be	there,	alongside

VueJS	or	RxJS	and	other	cool	2016	libraries.	Want	to	learn	about

those?

Let’s	stick	with	React,	I’m	already	learning	too	many	things	now.	So,	if

I	need	to	use	React	I	fetch	it	from	this	npm	and	then	use	this

Browserify	thing?

-Yes.

That	seems	overly	complicated	to	just	grab	a	bunch	of	dependencies

and	tie	them	together.

-It	is,	that’s	why	you	use	a	task	manager	like	Grunt	or	Gulp	or

Broccoli	to	automate	running	Browserify.	Heck,	you	can	even	use

Mimosa.

Grunt?	Gulp?	Broccoli?	Mimosa?	The	heck	are	we	talking	about	now?

-Task	managers.	But	they	are	not	cool	anymore.	We	used	them	in

like,	2015,	then	we	used	Makefiles,	but	now	we	wrap	everything	with

Webpack.

Makefiles?	I	thought	that	was	mostly	used	on	C	or	C++	projects.

-Yeah,	but	apparently	in	the	web	we	love	making	things	complicated

and	then	going	back	to	the	basics.	We	do	that	every	year	or	so,	just

wait	for	it,	we	are	going	to	do	assembly	in	the	web	in	a	year	or	two.

Sigh.	You	mentioned	something	called	Webpack?

-It’s	another	module	manager	for	the	browser	while	being	kind	of	a

task	runner	as	well.	It’s	like	a	better	version	of	Browserify.

Oh,	Ok.	Why	is	it	better?

-Well,	maybe	not	better,	it’s	just	more	opinionated	on	how	your

dependencies	should	be	tied.	Webpack	allows	you	to	use	different

module	managers,	and	not	only	CommonJS	ones,	so	for	instance

native	ES6	supported	modules.

I’m	extremely	confused	by	this	whole	CommonJS/ES6	thing.

-Everyone	is,	but	you	shouldn’t	care	anymore	with	SystemJS.

Jesus	christ,	another	noun-js.	Ok,	and	what	is	this	SystemJS?

-Well,	unlike	Browserify	and	Webpack	1.x,	SystemJS	is	a	dynamic

module	loader	that	allows	you	to	tie	multiple	modules	in	multiple	files

instead	of	bundling	them	in	one	big	file.

Wait,	but	I	thought	we	wanted	to	build	our	libraries	in	one	big	file	and

load	that!

-Yes,	but	because	HTTP/2	is	coming	now	multiple	HTTP	requests	are

actually	better.

Wait,	so	can’t	we	just	add	the	three	original	libraries	for	React??

-Not	really.	I	mean,	you	could	add	them	as	external	scripts	from	a

CDN,	but	you	would	still	need	to	include	Babel	then.

Sigh.	And	that	is	bad	right?

-Yes,	you	would	be	including	the	entire	babel-core,	and	it	wouldn’t	be

efficient	for	production.	On	production	you	need	to	perform	a	series

of	pre-tasks	to	get	your	project	ready	that	make	the	ritual	to	summon

Satan	look	like	a	boiled	eggs	recipe.	You	need	to	minify	assets,	uglify

them,	inline	css	above	the	fold,	defer	scripts,	as	well	as-

I	got	it,	I	got	it.	So	if	you	wouldn’t	include	the	libraries	directly	in	a

CDN,	how	would	you	do	it?

-I	would	transpile	it	from	Typescript	using	a	Webpack	+	SystemJS	+

Babel	combo.

Typescript?	I	thought	we	were	coding	in	JavaScript!

-Typescript	IS	JavaScript,	or	better	put,	a	superset	of	JavaScript,

more	specifically	JavaScript	on	version	ES6.	You	know,	that	sixth

version	we	talked	about	before?

I	thought	ES2016+	was	already	a	superset	of	ES6!	WHY	we	need	now

this	thing	called	Typescript?

-Oh,	because	it	allows	us	to	use	JavaScript	as	a	typed	language,	and

reduce	run-time	errors.	It’s	2016,	you	should	be	adding	some	types	to

your	JavaScript	code.

