
By	Jake	Edge
November	20,	2017

ELC	Europe

Send	a	free	link

User:	 	Password:	 	 Log	in 	|	 Subscribe 	|	 Register

Replacing	x86	firmware	with	Linux	and	Go
[LWN	subscriber-only	content]

Welcome	to	LWN.net
The	following	subscription-only	content	has	been	made	available	to	you	by	an	LWN
subscriber.	Thousands	of	subscribers	depend	on	LWN	for	the	best	news	from	the
Linux	and	free	software	communities.	If	you	enjoy	this	article,	please	consider
accepting	the	trial	offer	on	the	right.	Thank	you	for	visiting	LWN.net!

Free	trial	subscription
Try	LWN	for	free	for	1	month:	no
payment	or	credit	card	required.
Activate	your	trial	subscription	now	and
see	why	thousands	of	readers	subscribe
to	LWN.net.

The	Intel	Management	Engine	(ME),	which	is	a	separate	processor	and	operating	system	running	outside	of	user	control
on	most	x86	systems,	has	long	been	of	concern	to	users	who	are	security	and	privacy	conscious.	Google	and	others	have
been	working	on	ways	to	eliminate	as	much	of	that	functionality	as	possible	(while	still	being	able	to	boot	and	run	the
system).	Ronald	Minnich	from	Google	came	to	Prague	to	talk	about	those	efforts	at	the	2017	Embedded	Linux	Conference
Europe.

He	began	by	noting	that	most	times	he	is	talking	about	firmware,	it	is	with	his	coreboot	hat	on.	But	he	removed	said	"very	nice	hat",	since	his	talk
was	"not	a	coreboot	talk".	He	listed	a	number	of	people	who	had	worked	on	the	project	to	"replace	your	exploit-ridden	firmware	with	a	Linux
kernel",	including	several	from	partner	companies	(Two	Sigma,	Cisco,	and	Horizon	Computing)	as	well	as	several	other	Google	employees.

The	results	they	achieved	were	to	drop	the	boot	time	on	an	Open	Compute	Project	(OCP)	node	from	eight	minutes	to	20	seconds.	To	his	way	of
thinking,	that	is	"maybe	the	single	least	important	part"	of	this	work,	he	said.	All	of	the	user-space	parts	of	the	boot	process	are	written	in	Go;	that
includes	everything	in	initramfs,	including	init.	This	brings	Linux	performance,	reliability,	and	security	to	the	boot	process	and	they	were	able	to
eliminate	all	of	the	ME	and	UEFI	post-boot	activity	from	the	boot	process.

Describing	the	mess

The	problem,	Minnich	said,	is	that	Linux	has	lost	its	control	of	the	hardware.	Back	in	the	1990s,	when	many	of	us	started	working	with	Linux,	it
controlled	everything	in	the	x86	platform.	But	today	there	are	at	least	two	and	a	half	kernels	between	Linux	and	the	hardware.	Those	kernels	are
proprietary	and,	not	surprisingly,	exploit	friendly.	They	run	at	a	higher	privilege	level	than	Linux	and	can	manipulate	both	the	hardware	and	the
operating	system	in	various	ways.	Worse	yet,	exploits	can	be	written	into	the	flash	of	the	system	so	that	they	persist	and	are	difficult	or	impossible
to	remove—shredding	the	motherboard	is	likely	the	only	way	out.

He	used	to	give	a	talk	with	the	title:	"If	you	trust	your	computer,	you're	crazy",	due	to	all	of	that	proprietary	code	running	on	our	systems.	He
hopes	that	this	talk	will	give	folks	ways	to	deal	with	some	of	those	problems,	"so	we	can	stop	being	crazy	and	maybe	get	a	little	sane".

He	showed	one	of	his	slides	[PDF]	(above)	that	described	the	seen	and	unseen	operating	systems	running	on	an	x86	system.	Ring	0	is	Linux	and,
because	"we	ran	out	of	ring	numbers",	hypervisors	like	Xen	are	ring	-1,	but	below	that	are	rings	that	are	running	code	that	you	don't	have	access
to,	sometimes	on	processors	you	don't	even	know	are	part	of	the	system.	Ring	-2	has	a	kernel	and	a	half	kernel;	it	consists	of	UEFI,	which	is	the
full	kernel,	and	system	management	mode	(SMM),	which	traps	to	8086	16-bit	mode,	thus	the	"half"	designation.	Those	control	everything	about
the	CPU	and	are	invisible	to	the	rings	above.	Every	time	you	close	the	lid	of	your	laptop,	or	do	certain	other	things,	SMM	traps	to	classic	8086
mode;	"that	should	make	you	happy",	he	said	sarcastically.

Ring	-3	is	"the	one	that	has	people	really	worried".	It	runs	MINIX	3	and	is	where	the	ME	runs.	It	is	the	cause	of	the	"year	of	MINIX	3	on	the
desktop",	he	joked,	since	there	are	more	systems	with	the	ME	than	any	of	Linux,	macOS,	or	Windows.

There	is	no	common	code	between	the	systems	running	in	ring	-2	and	ring	-3	as	far	as	he	knows,	but	they	both	have	a	wide	range	of	capabilities.
Both	have	IPv4	and	IPv6	networking	stacks,	filesystems,	drivers	for	various	devices	(disk,	network,	USB,	...),	and	web	servers.	The	ME	needs
filesystems	because	it	can	be	used	to	reimage	the	system;	in	fact,	Minnich	said,	it	can	reimage	the	system	even	if	the	power	is	turned	off	as	long	as
it	is	plugged	into	the	wall	and	the	network.

