
View	All

Description

Comment	1

Comment	2

Comment	3

Comment	4

Comment	5

Format	For	Printing		-	XML		-	Clone	This	Bug		-	Top	of	page

Bug	23421	-	Strange	collation	rules	for	A	and	space	with	UTF-8	locale	when	other	characters	appended

Status: UNCONFIRMED

Alias: None

Product: glibc

Component: localedata	(show	other	bugs)

Version: 2.28

Importance: P2	normal

Target	Milestone: ---

Assignee: Not	yet	assigned	to	anyone

URL:

Keywords:

Depends	on:

Blocks:

	

Reported: 2018-07-17	09:09	IST	by	Benjamin	Cama

Modified: 2018-07-18	08:10	IST	(History)

CC	List: 2	users	(show)

See	Also:

Host:

Target:

Build:

Last	reconfirmed:

Attachments

A	and	space	collation	test	case	(170	bytes,	text/x-csrc)	
2018-07-17	09:09	IST,	Benjamin	Cama

Details

Test	case	for	collation	between	letter	and	space	with	later	letter	appended	(170	bytes,	text/x-csrc)	
2018-07-17	09:22	IST,	Benjamin	Cama

Details

Add	an	attachment	(proposed	patch,	testcase,	etc.)

Note

You	need	to	log	in	before	you	can	comment	on	or	make	changes	to	this	bug.

Benjamin	Cama	 2018-07-17	09:09:38	IST

Created	attachment	11136	[details]
A	and	space	collation	test	case

Hi,
I	stumbled	against	a	strange	string	ordering	bug,	and	managed	to	reduce	it	to	the	
attached	test	case.	I	*think*	it	comes	from	the	locale	data	only,	as	I	can	change	
the	difference	values	slightly	(but	not	the	ordering)	compared	to	an	older	
localedata,	while	still	having	the	exact	same	behavior	between	2.24	libc	and	latest	
master	(as	of	two	days	ago).

Here	is	the	output	with	git	master:

%	./testrun.sh	../collate_a_space
setlocale(LC_COLLATE,"C")	=	361286057
strcoll("A",	"	")	=	33
strcoll("AB",	"	B")	=	33
strcoll("B",	"	")	=	34
strcoll("BB",	"	B")	=	34
setlocale(LC_COLLATE,"en_US.UTF-8")	=	380448880
strcoll("A",	"	")	=	1
strcoll("AB",	"	B")	=	-13
strcoll("B",	"	")	=	1
strcoll("BB",	"	B")	=	1

(the	result	is	exactly	the	same	when	not	using	testrun.sh	and	only	setting	LOCPATH)

And	with	my	stock	libc	(2.24):

%	../collate_a_space
setlocale(LC_COLLATE,"C")	=	1774630437
strcoll("A",	"	")	=	33
strcoll("AB",	"	B")	=	33
strcoll("B",	"	")	=	34
strcoll("BB",	"	B")	=	34
setlocale(LC_COLLATE,"en_US.UTF-8")	=	1082470992
strcoll("A",	"	")	=	1
strcoll("AB",	"	B")	=	-1
strcoll("B",	"	")	=	1
strcoll("BB",	"	B")	=	1

Note	the	second	strcoll	test,	which	gives	an	opposite	result	with	an	UTF-8	locale	
compared	to	raw	C	one.	This	only	happen	with	letter	“A”	(or	even	“a”),	but	no	other	
one,	hence	the	“B”	test	for	comparison.	And	the	ordering	is	correct	when	comparing	
lone	“A”	(or	any	letter)	and	“	”	(space),	with	nothing	appended.

Note	that	this	is	with	100%	ASCII	characters.

Benjamin	Cama	 2018-07-17	09:22:59	IST

Created	attachment	11137	[details]
Test	case	for	collation	between	letter	and	space	with	later	letter	appended

OK,	this	is	not	actually	about	letter	“A”	only:	I	reproduce	it	with	any	appended	
letter	which	is	*after*	the	one	we	test	against	space;	see	attached	test	case.	The	
different	ordering	does	not	happen	with	a	letter	*prior*	to	it	appended	(replace	
the	“D”	with	“A”	in	my	example).

Carlos	O'Donell	 2018-07-17	15:20:57	IST

(In	reply	to	Benjamin	Cama	from	comment	#1)
>	Created	attachment	11137	[details]
>	Test	case	for	collation	between	letter	and	space	with	later	letter	appended
>	
>	OK,	this	is	not	actually	about	letter	“A”	only:	I	reproduce	it	with	any
>	appended	letter	which	is	*after*	the	one	we	test	against	space;	see	attached
>	test	case.	The	different	ordering	does	not	happen	with	a	letter	*prior*	to
>	it	appended	(replace	the	“D”	with	“A”	in	my	example).

