
:=

NAME	:=	expr

name	:=

match	=	re.match(data)

group	=	match.group(1)	if	match	else	None

group	=	re.match(data).group(1)	if	re.match(data)	else	None

match1	=	pattern1.match(data)

match2	=	pattern2.match(data)

if	match1:

				result	=	match1.group(1)

elif	match2:

				result	=	match2.group(2)

else:

				result	=	None

pattern2 pattern1 pattern2

match1	=	pattern1.match(data)

if	match1:

				result	=	match1.group(1)

else:

				match2	=	pattern2.match(data)

				if	match2:

								result	=	match2.group(2)

				else:

								result	=	None

NAME	:=	expr expr NAME

#	Handle	a	matched	regex

if	(match	:=	pattern.search(data))	is	not	None:

				#	Do	something	with	match

#	A	loop	that	can't	be	trivially	rewritten	using	2-arg	iter()

while	chunk	:=	file.read(8192):

			process(chunk)

#	Reuse	a	value	that's	expensive	to	compute

[y	:=	f(x),	y**2,	y**3]

#	Share	a	subexpression	between	a	comprehension	filter	clause	and	its	output

filtered_data	=	[y	for	x	in	data	if	(y	:=	f(x))	is	not	None]

y	:=	f(x)		#	INVALID

(y	:=	f(x))		#	Valid,	though	not	recommended

y0	=	y1	:=	f(x)		#	INVALID

y0	=	(y1	:=	f(x))		#	Valid,	though	discouraged

foo(x	=	y	:=	f(x))		#	INVALID

foo(x=(y	:=	f(x)))		#	Valid,	though	probably	confusing

def	foo(answer	=	p	:=	42):		#	INVALID

				...

def	foo(answer=(p	:=	42)):		#	Valid,	though	not	great	style

				...

def	foo(answer:	p	:=	42	=	5):		#	INVALID

				...

def	foo(answer:	(p	:=	42)	=	5):		#	Valid,	but	probably	never	useful

				...

: =

(lambda:	x	:=	1)	#	INVALID

lambda:	(x	:=	1)	#	Valid,	but	unlikely	to	be	useful

(x	:=	lambda:	1)	#	Valid

lambda	line:	(m	:=	re.match(pattern,	line))	and	m.group(1)	#	Valid

lambda :=

nonlocal global

nonlocal global

any() all()

if	any((comment	:=	line).startswith('#')	for	line	in	lines):

				print("First	comment:",	comment)

else:

				print("There	are	no	comments")

if	all((nonblank	:=	line).strip()	==	''	for	line	in	lines):

				print("All	lines	are	blank")

else:

				print("First	non-blank	line:",	nonblank)

#	Compute	partial	sums	in	a	list	comprehension

total	=	0

partial_sums	=	[total	:=	total	+	v	for	v	in	values]

print("Total:",	total)

for

[i	:=	i+1	for	i	in	range(5)] for	i i i	:= i

[[(j	:=	j)	for	i	in	range(5)]	for	j	in	range(5)]

[i	:=	0	for	i,	j	in	stuff]

[i+1	for	i	in	i	:=	stuff]

TargetScopeError SyntaxError

:=

:= or and not A	if	C	else	B

=

:=

#	INVALID

x	:=	0

#	Valid	alternative

(x	:=	0)

#	INVALID

x	=	y	:=	0

#	Valid	alternative

x	=	(y	:=	0)

#	Valid

len(lines	:=	f.readlines())

#	Valid

foo(x	:=	3,	cat='vector')

#	INVALID

foo(cat=category	:=	'vector')

#	Valid	alternative

foo(cat=(category	:=	'vector'))

#	Valid

if	any(len(longline	:=	line)	>=	100	for	line	in	lines):

				print("Extremely	long	line:",	longline)

:= = =

{X:	Y	for	...} Y X X Y {X:	Y} dict((X,	Y)	for

...)