There	is	a	whole	raft	of	components	that	make	up	the	ring	-3	ME,	many	of	which	he	does	not	understand.	For	example	there	are	components
named	"full	network	manageability",	"regular	network	manageability",	and	"manageability",	as	well	as	the	"outbreak	containment	heuristic".	He
pointed	to	a	Master's	thesis	[large	PDF]	from	Vassilios	Ververis	about	ten	years	ago	that	looked	at	many	different	flaws	in	the	ME.	It	is	rather
depressing,	Minnich	said,	since	it	showed	that	almost	every	part	of	the	ME	could	be	attacked;	some	of	those	bugs	still	have	not	been	fixed.

He	referenced	the	headline	of	a	Wired	article	about	an	ME	exploit	("Intel	Fixes	a	Critical	Bug	That	Lingered	for	7	Dang
Years")	that	he	thought	was	funny.	Less	funny	was	the	bug	itself	that	allowed	a	zero-length	password	to	be	sent	to	the
web	server	to	give	administrator	access	to	systems	with	the	ME.	Since	the	bug	was	present	for	seven	years,	that	adds	up
to	around	a	billion	systems,	he	said,	and	he	strongly	doubts	that	all	of	those	have	been	patched	with	a	firmware	update.

He	moved	on	to	the	half	OS	in	ring	-2.	SMM	was	originally	meant	to	handle	power	management	on	DOS	systems;	it	can
take	over	the	system	out	from	under	ring	0	when	certain	events	(system	management	interrupts	or	SMIs)	occur.	There
are	a	lot	of	SMI	exploits	and,	once	SMM	is	enabled,	it	cannot	be	turned	off.	It	takes	8MB	of	memory	away	from	the	rest	of
the	system	for	its	purposes.	SMM	is	"a	good	way	to	maintain	vendor	control	over	you",	he	said.

The	other	thing	running	in	ring	-2	is	UEFI;	both	it	and	SMM	run	on	the	main	CPU.	UEFI	is	"an	extremely	complex	kernel";
vendors	are	writing	code	for	the	kernel,	but	they	don't	understand	all	of	the	rules,	so	they	make	mistakes.	The	result	is
that	"there	are	big,	giant	holes	that	people	can	drive	exploits	through".	The	UEFI	security	model,	as	far	as	he	can	see,	is
obscurity.

There	are	tons	of	exploits	for	UEFI,	he	said.	Because	UEFI	is	updated	by	handing	off	bits	of	UEFI	code	to	the	UEFI
kernel,	he	is	worried	that	exploits	will	persistently	infect	that	process,	such	that	it	will	claim	to	update	itself,	but	not	do
so.	That	only	leaves	the	shredder.

He	summarized	by	reiterating	what	he	had	just	described:	2.5	hidden	OSes	with	network	stacks,	web	servers,	and	other	capabilities.	These	OSes
have	bugs	that	can	persist	across	power	cycles	and	reinstalls	and	those	bugs	have	been	exploited	in	the	past.	His	old	talk	used	to	end	here	with	a
question:	"Are	you	scared	yet?"

Fixing	the	mess

"So	how	do	we	fix	this	mess?",	he	asked.	Some	people	say	to	switch	to	AMD	processors,	but	that	is	not	really	a	solution	now.	Ryzen	is	touted	to	be
open,	but	that	is	not	truly	the	case,	there	are	still	closed	parts.	So	the	project	is	focusing	on	Intel	x86	processors	and	has	the	goal	of	reducing	the
scope	of	the	2.5	OSes.	The	project	is	called	"non-extensible	reduced	firmware"	(NERF),	partly	because	the	team	believes	the	"extensible"	in	UEFI
is	harmful.	Apparently,	there	is	no	overall	web	page	for	NERF	itself,	though	some	of	the	components	Minnich	talks	about	do	have	web	pages.
[Update:	As	noted	in	the	comments,	there	is	a	NERF	web	page.]

The	idea	behind	NERF	is	to	reduce	the	harm	that	the	firmware	is	capable	of.	In	addition,	there	is	an	effort	to	make	what	the	firmware	is	doing
more	visible.	It	does	this	by	removing	almost	all	of	the	runtime	components	from	the	firmware;	the	"almost"	refers	to	the	ME,	which	is	hard	to	kill
completely,	he	said.	If	you	completely	remove	the	ME,	your	node	probably	will	not	boot,	but	NERF	has	taken	away	the	ME's	web	server	and	IP
stacks.	The	UEFI	IP	stack	and	other	drivers	have	also	been	removed.	Beyond	that,	the	self-reflash	capability	for	ME	and	UEFI	has	been	removed,
so	Linux	manages	all	flash	updates.

The	NERF	components	are	a	de-blobbed	ME	ROM	and	a	UEFI	ROM	that	has	been	reduced	to	its	most	basic	parts;	in	addition,	SMM	has	been
disabled	or	vectored	to	Linux	where	that	is	needed.	On	top	of	that	runs	a	Linux	kernel	with	a	Go-based	user	space	(u-root).	He	noted	that	the
project	is	particularly	interested	in	any	Go	programmers	who	want	to	contribute	to	just	that	piece.

They	would	prefer	to	remove	the	ME	entirely,	but	that	simply	is	not	an	option.	If	you	remove	it,	the	system	may	not	boot,	power	on,	or,	if	it	does
power	on,	it	may	shut	down	again	in	30	minutes.	But	there	is	some	good	news:	the	ME	has	multiple	components	and	most	of	them	can	be	removed.