This	is	expected.

In	en_US.UTF-8	the	space	(as	are	many	special	symbols)	is	ignored	for	collation.

Therefore	"A"	<	"B"	<	"	B"	<	"		B"	<	"				B"	etc.

Notes:
-	On	master	for	localedata/locales/iso14651_t1_common	we	have:
54827	order_start	<SPECIAL>;forward;backward;forward;forward,position
55297	<U0020>	IGNORE;IGNORE;IGNORE;<U0020>	%	SPACE
64325	order_start	<LATIN>;forward;backward;forward;forward,position
64347	<U0041>	<S0061>;<BASE>;<CAP>;<U0041>	%	LATIN	CAPITAL	LETTER	A
-	This	follows	the	POSIX	locale	specification:
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap07.html
"
~~~
The	special	keyword	IGNORE	as	a	weight	shall	indicate	that	when	strings	are	
compared	using	the	weights	at	the	level	where	IGNORE	is	specified,	the	collating	
element	shall	be	ignored;	that	is,	as	if	the	string	did	not	contain	the	collating	
element.	In	regular	expressions	and	pattern	matching,	all	characters	that	are	
subject	to	IGNORE	in	their	primary	weight	form	an	equivalence	class.
~~~
-	Sorting	SPECIAL	and	LATIN	have	the	same	rules,	and	when	you	compare	"A"	to	"	"	it	
is	ignored	until	the	4th	weight	where	it's	compared	by	Unicode	code	point,	and	so	
results	in	"A"	>	"	"	(which	is	true.
-	Sorting	then	"A"	to	"	B"	skips	"	"	(because	IGNORE)	and	compares	"A"	to	"B"	which	
results	in	"A"	<	"	B".

If	you	want	full	code	point	sorting	you	need	to	use	C.UTF-8	which	some	
distributions	provide,	and	which	is	still	not	available	in	upstream	glibc	(though	
I'm	working	on	it	slowly).

Benjamin	Cama	 2018-07-17	16:42:30	IST

Thanks	a	lot	for	these	explanations!	I	did	not	expect	that.

My	use	case	is	just	basic	ASCII	sorting	of	space	separated	values	lines	using	
“sort”,	which	does	not	work	with	“default”	locales	and	is	quite	a	PITA.	E.g	with	my	
default	UTF-8	locale	(fr_FR.UTF-8):

%	printf	"a	b\naa	b\n"	|	sort
aa	b
a	b
%	printf	"a	b\naa	b\n"	|	LANG=C	sort
a	b
aa	b

This	is	very	weird.

Should	I	assume	that	“basic”	sorting	in	Unix	should	always	explicitly	state	to	use	
the	C	locale?

Thanks	for	your	time.

Carlos	O'Donell	 2018-07-17	16:54:35	IST

(In	reply	to	Benjamin	Cama	from	comment	#3)
>	My	use	case	is	just	basic	ASCII	sorting	of	space	separated	values	lines
>	using	“sort”,	which	does	not	work	with	“default”	locales	and	is	quite	a
>	PITA.	E.g	with	my	default	UTF-8	locale	(fr_FR.UTF-8):

There	is	no	such	thing	as	"basic	ASCII."

You	have	the	C	or	POSIX	locale.

You	have	a	specific	locale	that	you	are	using.

>	%	printf	"a	b\naa	b\n"	|	sort
>	aa	b
>	a	b

This	is	correct.

>	%	printf	"a	b\naa	b\n"	|	LANG=C	sort
>	a	b
>	aa	b
>	
>	This	is	very	weird.

Weird	is	relative	;-)

>	Should	I	assume	that	“basic”	sorting	in	Unix	should	always	explicitly	state
>	to	use	the	C	locale?

Please	don't	call	it	"basic."

If	you	want	sorting	following	the	C/POSIX	rules	then	use	that	locale.

If	you	want	code-point	sorting	for	UTF-8	use	C.UTF-8	if	your	distribution	offers	
it.