:=

x	=	y	=	z	=	0		#	Equivalent:	(z	:=	(y	:=	(x	:=	0)))

NAME

#	No	equivalent

a[i]	=	x

self.rest	=	[]

x	=	1,	2		#	Sets	x	to	(1,	2)

(x	:=	1,	2)		#	Sets	x	to	1

#	Equivalent	needs	extra	parentheses

loc	=	x,	y		#	Use	(loc	:=	(x,	y))

info	=	name,	phone,	*rest		#	Use	(info	:=	(name,	phone,	*rest))

#	No	equivalent

px,	py,	pz	=	position

name,	phone,	email,	*other_info	=	contact

#	Closest	equivalent	is	"p:	Optional[int]"	as	a	separate	declaration

p:	Optional[int]	=	None

total	+=	tax		#	Equivalent:	(total	:=	total	+	tax)

env_base	=	os.environ.get("PYTHONUSERBASE",	None)

if	env_base:

				return	env_base

if	env_base	:=	os.environ.get("PYTHONUSERBASE",	None):

				return	env_base

if

if	self._is_special:

				ans	=	self._check_nans(context=context)

				if	ans:

								return	ans

if	self._is_special	and	(ans	:=	self._check_nans(context=context)):

				return	ans

reductor	=	dispatch_table.get(cls)

if	reductor:

				rv	=	reductor(x)

else:

				reductor	=	getattr(x,	"__reduce_ex__",	None)

				if	reductor:

								rv	=	reductor(4)

				else:

								reductor	=	getattr(x,	"__reduce__",	None)

								if	reductor:

												rv	=	reductor()

								else:

												raise	Error(

																"un(deep)copyable	object	of	type	%s"	%	cls)

if	reductor	:=	dispatch_table.get(cls):

				rv	=	reductor(x)

elif	reductor	:=	getattr(x,	"__reduce_ex__",	None):

				rv	=	reductor(4)

elif	reductor	:=	getattr(x,	"__reduce__",	None):

				rv	=	reductor()

else:

				raise	Error("un(deep)copyable	object	of	type	%s"	%	cls)

s	+=	tz

s	=	_format_time(self._hour,	self._minute,

																	self._second,	self._microsecond,

																	timespec)

tz	=	self._tzstr()

if	tz:

				s	+=	tz

return	s

s	=	_format_time(self._hour,	self._minute,

																	self._second,	self._microsecond,

																	timespec)

if	tz	:=	self._tzstr():

				s	+=	tz

return	s

fp.readline() while .match()

while	True:

				line	=	fp.readline()

				if	not	line:

								break

				m	=	define_rx.match(line)

				if	m:

								n,	v	=	m.group(1,	2)

								try:

												v	=	int(v)

								except	ValueError:

												pass

								vars[n]	=	v

				else:

								m	=	undef_rx.match(line)

								if	m:

												vars[m.group(1)]	=	0

while	line	:=	fp.readline():

				if	m	:=	define_rx.match(line):

								n,	v	=	m.group(1,	2)

								try:

												v	=	int(v)

								except	ValueError:

												pass

								vars[n]	=	v

				elif	m	:=	undef_rx.match(line):

								vars[m.group(1)]	=	0

results	=	[(x,	y,	x/y)	for	x	in	input_data	if	(y	:=	f(x))	>	0]

stuff	=	[[y	:=	f(x),	x/y]	for	x	in	range(5)]

y results stuff

if while

#	Loop-and-a-half

while	(command	:=	input(">	"))	!=	"quit":

				print("You	entered:",	command)

#	Capturing	regular	expression	match	objects

#	See,	for	instance,	Lib/pydoc.py,	which	uses	a	multiline	spelling

#	of	this	effect

if	match	:=	re.search(pat,	text):

				print("Found:",	match.group(0))

#	The	same	syntax	chains	nicely	into	'elif'	statements,	unlike	the

#	equivalent	using	assignment	statements.

elif	match	:=	re.search(otherpat,	text):

				print("Alternate	found:",	match.group(0))

elif	match	:=	re.search(third,	text):

				print("Fallback	found:",	match.group(0))

#	Reading	socket	data	until	an	empty	string	is	returned

while	data	:=	sock.recv(8192):

				print("Received	data:",	data)

while

if	pid	:=	os.fork():