He	pointed	to	the	me_cleaner	project	that	will	process	an	ME	ROM	to	remove	most	of	it.	For	example,	on	the	MinnowMax,	5MB	of	the	8MB	flash
was	used	for	the	ME,	but	that	was	reduced	to	300KB	by	me_cleaner.	So	you	only	need	300KB	of	the	ME	to	boot	Linux	and	that	gets	rid	of	all	of	the
stuff	you	really	don't	want	the	ME	to	be	doing	anyway.	The	ME	reduction	is	working	for	MinnowMax	and	a	number	of	other	boards,	he	said.

If	you	"get	into	the	game	early	enough",	and	they	believe	their	Linux	kernel	does,	SMM	can	be	completely	disabled.	As	far	as	they	can	tell,	there	is
no	requirement	to	run	SMM;	it	is	mostly	there	for	"value	add"	by	the	vendors,	which	is	just	a	way	to	try	to	lock	people	into	their	platform.	If	it	ever
becomes	an	issue	for	some	hardware,	though,	there	are	ways	to	vector	the	SMIs	to	the	kernel.	The	theme	is	to	keep	Linux	in	control,	he	said.

UEFI	is	"huge	and	extremely	complex",	but	there	are	a	lot	of	mistakes	made	in	the	implementation	of	it.	Some	interrupts,	including	memory-error-
detection	interrupts,	still	need	to	be	routed	to	UEFI,	though.	They	want	to	remove	the	opportunities	for	UEFI	drivers	to	put	in	exploits	by	making
it	non-extensible.	He	showed	"an	eye	chart"	of	all	of	the	different	services	that	UEFI	provides;	he	noted	that	it	looks	like	a	kernel,	because	it	is,
and	said	that	"it	is	a	sizable	fraction	of	the	size	of	Linux".

Next	up,	he	showed	the	standard	UEFI	boot	process;	it	starts	with	two	phases	(security	or	SEC	and	pre-EFI	initialization	or	PEI)	that	are
completely	proprietary	and	will	never	be	released	by	the	vendors,	he	said.	Beyond	that,	though,	the	next	phase,	which	is	called	the	driver
execution	environment	(DXE),	has	a	well-defined	interface	that	multiple	components	(DXE	core,	drivers,	boot	manager,	...)	conform	to.

The	boot	manager	is	responsible	for	starting	up	the	operating	system.	When	you	see	the	screen	that	allows	choosing	what	to	boot	on	a	UEFI
system,	that	is	the	boot	manager.	What	they	have	done	is	to	replace	the	boot	manager	with	a	Linux	kernel	that	conforms	to	the	DXE	interface.	On
the	OCP	node	system	that	was	being	demonstrated	elsewhere	at	the	conference,	booting	the	Linux	kernel	took	20	seconds	from	power-on;	the	Go-
based	user	space	does	a	DHCP	query,	a	wget	for	the	server	kernel,	and	then	a	kexec	into	the	new	kernel,	which	takes	an	additional	three	seconds.
There	are	plans	to	replace	the	DXE	core	component	with	something	that	is	open	source	and	knows	more	about	how	to	boot	Linux;	that	should
reduce	the	boot	time	even	further,	Minnich	said.

He	does	not	believe	that	we	will	ever	get	access	to	that	early	boot	code	(SEC	and	PEI)	for	UEFI.	Even	for	Chromebooks	running	coreboot,	that
piece	is	a	binary	blob.	The	best	we	can	do,	he	said,	is	to	replace	the	pieces	at	that	well-defined	interface,	which	is	what	has	been	done.	In	addition,
the	goal	was	to	get	rid	of	all	the	UEFI	runtime	services,	which	has	been	accomplished.

As	part	of	his	Heads	project,	Trammel	Hudson	has	put	together	some	Makefiles	and	the	like	to	create	a	NERF	image.	That	can	be	used	with	a
custom	kernel	and	initramfs	to	replace	as	much	of	UEFI	as	possible.	They	have	had	good	results	on	a	Dell	server,	the	MinowMax,	and	the	OCP
nodes.

Using	Linux	makes	the	firmware	easier	to	work	with,	Minnich	said.	Normally,	there	are	lots	of	fiddly,	hardware-specific	pieces	that	need	to	be
changed	in	the	firmware,	but	using	the	DXE	interface	makes	a	lot	of	those	problems	go	away.	He	expected	that	different	kernels	would	be	required
for	the	different	systems,	but	he	has	been	using	the	same	kernel	on	the	MinnowMax,	which	is	a	small	system,	and	the	OCP	node,	which	is	a	rather
large	system.

The	user-space	piece	is	all	written	in	Go,	which	is	generally	more	trusted	than	C	within	Google,	he	said.	The	5.9MB	initramfs	contains	all	of	the
source	code	for	the	user	space,	all	of	the	Go	compiler	and	package	sources,	and	a	Go	toolchain.	The	commands	are	built	on	the	fly,	as	they	are
needed,	which	usually	takes	around	200ms	per	command;	once	they	are	built,	it	is	"nearly	instantaneous"	(1ms)	for	them	to	run.	From	a	security
angle,	that's	good	because	all	of	the	source	is	available	to	be	examined.

For	cases	where	there	is	not	sufficient	space	for	an	initramfs	of	that	size	or	enough	CPU	power	to	do	even	a	fast	compile	step	on	the	way	to
booting,	there	is	another	mode	for	the	u-root	Go	commands.	It	is	like	BusyBox,	in	that	there	is	one	binary	that	is	linked	to	a	bunch	of	different
command	names;	this	mode	uses	the	Go	abstract	syntax	tree	package	to	rewrite	the	commands	as	packages.	That	reduces	the	footprint	to	2MB,
which	is	useful	on	systems	with	less	flash	space.