And	Typescript	obviously	does	that.

-Flow	as	well,	although	it	only	checks	for	typing	while	Typescript	is	a

superset	of	JavaScript	which	needs	to	be	compiled.

Sigh…	and	Flow	is?

-It’s	a	static	type	checker	made	by	some	guys	at	Facebook.	They

coded	it	in	OCaml,	because	functional	programming	is	awesome.

OCaml?	Functional	programming?

-It’s	what	the	cool	kids	use	nowadays	man,	you	know,	2016?

Functional	programming?	High	order	functions?	Currying?	Pure

functions?

I	have	no	idea	what	you	just	said.

-No	one	does	at	the	beginning.	Look,	you	just	need	to	know	that

functional	programming	is	better	than	OOP	and	that’s	what	we

should	be	using	in	2016.

Wait,	I	learned	OOP	in	college,	I	thought	that	was	good?

-So	was	Java	before	being	bought	by	Oracle.	I	mean,	OOP	was	good

back	in	the	days,	and	it	still	has	its	uses	today,	but	now	everyone	is

realising	modifying	states	is	equivalent	to	kicking	babies,	so	now

everyone	is	moving	to	immutable	objects	and	functional

programming.	Haskell	guys	had	been	calling	it	for	years,	-and	don’t

get	me	started	with	the	Elm	guys-	but	luckily	in	the	web	now	we	have

libraries	like	Ramda	that	allow	us	to	use	functional	programming	in

plain	JavaScript.

Are	you	just	dropping	names	for	the	sake	of	it?	What	the	hell	is

Ramnda?

-No.	Ramda.	Like	Lambda.	You	know,	that	David	Chambers’	library?

David	who?

-David	Chambers.	Cool	guy.	Plays	a	mean	Coup	game.	One	of	the

contributors	for	Ramda.	You	should	also	check	Erik	Meijer	if	you	are

serious	about	learning	functional	programming.

And	Erik	Meijer	is…?

-Functional	programming	guy	as	well.	Awesome	guy.	He	has	a

bunch	of	presentations	where	he	trashes	Agile	while	using	this	weird

coloured	shirt.	You	should	also	check	some	of	the	stuff	from	Tj,	Jash

Kenas,	Sindre	Sorhus,	Paul	Irish,	Addy	Osmani-

Ok.	I’m	going	to	stop	you	there.	All	that	is	good	and	fine,	but	I	think	all

that	is	just	so	complicated	and	unnecessary	for	just	fetching	data	and

displaying	it.	I’m	pretty	sure	I	don’t	need	to	know	these	people	or	learn

all	those	things	to	create	a	table	with	dynamic	data.	Let’s	get	back	to

React.	How	can	I	fetch	the	data	from	the	server	with	React?

-Well,	you	actually	don’t	fetch	the	data	with	React,	you	just	display

the	data	with	React.

Oh,	damn	me.	So	what	do	you	use	to	fetch	the	data?

-You	use	Fetch	to	fetch	the	data	from	the	server.

I’m	sorry?	You	use	Fetch	to	fetch	the	data?	Whoever	is	naming	those

things	needs	a	thesaurus.

-I	know	right?	Fetch	it’s	the	name	of	the	native	implementation	for

performing	XMLHttpRequests	against	a	server.

Oh,	so	AJAX.

-AJAX	is	just	the	use	of	XMLHttpRequests.	But	sure.	Fetch	allows	you

to	do	AJAX	based	in	promises,	which	then	you	can	resolve	to	avoid

the	callback	hell.

Callback	hell?

-Yeah.	Every	time	you	perform	an	asynchronous	request	against	the

server,	you	need	to	wait	for	its	response,	which	then	makes	you	to

add	a	function	within	a	function,	which	is	called	the	callback	pyramid

from	hell.

Oh,	Ok.	And	this	promise	thing	solves	it?

-Indeed.	By	manipulating	your	callbacks	through	promises,	you	can

write	easier	to	understand	code,	mock	and	test	them,	as	well	as

perform	simultaneous	requests	at	once	and	wait	until	all	of	them	are

loaded.