				#	Parent	code

else:

				#	Child	code

EXPR	as	NAME

stuff	=	[[f(x)	as	y,	x/y]	for	x	in	range(5)]

EXPR	as	NAME import except with

with	EXPR	as	VAR EXPR VAR EXPR.__enter__() VAR

:=

if	f(x)	as	y if	f	x	blah	blah if	f(x)	and	y

as

import	foo	as	bar

except	Exc	as	var

with	ctxmgr()	as	var

if while

NAME	=	EXPR

if	NAME	:=	EXPR

EXPR	->	NAME

stuff	=	[[f(x)	->	y,	x/y]	for	x	in	range(5)]

y	<-	f(x)

with except import ->

:=

stuff	=	[[(f(x)	as	.y),	x/.y]	for	x	in	range(5)]	#	with	"as"

stuff	=	[[(.y	:=	f(x)),	x/.y]	for	x	in	range(5)]	#	with	":="

where:

value	=	x**2	+	2*x	where:

				x	=	spam(1,	4,	7,	q)

with:

given:

TARGET	from	EXPR

stuff	=	[[y	from	f(x),	x/y]	for	x	in	range(5)]

as raise	Exc	from	Exc with	expr	as	target:

if while

if	re.search(pat,	text)	as	match:

				print("Found:",	match.group(0))

f(x)	<	0 f(x)

if while

where let given

stuff	=	[(y,	x/y)	where	y	=	f(x)	for	x	in	range(5)]

stuff	=	[(y,	x/y)	let	y	=	f(x)	for	x	in	range(5)]

stuff	=	[(y,	x/y)	given	y	=	f(x)	for	x	in	range(5)]

where

where tkinter.dnd.Icon

with	NAME	=	EXPR

stuff	=	[(y,	x/y)	with	y	=	f(x)	for	x	in	range(5)]

with

with	EXPR	as	NAME

stuff	=	[(y,	x/y)	with	f(x)	as	y	for	x	in	range(5)]

as as

with

with

:=

while if

pos	=	-1

while	pos	:=	buffer.find(search_term,	pos	+	1)	>=	0:

				...

:= = True False

:=

=

(point	:=	(x,	y))

(point	:=	x,	y)

((point	:=	x),	y)

foo(x	:=	1,	y)

foo(x	:=	(1,	y))

:=

#	Top	level	in	if

if	match	:=	pattern.match(line):

				return	match.group(1)

#	Short	call

len(lines	:=	f.readlines())

=

if	(x	==	y) if	(x	=	y) :=

:= = +=

for del

i	=	j	=	count	=	nerrors	=	0

i	=	j	=	0

count	=	0

nerrors	=	0

mylast	=	mylast[1]

yield	mylast[0]

yield	(mylast	:=	mylast[1])[0]

while	True:

				old	=	total

				total	+=	term

				if	old	==	total:

								return	total

				term	*=	mx2	/	(i*(i+1))

				i	+=	2

while	total	!=	(total	:=	total	+	term):

				term	*=	mx2	/	(i*(i+1))

				i	+=	2

return	total

while

None 0

None

result	=	solution(xs,	n)

if	result:

				#	use	result

if	result	:=	solution(xs,	n):

				#	use	result

copy() copy.py

reductor	=	dispatch_table.get(cls)

if	reductor:

				rv	=	reductor(x)

else:

				reductor	=	getattr(x,	"__reduce_ex__",	None)

				if	reductor:

								rv	=	reductor(4)

				else:

								reductor	=	getattr(x,	"__reduce__",	None)

								if	reductor:

												rv	=	reductor()

								else:

												raise	Error("un(shallow)copyable	object	of	type	%s"	%	cls)

if	reductor	:=	dispatch_table.get(cls):

				rv	=	reductor(x)

elif	reductor	:=	getattr(x,	"__reduce_ex__",	None):

				rv	=	reductor(4)

elif	reductor	:=	getattr(x,	"__reduce__",	None):

				rv	=	reductor()

else:

				raise	Error("un(shallow)copyable	object	of	type	%s"	%	cls)

diff	=	x	-	x_base

if	diff:

				g	=	gcd(diff,	n)

				if	g	>	1:

								return	g

if	(diff	:=	x	-	x_base)	and	(g	:=	gcd(diff,	n))	>	1:

				return	g

if

if

while	a	>	(d	:=	x	//	a**(n-1)):

				a	=	((n-1)*a	+	d)	//	n

return	a

while	True:

				d	=	x	//	a**(n-1)

				if	a	<=	d:

								break

				a	=	((n-1)*a	+	d)	//	n

return	a

[x	for	...] list(x	for	...)