There	are	some	implications	of	the	u-root	work	that	has	Minnich	thinking	about	booting	for	desktop	systems.	With	u-root,	there	are	no	scripts	or
unit	files	to	deal	with,	there	is	simply	a	single	program	that	boots	the	system,	which	leads	to	"things	coming	up	really	fast".	It	is	more
understandable	for	him	and	makes	the	boot	process	faster.	There	is	a	project	at	Google,	called	NiChrome,	that	can	bring	up	a	Chromebook	all	the
way	from	power-up	to	X11	and	a	browser	in	five	seconds.

Go	is	a	compiled	language,	but	it	is	often	used	for	scripting.	Minnich	uses	it	that	way	"all	the	time";	he	stopped	writing	Bash	scripts	years	ago	in
favor	of	Go.	It	is	"easier	and	more	reliable"	to	write	scripts	in	Go.

He	concluded	by	saying	that	he	is	hoping	to	see	companies	ship	hardware	with	NERF	and	u-root	in	2018.	Companies	want	to	have	firmware	that
they	understand,	he	said;	they	also	want	it	to	boot	quickly	and	be	secure.	In	the	Q&A,	Minnich	was	asked	about	secure	boot	and	TPMs.	Neither	is
supported	currently,	though	there	is	a	non-working	verified	boot	program	in	u-root	at	this	point.	For	TPM	support,	he	thinks	the	project	will	follow
what	Chrome	OS	has	done,	rather	than	take	the	secure	boot	path.

He	was	also	asked	about	the	relationship	of	this	work	to	coreboot.	Minnich	said	that	coreboot	should	always	be	preferred,	but	it	has	not	been
available	for	server	platforms	for	12	years.	So	he	would	suggest	that	developers	"always	use	coreboot	if	you	can",	but	if	not,	look	at	NERF.

Those	interested	can	view	the	YouTube	video	of	Minnich's	talk.

[I	would	like	to	thank	LWN's	travel	sponsor,	the	Linux	Foundation,	for	supporting	my	travel	to	Prague	for	ELC	Europe.]

Did	you	like	this	article?	Please	accept	our	trial	subscription	offer	to	be	able	to	see	more	content	like	it	and	to	participate	in	the
discussion.

(Log	in	to	post	comments)

Replacing	x86	firmware	with	Linux	and	Go
Posted	Nov	20,	2017	21:03	UTC	(Mon)	by	kjp	(subscriber,	#39639)	[Link]

>	he	stopped	writing	Bash	scripts	years	ago	in	favor	of	Go.	It	is	"easier	and	more	reliable"	to	write	scripts	in	Go.

My	shell	scripts	use	"set	-e"	and	my	python	scripts	raise	exceptions,	so	errors	don't	pass	silently.	Also	swift	has
really,	really	good	syntax	for	exceptions.	Wake	me	up	when	this	passes	GO.

Replacing	x86	firmware	with	Linux	and	Go
Posted	Nov	21,	2017	1:20	UTC	(Tue)	by	avasu	(subscriber,	#99452)	[Link]

The	issue	with	most	scripts	is	that	they	usually	rely	on	other	system	binaries	to	do	the	actual	"work",	which	makes	it
less	useful	in	the	case	where	we	don't	want	to	be	dependent	on	other	binaries.	A	simple	example	would	be	to	try	and
add	filesystem	check	in	pure	bash	scripts.	This	is	trivial	in	Go.

Python	on	the	other	hand	can	also	be	used,	but	the	need	for	an	interpreter	and	also	the	need	for	the	packages,
makes	it	a	little	harder	imho,	for	the	type	of	work	that	we	are	talking	about	here.

On	a	side	note,	it	was	really	funny	that	as	I	was	reading	this	article,	there	is	another	article	which	talked	about	a
bug	fix	in	Intel's	ME	https://www.theregister.co.uk/2017/11/20/intel_flags_firm...

Replacing	x86	firmware	with	Linux	and	Go
Posted	Nov	21,	2017	12:46	UTC	(Tue)	by	abo	(subscriber,	#77288)	[Link]

That's	true,	but	the	point	was,	I	think,	that	it's	not	hard	or	cumbersome	to	write	reliable	bash	scripts.	bash	is	a
domain	specific	language	for	calling	open(),	dup(),	fork(),	exec()	etc.,	so	naturally	it's	not	very	useful	without
something	to	exec()	into.

Replacing	x86	firmware	with	Linux	and	Go
Posted	Nov	21,	2017	15:21	UTC	(Tue)	by	jond	(subscriber,	#37669)	[Link]

>	That's	true,	but	the	point	was,	I	think,	that	it's	not	hard	or	cumbersome	to	write	reliable	bash	scripts.	

I've	been	writing	(what	I	hope	are,	at	this	point,	reliable)	bash	scripts	for	an	embarrassingly	long	amount	of	my
professional	career,	as	well	as	my	hobby	stuff,	and	I	couldn't	disagree	with	this	more.	It's	fiendishly	hard	to	do	it
well.

Replacing	x86	firmware	with	Linux	and	Go
Posted	Nov	21,	2017	16:36	UTC	(Tue)	by	flussence	(subscriber,	#85566)	[Link]

That's	true,	though	there	is	a	really	good	static	linter	for	bash/sh,	shellcheck.	I	try	to	write	good	shell	scripts	and	yet
it	still	catches	an	awful	lot	of	mistakes.

If	someone	gets	better	results	by	using	Go	(or	dmd-run,	or	perl,	or	whatever),	more	power	to	them.

Replacing	x86	firmware	with	Linux	and	Go
Posted	Nov	21,	2017	6:33	UTC	(Tue)	by	hugelgupf	(subscriber,	#106267)	[Link]

I	think	it's	worth	mentioning	here	that	Go	is	absolutely	not	mandatory	to	this	project.	The	Linux-in-firmware
component	(which	we	have	started	calling	LinuxBoot)	can	go	with	whatever	userspace	you	like	--	we	just	happen	to
use	a	small	Go-based	busybox-like	initramfs.

