
Clang	vs	GCC	vs	MSVC:	Diagnostics

Now	with	more	tests	and	MSVC	diagnostics!

GCC	and	Clang	have	always	been	trying	to	prove	who	has	the	better	error	diagnostics.

Clang	first	dissed	GCC	in	their	“Expressive	Diagnostics”	article.	GCC	improved	their	diagnostics	and	released	their	comeback	article,	titled	“Clang
Diagnostics	Comparison”.

Let's	see	who	is	really	better	by	testing	common	errors	in	Clang	6.0.0,	GCC	7.3.0,	and,	via	the	Compiler	Explorer,	MSVC	2017	19.10.25107.	Note	that	GCC	8
appears	to	have	improved	some	messages,	but	it	isn't	a	stable	release	yet.

I	am	counting	out	the	static	analyzers	in	MSVC	and	Clang,	as	it	wouldn't	be	fair	to	compare	it	to	GCC's	lack	of	one.	Only	-Wall	or	/W3	will	be	used,	unless	no
errors	are	found,	then	I	will	try	-Weverything,	-Wextra	-Wpedantic,	or	/Wall.

Round	1:	Missing	Semicolons

Forgetting	semicolons.	You	do	it	all	the	time,	and	if	you	don't,	shut	up,	you're	lying.

semicolon.c

#include	<stdio.h>

int	main(void)	{
				printf("Hello,	world!\n")	//	no	semicolon
				return	0	//	no	semicolon
}

Here	are	your	average	missing	semicolons,	after	the	printf	statement	and	the	return	statement.	For	such	a	common	error,	the	compiler	should	be	smart
enough	to	pick	that	up,	right?

~	$	gcc-7	-Wall	semicolon.c	
semicolon.c:	In	function	'main':
semicolon.c:5:5:	error:	expected	';'	before	'return'
					return	0	//	no	semicolon								
					^~~~~~

C:\>	cl	/W3	semicolon.c
semicolon.c(5):	error	C2143:	syntax	error:	missing	';'	before	'return'
semicolon.c(6):	error	C2143:	syntax	error:	missing	';'	before	'}'
Microsoft	(R)	C/C++	Optimizing	Compiler	Version	19.10.25017	for	x86
Copyright	(C)	Microsoft	Corporation.		All	rights	reserved.

…right?

~	$	clang-6.0	-Wall	semicolon.c
semicolon.c:4:30:	error:	expected	';'	after	expression
				printf("Hello,	world!\n")	//	no	semicolon
	 	 	 					^
	 	 	 					;
semicolon.c:5:13:	error:	expected	';'	after	return	statement
				return	0	//	no	semicolon
	 				^
	 				;
2	errors	generated.

Clang	clearly	won	here,	with	MSVC	in	second.	GCC	didn't	recognize	the	second	error,	and	the	"expected	';'	before	'return'"	errors	from	MSVC	and	GCC	are	like
saying	that	to	climb	a	tree,	I	must	put	the	tree	below	me.	It	is	technically	true,	but	it	is	stupid.

Score:	Clang:	2,	GCC:	0,	MSVC:	1

Round	2:	The	Missing	Brace

Forgetting	a	brace	at	the	end	of	a	function	is	another	common	error,	although	not	as	common	as	the	former.

missingbrace.c

int	main(void)	{
				return	0;
//	no	closing	brace

Hopefully,	GCC	or	MSVC	can	make	up	for	this	one.

~	$	gcc-7	-Wall	missingbrace.c
missingbrace.c:	In	function	'main':
missingbrace.c:2:5:	error:	expected	declaration	or	statement	at	end	of	input
					return	0;
					^~~~~~

God	damn	it,	GCC.

C:\>	cl	/W3	missingbrace.c
missingbrace.c(1):	fatal	error	C1075:	the	left	brace	'{'	was	unmatched	at	the	end	of	the	file
Internal	Compiler	Error	in	Z:\opt\compiler-explorer\windows\19.10.25017\lib\native\bin\amd64_x86\cl.exe.		You	will	be	prompted	to	
send	an	error	report	to	Microsoft	later.
INTERNAL	COMPILER	ERROR	in	'Z:\opt\compiler-explorer\windows\19.10.25017\lib\native\bin\amd64_x86\cl.exe'
				Please	choose	the	Technical	Support	command	on	the	Visual	C++
				Help	menu,	or	open	the	Technical	Support	help	file	for	more	information
Microsoft	(R)	C/C++	Optimizing	Compiler	Version	19.10.25017	for	x86
Copyright	(C)	Microsoft	Corporation.		All	rights	reserved.