def	f():

				a	=	[EXPR	for	VAR	in	ITERABLE]

def	f():

				def	genexpr(iterator):

								for	VAR	in	iterator:

												yield	EXPR

				a	=	list(genexpr(iter(ITERABLE)))

def	f():

				a	=	[TARGET	:=	EXPR	for	VAR	in	ITERABLE]

def	f():

				if	False:

								TARGET	=	None		#	Dead	code	to	ensure	TARGET	is	a	local	variable

				def	genexpr(iterator):

								nonlocal	TARGET

								for	VAR	in	iterator:

												TARGET	=	EXPR

												yield	TARGET

				a	=	list(genexpr(iter(ITERABLE)))

global	TARGET f()

def	f():

				global	TARGET

				a	=	[TARGET	:=	EXPR	for	VAR	in	ITERABLE]

def	f():

				global	TARGET

				def	genexpr(iterator):

								global	TARGET

								for	VAR	in	iterator:

												TARGET	=	EXPR

												yield	TARGET

				a	=	list(genexpr(iter(ITERABLE)))

nonlocal	TARGET f()

def	g():

				TARGET	=	...

				def	f():

								nonlocal	TARGET

								a	=	[TARGET	:=	EXPR	for	VAR	in	ITERABLE]

def	g():

				TARGET	=	...

				def	f():

								nonlocal	TARGET

								def	genexpr(iterator):

												nonlocal	TARGET

												for	VAR	in	iterator:

																TARGET	=	EXPR

																yield	TARGET

								a	=	list(genexpr(iter(ITERABLE)))

def	f():

				a	=	[[TARGET	:=	i	for	i	in	range(3)]	for	j	in	range(2)]

				#	I.e.,	a	=	[[0,	1,	2],	[0,	1,	2]]

				print(TARGET)		#	prints	2

def	f():

				if	False:

								TARGET	=	None

				def	outer_genexpr(outer_iterator):

								nonlocal	TARGET

								def	inner_generator(inner_iterator):

												nonlocal	TARGET

												for	i	in	inner_iterator:

																TARGET	=	i

																yield	i

								for	j	in	outer_iterator:

												yield	list(inner_generator(range(3)))

				a	=	list(outer_genexpr(range(2)))

				print(TARGET)

a	=	42

def	f():

				#	`a`	is	local	to	`f`,	but	remains	unbound

				#	until	the	caller	executes	this	genexp:

				yield	((a	:=	i)	for	i	in	range(3))

				yield	lambda:	a	+	100

				print("done")

				try:

								print(f"`a`	is	bound	to	{a}")

								assert	False

				except	UnboundLocalError:

								print("`a`	is	not	yet	bound")

>>>	results	=	list(f())	#	[genexp,	lambda]

done

`a`	is	not	yet	bound

#	The	execution	frame	for	f	no	longer	exists	in	CPython,

#	but	f's	locals	live	so	long	as	they	can	still	be	referenced.

>>>	list(map(type,	results))

[<class	'generator'>,	<class	'function'>]

>>>	list(results[0])

[0,	1,	2]

>>>	results[1]()

102

>>>	a

42

Tweets	by	 ​@ThePSF

15m

2h

22h

If	you	have	a	few	hours	a	week	to	spare	to	support	the	Python	community,	consider	
becoming	a	PSF	Managing/Contributing	Member:	bit.ly/2yRCajL

	

Python	Sul	2017	lightning	talks	(PyVideo)	-	pyvideo.org/python-sul-201…

	

Write	more	decorators	(and	fewer	classes)	by	Antonio	Verardi	-	pyvideo.org/europython-
201….	This	talk	presents	a	pattern	that	can	be	used	to	design	clean	and	pythonic	
interfaces	for	programmers	based	on	replacing	single-method	classes	with	decorated	
functions.