Replacing	x86	firmware	with	Linux	and	Go
Posted	Nov	20,	2017	23:09	UTC	(Mon)	by	joib	(subscriber,	#8541)	[Link]

>Apparently,	there	is	no	overall	web	page	for	NERF	itself,	though	some	of	the	components	Minnich	talks	about	do
have	web	pages.	

I	believe	it's	https://trmm.net/NERF

Replacing	x86	firmware	with	Linux	and	Go
Posted	Nov	20,	2017	23:12	UTC	(Mon)	by	jake	(editor,	#205)	[Link]

>	I	believe	it's	https://trmm.net/NERF

ah,	thanks	for	that	...	I	searched	for	it	but	couldn't	find	it	...	Ron's	slides	(and	his	employer's	most	famous	tool	:)
didn't	seem	to	have	it.	Will	update	the	article.

jake

Replacing	x86	firmware	with	Linux	and	Go
Posted	Nov	21,	2017	6:29	UTC	(Tue)	by	hugelgupf	(subscriber,	#106267)	[Link]

We'll	be	working	on	something	more	comprehensive	(and	representative	of	the	LinuxBoot/NERF	effort)	soon.

Replacing	x86	firmware	with	Linux	and	Go
Posted	Nov	21,	2017	23:22	UTC	(Tue)	by	rahvin	(subscriber,	#16953)	[Link]

I	commend	your	work	but	the	question	I've	been	asking	all	along	is	why	is	this	necessary?	Google	should	have	the
market	power	to	force	Intel	to	sell	processors	with	the	ME	physically	disabled.	And	even	if	Google	alone	doesn't
have	the	market	power	they	should	be	able	to	partner	with	Amazon,	Facebook,	Microsoft	and	the	other	cloud
providers	to	demand	CPU's	with	the	ME	disabled.

It	bothers	me	greatly	that	Google	and	other	cloud	providers	don't	use	this	market	purchasing	power	if	they	value	the
ME	being	fully	disabled.	Google	purchase	millions	of	servers	a	year	and	combined	with	the	other	cloud	providers
you	constitute	a	major	portion	of	the	server	market,	I'd	guess	near	50%	or	higher.	The	cloud	providers	have	the
power	to	effect	Intel	directly	and	have	not	acted	when	the	ME	is	a	security	threat	of	unknown	proportion.	

There	are	already	blackhat	exploits	to	provision	the	ME	with	user	access	to	the	system.	Right	now	these	attacks
require	user	access	but	as	well	all	know	user	access	can	quickly	become	remote	access	as	the	vulnerability	is
probed	and	more	information	comes	to	light.	The	ME	is	a	massive	security	threat	and	if	the	cloud	providers	care
about	security	they	should	be	doing	everything	in	their	power	to	see	processors	without	the	ME	made	available.

Replacing	x86	firmware	with	Linux	and	Go
Posted	Nov	22,	2017	16:41	UTC	(Wed)	by	drag	(subscriber,	#31333)	[Link]

>	Google	should	have	the	market	power	to	force	Intel	to	sell	processors	with	the	ME	physically	disabled.	

Google's	'market	power'	is	being	expressed	in	these	sorts	of	projects	that	help	get	Chromebooks	running	with
Coreboot	and	such	things.	

>	partner	with	Amazon,	Facebook,	Microsoft	and	the	other	cloud	providers	to	demand	CPU's	with	the	ME	disabled.

Believe	it	or	not	features	like	ME	and	vPro	are	actually	_selling	points_.	Intel	didn't	add	these	features	out	of
eviliness,	having	lights	off	management	and	back	doors	into	computers	is	valuable	features	for	people	running	large
numbers	of	desktops	and	other	systems.	They	can	use	them	to	help	enforce	corporate	policy	and	such	things.

This	is	what	you	get	when	you	deal	with	closed	source	software.	

These	features	are	valuable,	but	unless	they	are	open	source	then	they	are	evil.	

>	It	bothers	me	greatly	that	Google	and	other	cloud	providers	don't	use	this	market	purchasing	power	if	they	value
the	ME	being	fully	disabled.	

Being	a	big	customer	does	not	give	you	godlike	powers	over	another	person's	business	by	itself.	If	you	want	to	have
clout	in	purchasing	decisions	you	have	to	have	the	ability	to	go	and	use	competator's	products.	

Imagine	if	Google	demanded	Intel	to	produce	binary-blob-free	versions	of	their	processors	and	Intel	refused.	What	is
Google	going	to	do	about	it?	Go	to	AMD	and	demand	binary-blob-free	versions	of	their	processors	and	hope	they
comply?	Migrate	their	server	farms	over	to	ARM	processors?	

Markets	are	self-regulating,	but	only	if	there	is	substantial	competition.	IP	laws	and	such	things	limit	competition
and	thus	limit	the	ability	for	people	to	demand	large	corporations	to	obey.	Production	of	unencumbered	processors
like	RISC-V	is	the	ultimate	'out'	for	this	thing	and	if	they	are	successful	will	solve	these	sorts	of	regulatory	issues,
but	in	the	meantime	Intel	is	only	going	to	care	if	it	costs	them	customers.	

Hopefully	AMD	takes	the	hint.