I	might	be	wrong,	but	it	looks	like	MSVC	crashed.	Nice	job,	Microsoft.	Crash	aside,	MSVC	did	better.

~	$	clang-6.0	-Wall	missingbrace.c
missingbrace.c:2:14:	error:	expected	'}'
				return	0;
	 					^
missingbrace.c:1:16:	note:	to	match	this	'{'
int	main(void)	{
	 							^
1	error	generated.

Yet	again,	two	points	to	Clang.

Score:	Clang:	4,	GCC:	0,	MSVC:	2

Round	3:	Out	of	bounds

Another	common	error:

outofbounds.c

#include	<stdio.h>

static	const	int	array[4]	=	{	1,	2,	3,	4	};

int	main(void)	{
				for	(int	i	=	0;	i	<=	4	/*	should	be	<	*/;	i++)	{
								printf("%d	",	array[i]);
				}
				return	0;
}

Interestingly,	even	with	-Warray-bounds	or	/Wall,	this	isn't	picked	up	in	either	Clang	or	MSVC.

However,	with	-O2,	GCC	actually	says	something	right	for	a	change!

~	$	gcc-7	-Wall	-O2	outofbounds.c
outofbounds.c:	In	function	'main':																				
outofbounds.c:7:9:	warning:	iteration	4	invokes	undefined	behavior	[-Waggressive-loop-optimizations]
								printf("%d	",	array[i]);
								^~~~~~~~~~~~~~~~~~~~~~~
outofbounds.c:6:5:	note:	within	this	loop
				for	(int	i	=	0;	i	<=	4	/*	should	be	<	*/;	i++)	{
				^~~

GCC	only	gets	one	point	here,	though,	because	it	doesn't	always	show	this	error.

Score:	Clang:	4,	GCC:	1,	MSVC:	2

Round	4:	Ifs	without	Braces

Ifs	without	braces.	While	they	can	be	convenient,	they	often	cause	more	harm	than	good,	such	as	the	infamous	goto	fail	bug.

if-else-bug.c

#include	<stdio.h>

int	main(int	argc,	char**argv)	{
				if	(argc	>	1)	//	needs	braces
								argc--;
								argv++;
				else
								printf("Usage:	%s	<arguments>\n",	*argv);	//	(this	would	theoretically	be	UB	because	of	the	argv++)
				return	0;
}

Naturally,	being	Apple's	compiler,	Clang	should	pick	up	on	this	error.

~	$	clang-6.0	-Wall	if-else-bug.c
if-else-bug.c:8:5:	error:	expected	expression
				else
				^
1	error	generated.

…That	is	a	very	useless	error.	No	wonder	Apple	didn't	pick	up	on	that	bug.

C:\>	cl	/W3	if-else-bug.c
(7):	error	C2181:	illegal	else	without	matching	if
Microsoft	(R)	C/C++	Optimizing	Compiler	Version	19.10.25017	for	x86
Copyright	(C)	Microsoft	Corporation.		All	rights	reserved.

MSVC	at	least	makes	some	sense,	unlike	the	nonsense	Clang	spits	out.

~	$	gcc-7	-Wall	if-else-bug.c
if-else-bug.c:	In	function	'main':
if-else-bug.c:5:5:	warning:	this	'if'	clause	does	not	guard...	[-Wmisleading-indentation]
					if	(argc	>	1)	//	needs	braces
					^~
if-else-bug.c:7:9:	note:	...this	statement,	but	the	latter	is	misleadingly	indented	as	if	it	were	guarded	by	the	'if'
									argv++;
									^~~~
if-else-bug.c:8:5:	error:	'else'	without	a	previous	'if'
					else
					^~~~

Wow.	For	once,	GCC	nailed	it!