	

Using	Machine	Learning	to	play	chess	by	Aubhro	Sengupta	-	pyvideo.org/pyohio-
2017/us….	Today,	chess	engines	contain	many	lines	of	code	handcrafted	under	the	
guidance	of	grandmasters.	Find	out	how	to	create	an	engine	that	learns	to	improve	itself.

Python	Software
@ThePSF

Python	Software
@ThePSF

Python	Software
@ThePSF

Python	Software
@ThePSF

https://www.python.org/
https://www.python.org/dev/
https://www.python.org/dev/peps/
https://twitter.com/ThePSF
https://support.twitter.com/articles/20175256
https://twitter.com/ThePSF/status/1017453569996394498
https://twitter.com/ThePSF/status/1017423084033400832
https://twitter.com/ThePSF/status/1017119332957065217
https://twitter.com/intent/like?tweet_id=1017453569996394498
https://twitter.com/intent/like?tweet_id=1017423084033400832
https://twitter.com/intent/like?tweet_id=1017119332957065217
https://t.co/AQ0r6kA6gF
https://t.co/9y3yOPIxwf
https://t.co/5i8uA7QfiO
https://t.co/hl9PVyLkjg
https://twitter.com/ThePSF
https://twitter.com/ThePSF
https://www.python.org/dev/peps/pep-0572/#
https://twitter.com/ThePSF
https://twitter.com/ThePSF
https://www.python.org/dev/peps/pep-0572/#
https://twitter.com/ThePSF
https://twitter.com/ThePSF
https://www.python.org/dev/peps/pep-0572/#
https://twitter.com/ThePSF
https://twitter.com/ThePSF
https://www.python.org/
https://mail.python.org/pipermail/python-dev/2018-July/154601.html
https://www.python.org/dev/peps/pep-0572/#abstract
https://www.python.org/dev/peps/pep-0572/#rationale
https://www.python.org/dev/peps/pep-0572/#the-importance-of-real-code
https://www.python.org/dev/peps/pep-0572/#syntax-and-semantics
https://www.python.org/dev/peps/pep-0572/#exceptional-cases
https://www.python.org/dev/peps/pep-0572/#scope-of-the-target
https://www.python.org/dev/peps/pep-0572/#relative-precedence-of
https://www.python.org/dev/peps/pep-0572/#change-to-evaluation-order
https://www.python.org/dev/peps/pep-0572/#differences-between-assignment-expressions-and-assignment-statements
https://www.python.org/dev/peps/pep-0572/#examples
https://www.python.org/dev/peps/pep-0572/#examples-from-the-python-standard-library
https://www.python.org/dev/peps/pep-0572/#site-py
https://www.python.org/dev/peps/pep-0572/#pydecimal-py
https://www.python.org/dev/peps/pep-0572/#copy-py
https://www.python.org/dev/peps/pep-0572/#datetime-py
https://www.python.org/dev/peps/pep-0572/#sysconfig-py
https://www.python.org/dev/peps/pep-0572/#simplifying-list-comprehensions
https://www.python.org/dev/peps/pep-0572/#capturing-condition-values
https://www.python.org/dev/peps/pep-0572/#fork
https://www.python.org/dev/peps/pep-0572/#rejected-alternative-proposals
https://www.python.org/dev/peps/pep-0572/#changing-the-scope-rules-for-comprehensions
https://www.python.org/dev/peps/pep-0572/#alternative-spellings
https://www.python.org/dev/peps/pep-0572/#special-casing-conditional-statements
https://www.python.org/dev/peps/pep-0572/#special-casing-comprehensions
https://www.python.org/dev/peps/pep-0572/#lowering-operator-precedence
https://www.python.org/dev/peps/pep-0572/#allowing-commas-to-the-right
https://www.python.org/dev/peps/pep-0572/#always-requiring-parentheses
https://www.python.org/dev/peps/pep-0572/#frequently-raised-objections