Replacing	x86	firmware	with	Linux	and	Go
Posted	Nov	20,	2017	23:26	UTC	(Mon)	by	joib	(subscriber,	#8541)	[Link]

Another	interesting	thing	which	was	mentioned	in	a	comment	after	the	talk	was	that	as	of	the	Skylake	platform	it's
possible	to	disable	the	ME	by	just	flipping	a	bit	on	the	flash,	instead	of	the	slightly	ad-hoc	method	me_cleaner	is
using.	Seems	this	is	related	to	a	"High	Assurance	Platform"	program	for	three-letter	agencies.	So	apparently	the
idea	is	that	spooks	don't	want	the	ME	on	their	own	systems.	Whereas	the	public	is	not	supposed	to	get	a	choice.

Anyway,	some	clever	people	figured	out	how	to	flip	this	bit	even	if	you're	not	the	NSA:
http://blog.ptsecurity.com/2017/08/disabling-intel-me.html

Replacing	x86	firmware	with	Linux	and	Go
Posted	Nov	21,	2017	1:07	UTC	(Tue)	by	ThinkRob	(subscriber,	#64513)	[Link]

This	may	or	may	not	be	feasible	for	systems	with	Boot	Guard	though.	It	seems	that	Boot	Guard	does	$something
when	this	bit	is	set,	but	as	of	yet	I	don't	know	if	any	testing	has	been	done	to	determine	what	it	actually	does	(or,	for
that	matter,	if	the	various	vendors	which	support	Boot	Guard	have	implementations	that	will	allow	the	machine	to
boot	once	the	HAP	bit	is	set.)

It's	also	worth	noting	that	the	HAP	bit	trick	sorta	requires	you	to	implicitly	trust	that	the	ME	is,	in	fact,	disabling
itself.	AFAIK	there's	nothing	to	prevent	it	from	silently	switching	into	"do	evil	things,	but	more	subtlely"	mode.	Given
the	assumed	target	audience	of	HAP,	I	think	that's	probably	unlikely.	Still	though,	given	that	the	point	of	all	of	this	is
well-intentioned	paranoia,	it's	worth	considering.

Replacing	x86	firmware	with	Linux	and	Go
Posted	Nov	21,	2017	18:25	UTC	(Tue)	by	cyphar	(subscriber,	#110703)	[Link]

You	can	use	me_cleaner	in	both	the	"remove	as	many	modules	as	possible"	and	"enable	HAP	/	MeDisable	bit"	modes
--	which	should	reduce	your	concerns.	This	is	what	I've	done	on	my	X220,	and	I	believe	it	is	what	Purism	is	doing	for
their	new	laptops.

Replacing	x86	firmware	with	Linux	and	Go
Posted	Nov	22,	2017	0:32	UTC	(Wed)	by	ThinkRob	(subscriber,	#64513)	[Link]

AFAIK	this	doesn't	work	for	laptops	where	Boot	Guard	is	enabled	and	enforcing	using	the	keys	burned	in	during
board	manufacture.	

I	have	an	X230	running	coreboot	w/	a	stripped	+	HAPd	ME,	but	with	subsequent	ThinkPads	actually	modifying	the
ME	seems	to	cause	Boot	Guard	to	brick	the	whole	system.	And	since	the	key	is	supposedly	OEM-specific	and	burned
into	the	chipset	(CPU?)	itself,	it's	not	like	you	can	replace	it	yourself.	

What	I	*don't*	know	is	if	setting	the	HAP	bit	but	leaving	the	rest	of	the	ME	image	the	same	will	trigger	Boot	Guard's
hissy	fit.

(The	above	is	based	on	my	understanding	of	Boot	Guard,	which	may	be	comically	wrong.	Please	correct	if	it	is!)

For	further	reading
Posted	Nov	21,	2017	0:17	UTC	(Tue)	by	corbet	(editor,	#1)	[Link]

...see	this	advisory	from	Intel	on	the	results	of	a	security	review	of	its	management	engine.	In	short:	there's	a	lot	of
systems	out	there	in	need	of	a	firmware	update.

For	further	reading
Posted	Nov	21,	2017	12:33	UTC	(Tue)	by	danpb	(subscriber,	#4831)	[Link]

But	don't	expect	this	will	be	the	end	of	it.	With	the	level	of	complexity	in	the	firmware,	and	its	increased	profile
amongst	security	researchers,	there's	no	reason	to	expect	it	will	fair	better	than	any	other	comparative	software	out
there.	IOW,	it	is	reasonable	to	expect	a	steady	stream	of	security	vulnerabilities	being	reported	for	years	to	come...	:-
(

Replacing	x86	firmware	with	Linux	and	Go
Posted	Nov	21,	2017	0:56	UTC	(Tue)	by	pbonzini	(subscriber,	#60935)	[Link]

There	is	one	important	thing	that	SMM	does	that	is	not	just	vendor	crap.	By	accessing	flash	memory	and	handling
the	UEFI	persistent	store,	SMM	provides	the	trusted	base	for	Secure	Boot.	So,	if	they	want	to	implement	some	kind
of	code	signing,	they	need	to	do	it	in	SMM.

In	addition,	APEI	functionality	(ACPI	Platform	Error	Interface)	is	usually	implemented	via	SMM.

Replacing	x86	firmware	with	Linux	and	Go
Posted	Nov	21,	2017	16:47	UTC	(Tue)	by	luto	(subscriber,	#39314)	[Link]

I	don't	really	buy	this.	I	see	no	reason	that	the	secure	part	of	flash	ever	needs	to	be	written	after	boot.	A	high	quality
implementation	of	UEFI	should	be	able	to	queue	up	variable	writes	such	that	the	next	boot	will	find	them,	validate
them,	and	apply	them	before	ever	executing	code	off	the	disk.

I'm	not	at	all	sure	that	Intel's	flash	hardware	can	do	this,	but	it's	surely	doable	with	a	second	plain	I2C	flash	chip	on
the	system	SMBUS.

