
<	All	posts Twitter RSS	GitHub

Encoding	data	in	dubstep	drops

[Warning:	Those	who	can’t	stand	EDM/dubstep,	oh	boy	do	I	have	bad

news	for	you	in	regards	to	this	blog	post]

Dubstep	songs	are	often	criticized	as	sound	extremely	computer

generated	and	often	just	too	aggressive/“digital”	for	a	lot	of	people	to

enjoy.	It’s	not	uncommon	for	people	to	joke	that	they	sound	like

someone	had	added	a	bassline	and	drums	to	modem	noises

For	some	tracks	this	is	truer	than	others.	After	all,	it’s	a	genre	with	more

aggressive	interpretations	and	more	relaxed	ones.

But	that	had	me	thinking,	how	much	effort	would	it	be	to	actually	embed

machine	readable	data	inside	a	dubstep	track,	while	ensuring	that	the

sound	could	be	enjoyed	by	humans	as	well…

Let’s	take	a	track	to	work	with,	this	is	the	buildup	and	drop	of	Skrillex

-	Right	In:

No	HTML5?	Come	on!

If	can	you	tolerate	listening	to	that,	Good	news!	You	will	likely	be	fine

with	everything	below.

Above	here	is	a	spectrogram	of	the	song	that	was	embedded,	so	you

have	a	better	idea	of	what	is	going	on	with	all	the	frequency	bands	in

the	song.

As	shown,	there	is	plenty	of	spectrum	to	hide	data	in,	but	it	exists	on

the	high	bands	where	audio	compression	may	remove	it.	So,	what	if	we

looked	lower	in	the	frequency	bands,	at	the	bassline?

Here	is	what	0-100hz	sounds	like	(you	have	a	better	chance	listening	to

this	on	head/ear	phones):

$	sox	orig.wav	onlylower.wav	sinc	0k-0.1k

No	HTML5?	Come	on!

If	we	go	back	to	the	original	and	remove	the	100hz	bands	and	below,	it

sounds	like:

$	sox	orig.wav	onlyhigher.wav	sinc	-b	0	0.2k-22k
$	cp	onlyhigher.wav	tmp.wav
$	#	Do	a	2nd	round	to	ensure	the	lower	band	is	really	empty
$	sox	tmp.wav	onlyhigher.wav	sinc	-b	0	0.2k-22k
$	rm	tmp.wav

Note:	If	you	turned	up	volume	to	hear	the	last	one,	you	will	want	to

revert	that	now.

No	HTML5?	Come	on!

ASK	Modulation	for	non	maths	people

If	you	are	like	me	and	have	a	pretty	poor	maths	background	then	every

time	you	see	things	like	this:

You	suddenly	become	a	lot	less	interested	in	looking-at-the-thing.

Unfortunately,	this	is	pretty	much	entirely	the	DSP	world.	However	given

that	I	struggled	through	this,	I	will	try	and	describe	what	I’m	doing

without	any	fancy	symbols.

To	start,	this	is	basically	sound	in	its	most	basic	form;	a	signal	to	a

speaker	telling	it	what	position	it	should	be	in.	Ranging	from	1	(all	the

way	out)	to	-1	(all	the	way	in).	Moving	over	these	positions	displaces	air

and	makes	sound!

My	thought	was,	if	we	move	the	wave	form	to	the	upper	end	like	so:

Then	we	could	invert	the	waveform	by	multiplying	it	by	-1:

This	means	we	now	have	two	states	we	can	observe!	The	best	part	of

this	is	that	the	difference	is	not	noticeable	to	(at	least	my)	human	ears.