Score:	Clang:	4,	GCC:	3,	MSVC:	2

Round	5:	Java-style	string	concatenation

Java,	JavaScript,	C++	(to	a	point),	and	a	few	other	languages	let	you	join	strings	and	other	things	with	a	'+'.	C	doesn't	do	what	you	might	expect.

string-concat.c

#include	<stdio.h>

int	main(void)	{
				int	value	=	4;
				const	char	*string	=	"value	=	"	+	value;	//	This	isn't	Java!
				printf("%s\n",	string);
				return	0;
}

~	$	gcc-7	-Wall	-Wextra	-pedantic	string-concat.c
~	$	clang-6.0	-Wall	string-concat.c
string-concat.c:5:37:	warning:	adding	'int'	to	a	string	does	not	append	to	the	string	[-Wstring-plus-int]
				const	char	*string	=	"value	=	"	+	value;	//	This	isn't	Java!
																									~~~~~~~~~~~^~~~~~~
string-concat.c:5:37:	note:	use	array	indexing	to	silence	this	warning
				const	char	*string	=	"value	=	"	+	value;	//	This	isn't	Java!
																																				^
																									&										[						]
1	warning	generated.

GCC	and	MSVC	didn't	pick	it	up	at	all,	but	Clang	gave	a	very	helpful	error.

Score:	Clang:	6,	GCC:	3,	MSVC:	2

Round	6:	Forgetting	to	return	a	value

Sometimes,	you	forget	that	a	function	needs	to	return	a	value,	or	you	forget	to	put	a	return	statement	after	that	switch	statement,	or	whatever.

no-return.c

#include	<stdlib.h>

int	doesNotReturnAValue(void)	{
				//	no	return	value
}

int	mightNotReturnAValue(void)	{
				if	(rand()	%	2	==	0)	{
								return	2;
				}
				//	if	rand()	is	odd,	there	is	no	return	value
}

~	$	gcc-7	-Wall	no-return.c
no-return.c:	In	function	'doesNotReturnAValue':
no-return.c:5:1:	warning:	control	reaches	end	of	non-void	function	[-Wreturn-type]
	}
	^
no-return.c:	In	function	'mightNotReturnAValue':
no-return.c:12:1:	warning:	control	reaches	end	of	non-void	function	[-Wreturn-type]
	}
	^
~	$	clang-6.0	-Wall	no-return.c
no-return.c:5:1:	warning:	control	reaches	end	of	non-void	function	[-Wreturn-type]
}
^
no-return.c:12:1:	warning:	control	may	reach	end	of	non-void	function	[-Wreturn-type]
}
^
2	warnings	generated.

Whaaaaaaat…	Zero	points	for	zero	sense!

C:\>	cl	/W3	no-return.c
no-return.c(5)	:	warning	C4716:	'doesNotReturnAValue':	must	return	a	value
no-return.c(12)	:	warning	C4715:	'mightNotReturnAValue':	not	all	control	paths	return	a	value
Microsoft	(R)	C/C++	Optimizing	Compiler	Version	19.10.25017	for	x86
Copyright	(C)	Microsoft	Corporation.		All	rights	reserved.

That's	more	like	it,	MSVC!

Score:	Clang:	6,	GCC:	3,	MSVC:	4

Round	7:	Forgetting	your	namespace

Time	for	some	C++!

Forgetting	to	either	add	a	"using	namespace"	or	put	the	namespace	before	your	calls	is	an	error	that	I	always	make.

no-namespace.cpp

#include	<iostream>

int	main()	{
				cout	<<	"Hello,	world!\n";	//	should	be	std::cout
				return	0;
}

Let's	see	what	the	compilers	have	to	say,	shall	we?

C:\>	cl	/W3	no-namespace.cpp
no-namespace.cpp(4):	error	C2065:	'cout':	undeclared	identifier
Microsoft	(R)	C/C++	Optimizing	Compiler	Version	19.10.25017	for	x86
Copyright	(C)	Microsoft	Corporation.		All	rights	reserved.

Thanks	for	nothing,	Microsoft.