Replacing	x86	firmware	with	Linux	and	Go
Posted	Nov	21,	2017	21:06	UTC	(Tue)	by	pbonzini	(subscriber,	#60935)	[Link]

Well,	if	you	can	throw	additional	hardware	at	the	task	that's	certainly	a	possibility.	:-)	Instead	of	a	second	I2C	flash
you	could	also	delegate	UEFI	variable	services	and	APEI	to	a	microcontroller	(also	on	SMBus).	

Oh,	and	there's	actually	another	thing	that	SMM	does,	which	is	orchestrating	CPU	hotplug.	And	that's	an	ugly	one
because,	due	to	the	asinine	default	choice	of	SMBASE	made	in	the	386SL(*),	it's	the	only	case	that	really,	really
needs	to	bring	*all*	processors	at	the	same	time	on	SMM.

(*)	The	OS	could	overwrite	0x30000	and	gain	access	to	SMRAM.	"Why	0x30000?"	is	near	the	top	of	my	list	of	x86
unanswered	questions,	even	higher	than	"What	the	heck	was	CR1?".

Replacing	x86	firmware	with	Linux	and	Go
Posted	Nov	21,	2017	22:08	UTC	(Tue)	by	luto	(subscriber,	#39314)	[Link]

True,	although	adding	a	whole	microcontroller	would	cost	more	than	just	an	I2C	flash	chip.	The	only	service	that	I
think	is	really	needed	is	some	NVRAM	that	can	be	written	outside	SMM	to	queue	up	variable	writes.	I	don't	know
whether	current	Intel	chips	can	lock	down	part	of	boot	flash	while	leaving	some	unlocked.

>	The	OS	could	overwrite	0x30000	and	gain	access	to	SMRAM.	"Why	0x30000?"	is	near	the	top	of	my	list	of	x86
unanswered	questions,	even	higher	than	"What	the	heck	was	CR1?".

I've	never	understood	why	the	reset/SIPI	vectors	and	the	default	SMBASE	don't	point	to	addresses	that	are
unconditionally	in	the	boot	flash.	I	guess	that	all	that's	really	needed	is	the	ability	to	securely	run	something	from
flash	before	any	OS	code	can	possibly	execute	on	a	newly	hot	plugged	CPU.	Is	this	not	actually	possible	without
kicking	all	CPUs	into	SMM	before	powering	up	a	new	CPU?

Replacing	x86	firmware	with	Linux	and	Go
Posted	Nov	22,	2017	0:02	UTC	(Wed)	by	pbonzini	(subscriber,	#60935)	[Link]

It's	certainly	possible,	the	problem	is	that	0x30000	doesn't	point	into	flash.	:(

Defaulting	SMBASE	to	0xA0000	would	have	made	a	lot	more	sense.

Replacing	x86	firmware	with	Linux	and	Go
Posted	Nov	22,	2017	0:04	UTC	(Wed)	by	pbonzini	(subscriber,	#60935)	[Link]

I	forgot	a	sentence:	0x30000	doesn't	point	into	flash,	so	you	need	to	bring	everyone	in	SMM	when	the	newly-
hotplugged	CPU	does	SMBASE	relocation.

Replacing	x86	firmware	with	Linux	and	Go
Posted	Nov	22,	2017	6:45	UTC	(Wed)	by	MakeHinduGreateAgain	(guest,	#119801)	[Link]

I	thought	the	better	description	is	that	install	my	customer	SMM	handler	in	Linux	payload	(As
https://github.com/rminnich/linux/commits/monitor).	The	RAS	related	function	code	is	resident	in	SMM	and	some	of
the	registers	are	SMM	access	only	if	my	memory	is	correct.

And	a	little	anecdote	is	default	UEFI	SMM	handler	always	bright	up	other	core	APs	into	SMM	synchronously	(the
CPU	troop	is	spining	and	waiting).	If	you	have	more	AP	cores,	the	more	latency	you	will	get.	(Although	there	are
some	security	implication	here).	A	modern	server	machine	has	at	least	twelve	cores.	There	will	be	some
performance	and	latency	issue.

Replacing	x86	firmware	with	Linux	and	Go
Posted	Nov	21,	2017	4:36	UTC	(Tue)	by	jhoblitt	(subscriber,	#77733)	[Link]

What	is	the	status	of	UEFI	with	ARM?	Is	that	a	done	deal	for	the	"server"	class	ARM	systems	that	are	being
launched?

Replacing	x86	firmware	with	Linux	and	Go
Posted	Nov	21,	2017	12:10	UTC	(Tue)	by	joib	(subscriber,	#8541)	[Link]

Yes,	ARM	servers	will	feature	UEFI	and	ACPI.	See	https://lwn.net/Articles/584123/

The	relevant	ARM	standards	are	called	SBSA	(Server	Base	System	Architecture)	and	SBBR	(Server	Base	Boot
Requirements).

Interestingly,	it	seems	OpenPOWER	uses	something	pretty	similar	to	NERF	called	'petitboot';	a	simple	(well,
compared	to	UEFI	at	least)	firmware	that	loads	a	Linux	kernel	+	userspace	from	the	flash	rom,	that	system	then
kexec()'s	the	final	distro	kernel.

Replacing	x86	firmware	with	Linux	and	Go
Posted	Nov	21,	2017	14:09	UTC	(Tue)	by	mirabilos	(subscriber,	#84359)	[Link]

Would	be	happy	to	replace	the	ME	on	my	IBM	Thinkpad…	but	only	with	something	that	then	provides	seabios	to	the
to-be-booted	operating	system	on	the	main	CPU,	so	I	can	boot	DOS,	OS/2,	old-style	BSD,	etc.	as	well.