And	that	can	be	done	with	Fetch?

-Yes,	but	only	if	your	user	uses	an	evergreen	browser,	otherwise	you

need	to	include	a	Fetch	polyfill	or	use	Request,	Bluebird	or	Axios.

How	many	libraries	do	I	need	to	know	for	god’s	sake?	How	many	are

of	them?

-It’s	JavaScript.	There	has	to	be	thousands	of	libraries	that	all	do	the

same	thing.	We	know	libraries,	in	fact,	we	have	the	best	libraries.	Our

libraries	are	huuuge,	and	sometimes	we	include	pictures	of	Guy	Fieri

in	them.

Did	you	just	say	Guy	Fieri?	Let’s	get	this	over	with.	What	these

Bluebird,	Request,	Axios	libraries	do?

-They	are	libraries	to	perform	XMLHttpRequests	that	return

promises.

Didn’t	jQuery’s	AJAX	method	start	to	return	promises	as	well?

-We	don’t	use	the	“J”	word	in	2016	anymore.	Just	use	Fetch,	and

polyfill	it	when	it’s	not	in	a	browser	or	use	Bluebird,	Request	or	Axios

instead.	Then	manage	the	promise	with	await	within	an	async

function	and	boom,	you	have	proper	control	flow.

It’s	the	third	time	you	mention	await	but	I	have	no	idea	what	it	is.

-Await	allows	you	to	block	an	asynchronous	call,	allowing	you	to

have	better	control	on	when	the	data	is	being	fetch	and	overall

increasing	code	readability.	It’s	awesome,	you	just	need	to	make	sure

you	add	the	stage-3	preset	in	Babel,	or	use	syntax-async-functions

and	transform-async-to-generator	plugin.

This	is	insane.

-No,	insane	is	the	fact	you	need	to	precompile	Typescript	code	and

then	transpile	it	with	Babel	to	use	await.

Wat?	It’s	not	included	in	Typescript?

-It	does	in	the	next	version,	but	as	of	version	1.7	it	only	targets	ES6,	so

if	you	want	to	use	await	in	the	browser,	first	you	need	to	compile

your	Typescript	code	targeting	ES6	and	then	Babel	that	shit	up	to

target	ES5.

At	this	point	I	don’t	know	what	to	say.

-Look,	it’s	easy.	Code	everything	in	Typescript.	All	modules	that	use

Fetch	compile	them	to	target	ES6,	transpile	them	with	Babel	on	a

stage-3	preset,	and	load	them	with	SystemJS.	If	you	don’t	have	Fetch,

polyfill	it,	or	use	Bluebird,	Request	or	Axios,	and	handle	all	your

promises	with	await.

We	have	very	different	definitions	of	easy.	So,	with	that	ritual	I	finally

fetched	the	data	and	now	I	can	display	it	with	React	right?

-Is	your	application	going	to	handle	any	state	changes?

Err,	I	don’t	think	so.	I	just	need	to	display	the	data.

-Oh,	thank	god.	Otherwise	I	would	had	to	explain	you	Flux,	and

implementations	like	Flummox,	Alt,	Fluxible.	Although	to	be	honest

you	should	be	using	Redux.

I’m	going	to	just	fly	over	those	names.	Again,	I	just	need	to	display

data.

-Oh,	if	you	are	just	displaying	the	data	you	didn’t	need	React	to	begin

with.	You	would	had	been	fine	with	a	templating	engine.

Are	you	kidding	me?	Do	you	think	this	is	funny?	Is	that	how	you	treat

your	loved	ones?

-I	was	just	explaining	what	you	could	use.

Stop.	Just	stop.

-I	mean,	even	if	it’s	just	using	templating	engine,	I	would	still	use	a

Typescript	+	SystemJS	+	Babel	combo	if	I	were	you.

I	need	to	display	data	on	a	page,	not	perform	Sub	Zero’s	original	MK

fatality.	Just	tell	me	what	templating	engine	to	use	and	I’ll	take	it	from

there.

-There’s	a	lot,	which	one	you	are	familiar	with?

Ugh,	can’t	remember	the	name.	It	was	a	long	time	ago.