~	$	g++-7	-Wall	no-namespace.cpp
no-namespace.cpp:	In	function	'int	main()':
no-namespace.cpp:4:5:	error:	'cout'	was	not	declared	in	this	scope
					cout	<<	"Hello,	world!\n";	//	should	be	std::cout
					^~~~
no-namespace.cpp:4:5:	note:	suggested	alternative:
In	file	included	from	no-namespace.cpp:1:0:
/usr/include/c++/7.3.0/iostream:61:18:	note:			'std::cout'
			extern	ostream	cout;		///	Linked	to	standard	output
																		^~~~

I	guess	that	is	better.	GCC	understands	that	we	meant	std::cout,	although	the	message	is	kind	of	confusing.	Let's	see	Clang's	version.

~	$	clang++-6.0	-Wall	no-namespace.cpp
no-namespace.cpp:4:5:	error:	use	of	undeclared	identifier	'cout';	did	you	mean	'std::cout'?
				cout	<<	"Hello,	world!\n";	//	should	be	std::cout
				^~~~
				std::cout
/usr/include/c++/v1/iostream:54:33:	note:	'std::cout'	declared	here
extern	_LIBCPP_FUNC_VIS	ostream	cout;
																																^
1	error	generated.

There	we	go.	Same	information	as	GCC,	but,	unlike	GCC,	it	goes	directly	to	the	point	and	asks	if	we	meant	"std::cout",	then	shows	the	implementation.	Two
points	to	Clang,	one	point	to	GCC.

Score:	Clang:	8,	GCC:	4,	MSVC:	4

Round	8:	dynamic_casting	a	class	itself

The	C++	dynamic_cast	is	supposed	to	be	used	on	a	pointer	to	a	class,	not	on	the	class	itself.	It	is	weird.

casting-a-class.cpp

class	Base	{};
class	Derived	:	public	Base	{};

int	main()	{
				Base	base;
				Derived	derived	=	dynamic_cast<Derived>(base);	//	should	be	used	on	a	pointer
				return	0;
}

~	$	clang++-6.0	-Wall	casting-a-class.cpp
casting-a-class.cpp:6:23:	error:	'Derived'	is	not	a	reference	or	pointer
				Derived	derived	=	dynamic_cast<Derived>(base);	//	should	be	a	pointer
																						^											~~~~~~~~~
1	error	generated.

Huh?	Well,	no	duh,	Clang.	Why	are	you	erroring,	though?

~	$	g++-7	-Wall	casting-a-class.cpp
casting-a-class.cpp:	In	function	'int	main()':
casting-a-class.cpp:6:49:	error:	cannot	dynamic_cast	'base'	(of	type	'class	Base')	to	type	'class	Derived'	(target	is	not	pointer	
or	reference)
					Derived	derived	=	dynamic_cast<Derived>(base);	//	should	be	a	pointer
																																																	^

GCC	makes	it	a	bit	clearer,	although	I	don't	know	what	it's	pointing	to.

C:\>	cl	/W3	casting-a-class.cpp
casting-a-class.cpp(6):	error	C2680:	'Derived':	invalid	target	type	for	dynamic_cast
casting-a-class.cpp(6):	note:	target	type	must	be	a	pointer	or	reference	to	a	defined	class
Microsoft	(R)	C/C++	Optimizing	Compiler	Version	19.10.25017	for	x86
Copyright	(C)	Microsoft	Corporation.		All	rights	reserved.

MSVC	is	the	winner	here.	It	explained	the	issue	quite	well.

Score:	Clang:	8,	GCC:	5,	MSVC:	6

The	winner	is	Clang!

Note	that	I	am	not	saying	that	one	compiler	sucks.	All	three	compilers	have	their	strengths	and	weaknesses.	But	Clang	has	proven	itself	to	be	stronger	in	the
diagnostics	department.

Copyright	©2018	easyaspi314.	Content	licensed	under	the	MIT	License.

https://clang.llvm.org/diagnostics.html
https://gcc.gnu.org/wiki/ClangDiagnosticsComparison
https://nakedsecurity.sophos.com/2014/02/24/anatomy-of-a-goto-fail-apples-ssl-bug-explained-plus-an-unofficial-patch/