https://www.python.org/dev/peps/pep-0572/#why-not-just-turn-existing-assignment-into-an-expression
https://www.python.org/dev/peps/pep-0572/#with-assignment-expressions-why-bother-with-assignment-statements
https://www.python.org/dev/peps/pep-0572/#why-not-use-a-sublocal-scope-and-prevent-namespace-pollution
https://www.python.org/dev/peps/pep-0572/#style-guide-recommendations
https://www.python.org/dev/peps/pep-0572/#acknowledgements
https://www.python.org/dev/peps/pep-0572/#appendix-a-tim-peters-s-findings
https://www.python.org/dev/peps/pep-0572/#a-numeric-example
https://www.python.org/dev/peps/pep-0572/#appendix-b-rough-code-translations-for-comprehensions
https://www.python.org/dev/peps/pep-0572/#appendix-c-no-changes-to-scope-semantics
https://www.python.org/dev/peps/pep-0572/#references
https://www.python.org/dev/peps/pep-0572/#copyright
https://www.python.org/dev/peps/pep-0572/#id4
https://www.python.org/dev/peps/pep-0572/#id5
https://www.python.org/dev/peps/pep-0572/#id6
https://www.python.org/dev/peps/pep-0572/#id7
https://www.python.org/dev/peps/pep-0572/#id8
https://www.python.org/dev/peps/pep-0572/#id9
https://www.python.org/dev/peps/pep-0572/#id10
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0572/#id11
https://www.python.org/dev/peps/pep-0572/#id12
https://www.python.org/dev/peps/pep-0572/#id13
https://www.python.org/dev/peps/pep-0572/#id14
https://www.python.org/dev/peps/pep-0572/#id15
https://www.python.org/dev/peps/pep-0572/#id16
https://www.python.org/dev/peps/pep-0572/#id17
https://www.python.org/dev/peps/pep-0572/#id18
https://www.python.org/dev/peps/pep-0572/#id19
https://www.python.org/dev/peps/pep-0572/#id20
https://www.python.org/dev/peps/pep-0572/#id21
https://www.python.org/dev/peps/pep-0572/#id22
https://www.python.org/dev/peps/pep-0572/#id23
https://www.python.org/dev/peps/pep-0572/#id24
https://www.python.org/dev/peps/pep-0572/#id25
https://www.python.org/dev/peps/pep-3150
https://www.python.org/dev/peps/pep-0572/#id26
https://www.python.org/dev/peps/pep-0572/#id27
https://www.python.org/dev/peps/pep-0572/#id28
https://www.python.org/dev/peps/pep-0572/#id29
https://www.python.org/dev/peps/pep-0572/#id30
https://www.python.org/dev/peps/pep-0572/#id31
https://www.python.org/dev/peps/pep-0572/#id32
https://www.python.org/dev/peps/pep-0572/#id33
https://www.python.org/dev/peps/pep-0572/#id34
https://www.python.org/dev/peps/pep-0572/#id3
https://www.python.org/dev/peps/pep-0572/#id35
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0572/#id36
https://www.python.org/dev/peps/pep-0572/#id37
https://www.python.org/dev/peps/pep-0572/#id38
https://www.python.org/dev/peps/pep-0572/#id39
https://www.python.org/dev/peps/pep-0572/#id40
https://www.python.org/dev/peps/pep-0572/#id41
https://github.com/Rosuav/cpython/tree/assignment-expressions
https://www.python.org/dev/peps/pep-0572/#id1
https://mail.python.org/pipermail/python-ideas/2018-March/049409.html
https://www.python.org/dev/peps/pep-0572/#id42
https://github.com/python/peps/blob/master/pep-0572.rst
https://twitter.com/ThePSF
https://www.python.org/dev/peps/pep-0572/#python-network
https://www.python.org/dev/peps/pep-0572/#python-network
https://www.python.org/psf-landing/
https://www.python.org/about/legal/
https://www.python.org/privacy/
https://www.python.org/psf/sponsorship/sponsors/