-jTemplates?	jQote?	PURE?

Err,	doesn’t	ring	a	bell.	Another	one?

-Transparency?	JSRender?	MarkupJS?	KnockoutJS?	That	one	had

two-way	binding.

Another	one?

-PlatesJS?	jQuery-tmpl?	Handlebars?	Some	people	still	use	it.

Maybe.	Are	there	similar	to	that	last	one?

-Mustache,	underscore?	I	think	now	even	lodash	has	one	to	be	honest,

but	those	are	kind	of	2014.

Err..	maybe	it	was	newer.

-Jade?	DustJS?

No.

-DotJS?	EJS?

No.

-Nunjucks?	ECT?

No.

-Mah,	no	one	likes	Coffeescript	syntax	anyway.	Jade?

No,	you	already	said	Jade.

-I	meant	Pug.	I	meant	Jade.	I	mean,	Jade	is	now	Pug.

Sigh.	No.	Can’t	remember.	Which	one	would	you	use?

-Probably	just	ES6	native	template	strings.

Let	me	guess.	And	that	requires	ES6.

-Correct.

Which,	depending	on	what	browser	I’m	using	needs	Babel.

-Correct.

Which,	if	I	want	to	include	without	adding	the	entire	core	library,	I

need	to	load	it	as	a	module	from	npm.

-Correct.

Which,	requires	Browserify,	or	Wepback,	or	most	likely	that	other

thing	called	SystemJS.

-Correct.

Which,	unless	it’s	Webpack,	ideally	should	be	managed	by	a	task

runner.

-Correct.

But,	since	I	should	be	using	functional	programming	and	typed

languages	I	first	need	to	pre-compile	Typescript	or	add	this	Flow

thingy.

-Correct.

And	then	send	that	to	Babel	if	I	want	to	use	await.

-Correct.

So	I	can	then	use	Fetch,	promises,	and	control	flow	and	all	that	magic.

-Just	don’t	forget	to	polyfill	Fetch	if	it’s	not	supported,	Safari	still

can’t	handle	it.

You	know	what.	I	think	we	are	done	here.	Actually,	I	think	I’m	done.

I’m	done	with	the	web,	I’m	done	with	JavaScript	altogether.

-That’s	fine,	in	a	few	years	we	all	are	going	to	be	coding	in	Elm	or

WebAssembly.

I’m	just	going	to	move	back	to	the	backend.	I	just	can’t	handle	these

many	changes	and	versions	and	editions	and	compilers	and

transpilers.	The	JavaScript	community	is	insane	if	it	thinks	anyone	can

keep	up	with	this.

-I	hear	you.	You	should	try	the	Python	community	then.

Why?

-Ever	heard	of	Python	3?

Update:	Thanks	for	pointing	typos	and	mistakes,	I’ll	update	the

article	as	noted.	Discussion	in	HackerNews	and	Reddit.

Hacker	Noon	is	how	hackers	start	their	afternoons.	We’re	a	part	of

the	@AMI	family.	We	are	now	accepting	submissions	and	happy	to

discuss	advertising	&	sponsorship	opportunities.

If	you	enjoyed	this	story,	we	recommend	reading	our	latest	tech

stories	and	trending	tech	stories.	Until	next	time,	don’t	take	the

realities	of	the	world	for	granted!

https://hackernoon.com/@jjperezaguinaga?source=post_header_lockup
https://hackernoon.com/@jjperezaguinaga?source=post_header_lockup
https://circleci.com/blog/its-the-future/
https://news.ycombinator.com/item?id=12628921
https://www.reddit.com/r/programming/comments/55okik/how_it_feels_to_learn_javascript_in_2016_xpost/
http://bit.ly/Hackernoon
http://bit.ly/atAMIatAMI
http://bit.ly/hackernoonsubmission
mailto:partners@amipublications.com
http://bit.ly/hackernoonlatestt
https://hackernoon.com/trending
http://bit.ly/HackernoonFB
https://goo.gl/k7XYbx
https://goo.gl/4ofytp
https://goo.gl/Ahtev1