Replacing	x86	firmware	with	Linux	and	Go
Posted	Nov	21,	2017	14:38	UTC	(Tue)	by	merge	(subscriber,	#65339)	[Link]

That's	no	problem.	I	always	configure	coreboot	to	use	the	latest	SeaBIOS	as	payload,	so	far.

In	my	case,	it'd	be	even	better	use	GRUB	instead,	and	don't	install	GRUB	via	Debian	on	disk.	I	simply	haven't	had
the	time	to	dig	in.	Are	there	any	nice	posts	about	coreboot+GRUB	and	how	to	install	and	configure	Debian	without
GRUB,	and	how	to	maintain	grub's	config	files	on	disk?

I	guess	there	are	even	less	GRUB	releases	as	there	are	SeaBIOS	releases	that	would	make	me	want	to	re-flash	:)

Replacing	x86	firmware	with	Linux	and	Go
Posted	Nov	21,	2017	14:42	UTC	(Tue)	by	merge	(subscriber,	#65339)	[Link]

sorry,	my	comment	was	off-topic.	I	assumed	you	run	coreboot.

Replacing	x86	firmware	with	Linux	and	Go
Posted	Nov	22,	2017	14:46	UTC	(Wed)	by	cortana	(subscriber,	#24596)	[Link]

If	you	run	the	installer	in	advanced	mode,	you	can	choose	to	not	install	any	boot	loader.	Otherwise	you	can	simply
the	grub-pc	or	grub-efi-amd53	packages.

Replacing	x86	firmware	with	Linux	and	Go
Posted	Nov	22,	2017	8:26	UTC	(Wed)	by	nim-nim	(subscriber,	#34454)	[Link]

It's	not	extensible	but	it	ships	with	a	compiler…	WTF.

The	Go	ecosystem	produces	wonderful	apps,	but	they	need	to	fix	their	ship	to	production	story.	Piling	up	massive
amounts	of	intertwined	Go	modules	with	no	release	discipline,	massive	forking	and	wheel	reinvention,	last-mile
compilation	of	this	mass	in	a	single	static	binary,	only	goes	so	far.	Security	researchers	are	going	to	have	a	field	day
if	Go	software	escapes	the	world	of	GitHub-plugged	devs.

Go	is	only	escaping	black	marks	because	there	are	few	public	Go	deployments	where	everything	is	not	continuously
rebuilt	(Not	that	the	result	is	secure,	it's	just	too	mutating	to	be	easily	audited,	so	researchers	have	chosen	to	look
elsewhere	so	far.	Remember	when	they	decided	to	look	at	Java	and	uncovered	pervasive	years-old	vulnerabilities?).

Copyright	©	2017,	Eklektix,	Inc.
Comments	and	public	postings	are	copyrighted	by	their	creators.

Linux	is	a	registered	trademark	of	Linus	Torvalds

Content	▶

https://lwn.net/Archives/ConferenceByYear/#2017-Embedded_Linux_Conference_Europe
https://lwn.net/Promo/slink-trial2-2/claim
https://en.wikipedia.org/wiki/Intel_Management_Engine
https://www.coreboot.org/
http://www.opencompute.org/
https://lwn.net/Articles/739152/
https://schd.ws/hosted_files/osseu17/84/Replace%20UEFI%20with%20Linux.pdf
https://people.kth.se/~maguire/DEGREE-PROJECT-REPORTS/100402-Vassilios_Ververis-with-cover.pdf
https://www.wired.com/2017/05/hack-brief-intel-fixes-critical-bug-lingered-7-dang-years/
https://trmm.net/NERF
http://u-root.tk/
https://github.com/corna/me_cleaner
https://github.com/osresearch/heads
https://github.com/osresearch/heads/tree/nerf
https://www.youtube.com/watch?v=iffTJ1vPCSo&list=PLbzoR-pLrL6pISWAq-1cXP4_UZAyRtesk
https://lwn.net/Promo/slink-trial2-2/claim
https://lwn.net/login?target=/Articles/738649/
https://lwn.net/Articles/739672/
https://lwn.net/Articles/739691/
https://www.theregister.co.uk/2017/11/20/intel_flags_firmware_flaws
https://lwn.net/Articles/739711/
https://lwn.net/Articles/739725/
https://lwn.net/Articles/739730/
https://lwn.net/Articles/739696/
https://lwn.net/Articles/739679/
https://trmm.net/NERF
https://lwn.net/Articles/739680/
https://trmm.net/NERF
https://lwn.net/Articles/739694/
https://lwn.net/Articles/739792/
https://lwn.net/Articles/739860/
https://lwn.net/Articles/739681/
http://blog.ptsecurity.com/2017/08/disabling-intel-me.html
https://lwn.net/Articles/739690/
https://lwn.net/Articles/739762/
https://lwn.net/Articles/739798/
https://lwn.net/Articles/739686/
https://security-center.intel.com/advisory.aspx?intelid=INTEL-SA-00086&languageid=en-fr
https://lwn.net/Articles/739710/
https://lwn.net/Articles/739688/
https://lwn.net/Articles/739754/
https://lwn.net/Articles/739781/
https://lwn.net/Articles/739786/
https://lwn.net/Articles/739795/
https://lwn.net/Articles/739796/
https://lwn.net/Articles/739807/
https://github.com/rminnich/linux/commits/monitor
https://lwn.net/Articles/739693/
https://lwn.net/Articles/739709/
https://lwn.net/Articles/584123/
https://lwn.net/Articles/739715/
https://lwn.net/Articles/739718/
https://lwn.net/Articles/739719/
https://lwn.net/Articles/739824/
https://lwn.net/Articles/739810/
https://lwn.net/SubscriberLink/738649/81007748bf15c1e5/#t