This	base	code	is	simple	and	switches	between	1	and	0:

package	main

import	(
				"encoding/binary"
				"flag"
				"log"
				"os"
)

func	main()	{
				ins	:=	flag.String("input",	"./in.f64.data",	"")
				outs	:=	flag.String("out",	"./out.f64.data",	"")
				flag.Parse()

				inf,	err	:=	os.OpenFile(*ins,	os.O_RDONLY,	0644)

				if	err	!=	nil	{
								log.Fatalf("Unable	to	open	output	file	%s",	err.Error())
				}

				outf,	err	:=	os.OpenFile(*outs,	os.O_CREATE|os.O_WRONLY|os.O_TRUNC,	0644)
				if	err	!=	nil	{
								log.Fatalf("Unable	to	open	output	file	%s",	err.Error())
				}

				Symbolrate	:=	11000
				SamplesUntilChange	:=	Symbolrate
				UpperFlip	:=	false
				bits	:=	0
				for	{
								var	raws	float64
								err	:=	binary.Read(inf,	binary.LittleEndian,	&raws)
								if	err	!=	nil	{
												log.Printf("Leaving	%s",	err.Error())
												break
								}

								//	First,	obtain	a	upper	flip
								normie	:=	(raws	+	1)	/	2

								SamplesUntilChange--
								if	SamplesUntilChange	==	0	{
												UpperFlip	=	!UpperFlip
												SamplesUntilChange	=	Symbolrate
												bits++
								}

								if	!UpperFlip	{
												normie	=	normie	*	-1
								}

								if	SamplesUntilChange	<	1000	{
												dest	:=	normie	*	-1
												normie	=	lerp(dest,	normie,	float64(SamplesUntilChange)/1000.0)
								}

								binary.Write(outf,	binary.LittleEndian,	normie)
				}
				log.Printf("Finished	with	%d	bits	/	%d	bytes",	bits,	bits/8)
}

func	lerp(a,	b,	n	float64)	float64	{
				return	(1-n)*a	+	n*b
}

At	this	point	we	can	reassemble	the	output	bassline	file	and	the	upper

frequencies,	and	see	if	it	is	playable:

$	sox	orig.wav	onlylower.wav	sinc	0k-0.1k
$	sox	orig.wav	onlyhigher.wav	sinc	0.1k-22k
$	ffmpeg	-i	onlylower.wav	-f	f64le	-ar	44100	-ac	1	-y	in.f64.data
$./ASK-dubstep	-input	in.f64.data
$	ffmpeg	-f	f64le	-ar	44100	-ac	1	-i	out.f64.data	-y	encoded-bass.wav
$	sox	-m	encoded-bass.wav	onlyhigher.wav	encoded-bassline.wav

It	results	in	something	that	sounds	like:

No	HTML5?	Come	on!

and	looks	like:

I	might	be	wrong,	but	as	far	as	I	can	tell,	this	is	a	form	of	Amplitude-

shift	keying.

To	make	it	encode	our	own	data,	we	can	use	a	simple	library	to	help	us

read	bits	in	a	nice	easy	to	use	way,	and	then	include	them	in	the	audio:

package	main

import	(
				"encoding/binary"
				"flag"
				"log"
				"os"
				"strings"

				"github.com/dgryski/go-bitstream"
)

func	main()	{
				ins	:=	flag.String("input",	"./in.f64.data",	"")
				outs	:=	flag.String("out",	"./out.f64.data",	"")
				encodetarget	:=	flag.String("data",	"Hello	World!",	"")
				flag.Parse()

				inf,	err	:=	os.OpenFile(*ins,	os.O_RDONLY,	0644)

				if	err	!=	nil	{
								log.Fatalf("Unable	to	open	output	file	%s",	err.Error())
				}

				outf,	err	:=	os.OpenFile(*outs,	os.O_CREATE|os.O_WRONLY|os.O_TRUNC,	0644)
				if	err	!=	nil	{
								log.Fatalf("Unable	to	open	output	file	%s",	err.Error())
				}

				sr	:=	strings.NewReader(*encodetarget)
				bitreader	:=	bitstream.NewReader(sr)

				Symbolrate	:=	5500
				SamplesUntilChange	:=	Symbolrate
				UpperFlip	:=	false
				bits	:=	0
				nextbit	:=	false

				for	{
								var	raws	float64
								err	:=	binary.Read(inf,	binary.LittleEndian,	&raws)
								if	err	!=	nil	{
												log.Printf("Leaving	%s",	err.Error())
												break
								}

								//	First,	obtain	a	upper	flip
								normie	:=	(raws	+	1)	/	2

								SamplesUntilChange--
								if	SamplesUntilChange	==	0	{
												UpperFlip	=	nextbit
												b,	_	:=	bitreader.ReadBit()
												nextbit	=	bool(b)

												SamplesUntilChange	=	Symbolrate
												bits++
								}

								if	!UpperFlip	{
												normie	=	normie	*	-1
								}

								if	SamplesUntilChange	<	1000	&&	UpperFlip	!=	nextbit	{
												dest	:=	normie	*	-1
												normie	=	lerp(dest,	normie,	float64(SamplesUntilChange)/1000.0)
								}

								binary.Write(outf,	binary.LittleEndian,	normie)
				}
				log.Printf("Finished	with	%d	bits	/	%d	bytes",	bits,	bits/8)
}

func	lerp(a,	b,	n	float64)	float64	{
				return	(1-n)*a	+	n*b
}

The	decoder	looks	like	this:

package	main

import	(
				"encoding/binary"
				"flag"
				"fmt"
				"log"
				"os"

				bitstream	"github.com/dgryski/go-bitstream"
)

func	main()	{
				ins	:=	flag.String("input",	"./in.f64.data",	"")
				symbolrate	:=	flag.Int("srate",	5500,	"Symbol	rate	in	samples")
				flag.Parse()

				inf,	err	:=	os.OpenFile(*ins,	os.O_RDONLY,	0644)

				if	err	!=	nil	{
								log.Fatalf("Unable	to	open	output	file	%s",	err.Error())
				}

				bw	:=	bitstream.NewWriter(os.Stdout)
				bw.WriteBit(bitstream.Bit(false))

				SamplesUntilChange	:=	*symbolrate
				bits	:=	1
				negscore	:=	0

				for	{
								var	raws	float64
								err	:=	binary.Read(inf,	binary.LittleEndian,	&raws)
								if	err	!=	nil	{
												fmt.Print("\n")
												log.Printf("Leaving	%s",	err.Error())
												break
								}

								isNeg	:=	raws	<	0
								if	isNeg	{
												negscore++
								}

								SamplesUntilChange--
								if	SamplesUntilChange	==	0	{
												rsp	:=	negscore	<	(*symbolrate	/	2)
												if	bits	!=	1	{
																bw.WriteBit(bitstream.Bit(rsp))
												}

												negscore	=	0
												SamplesUntilChange	=	*symbolrate
												bits++
								}

				}
				log.Printf("Finished	with	%d	bits	/	%d	bytes",	bits,	bits/8)
}

This	decoder	works	by	counting	how	many	samples	in	a	“frame”	are

negative,	and	based	on	that	declaring	if	it’s	a	1	or	a	0	bit.

It	is	then	reassembled	back	into	bytes,	and	output	to	the	terminal.

To	finish	off,	here	is	a	live	demo	of	it	all	working	with	a	different	song

(Smooth	-	Nowhere):

I	have	pushed	the	code	on	github	as	always	(though	it’s	not	really	in	a

usable	state):	https://github.com/benjojo/dubstep-data

And	if	you	enjoyed	this,	you	will	be	glad	to	know	that	I	am	going	to	be

at	Recurse	Center	in	NY	for	the	next	10	weeks!	Meaning	you	can	follow

my	Twitter	or	RSS	to	keep	up	with	the	other	silly	things	I	will	do!

https://blog.benjojo.co.uk/
https://twitter.com/benjojo12
https://blog.benjojo.co.uk/rss.xml
https://github.com/benjojo
https://www.youtube.com/watch?v=jpMrTxMV6E4
https://en.wikipedia.org/wiki/Spectrogram
https://en.wikipedia.org/wiki/Amplitude-shift_keying
https://github.com/benjojo/dubstep-data
https://recurse.com/
https://twitter.com/benjojo12
https://blog.benjojo.co.uk/rss.xml