We	just	fixed	a	related	issue	with	ldconfig	and	sorting	of	*.conf:
~~~
commit	7d38eb38977980efe703eac93645b1af5a5f8a0c
Author:	Aurelien	Jarno	<aurelien@aurel32.net>
Date:			Sat	Dec	16	12:25:41	2017	+0100

				ldconfig:	set	LC_COLLATE	to	C	[BZ	#22505]
				
				ldconfig	supports	`include'	directives	and	use	the	glob	function	to
				process	them.	The	glob	function	sort	entries	according	to	the	LC_COLLATE
				category.	When	using	a	standard	"include	/etc/ld.so.conf.d/*.conf"	entry
				in	/etc/ld.so.conf,	the	order	therefore	depends	on	the	locale	used	to
				run	ldconfig.	A	few	examples	of	locale	specific	order	that	might	be
				disturbing	in	that	context	compared	to	the	C	locale:
				-	The	cs_CZ	and	sk_SK	locales	sort	the	digits	after	the	letters.
				-	The	et_EE	locale	sorts	the	'z'	between	's'	and	't'.
				
				This	patch	fixes	that	by	setting	LC_COLLATE	to	C	in	order	to	process
				files	in	deterministic	order,	independently	of	the	locale	used	to	launch
				ldconfig.
				
				NOTE:	This	should	NOT	be	backported	to	older	release	branches.
				
				Changelog:
												[BZ	#22505]
												*	elf/ldconfig.c	(main):	Call	setlocale	to	force	LC_COLLATE	to	C.
~~~
Switching	to	the	C/POSIX	locale	makes	this	deterministic.

Benjamin	Cama	 2018-07-18	08:10:40	IST

Thanks	again	for	the	clarification.	I	understand	that	this	is	a	POSIX-defined	
behavior,	and	I	cannot	do	much	about	it.	Thanks	for	the	example	describing	a	
situation	where	using	the	C	locale	is	mandated.

I	know	I	cannot	convince	anyone	of	changing	POSIX,	but	one	last	*real*	example	of	
“weird”	sorting:

ENCR_DES								DES_CBC
ENCR_DES_ECB				DES_ECB
ENCR_DES_IV32			DES_IV32
ENCR_DES_IV64			DES_IV64
ENCR_IDEA							IDEA_CBC
ENCR_NULL_AUTH_AES_GMAC	NULL_AES_GMAC
ENCR_NULL							NULL

The	“usual”	rule	(as	in	“historically	in	Unix,	which	for	a	long	time	used	the	
C/POSIX	locale	everywhere”;	I	am	speaking	of	2000's	kind	of	old,	not	the	80's,	but	
I	am	old	enough	to	have	lived	the	Unicode	transition	in	Debian)	of	having	shorter	
strings	sorted	before	longer	ones	does	not	stand	(i.e.	ENCR_NULL*	looks	sorted	the	
opposite	way	of	ENCR_DES*).	This	is	with	tabs	instead	of	spaces	(which	have	the	
same	ordering	rule,	it	seems),	so	it	stands	out	more.

It	is	even	stranger	in	this	made	up	example:

%	printf	"A\tA\nAA\tA\nA\tD\n"|sort
A							A
AA						A
A							D

I	will	from	now	on	try	not	to	forget	setting	the	right	collation	rule	before	
expecting	the	C	sorting	behavior.	I	hope	not	to	be	bitten	again.

Sorry	for	the	noise	and	thanks	again.

https://sourceware.org/bugzilla/attachment.cgi?bugid=23421&action=viewall
https://sourceware.org/bugzilla/show_bug.cgi?id=23421#c0
https://sourceware.org/bugzilla/show_bug.cgi?id=23421#c1
https://sourceware.org/bugzilla/show_bug.cgi?id=23421#c2
https://sourceware.org/bugzilla/show_bug.cgi?id=23421#c3
https://sourceware.org/bugzilla/show_bug.cgi?id=23421#c4
https://sourceware.org/bugzilla/show_bug.cgi?id=23421#c5
https://sourceware.org/bugzilla/show_bug.cgi?format=multiple&id=23421
https://sourceware.org/bugzilla/show_bug.cgi?ctype=xml&id=23421
https://sourceware.org/bugzilla/enter_bug.cgi?cloned_bug_id=23421
https://sourceware.org/bugzilla/show_bug.cgi?id=23421#
https://sourceware.org/bugzilla/show_bug.cgi?id=23421
https://sourceware.org/bugzilla/page.cgi?id=fields.html#bug_status
https://sourceware.org/bugzilla/page.cgi?id=fields.html#alias
https://sourceware.org/bugzilla/describecomponents.cgi
https://sourceware.org/bugzilla/describecomponents.cgi?product=glibc
https://sourceware.org/bugzilla/buglist.cgi?component=localedata&product=glibc&bug_status=__open__
https://sourceware.org/bugzilla/page.cgi?id=fields.html#version
https://sourceware.org/bugzilla/page.cgi?id=fields.html#importance
https://sourceware.org/bugzilla/page.cgi?id=fields.html#target_milestone
https://sourceware.org/bugzilla/page.cgi?id=fields.html#assigned_to
https://sourceware.org/bugzilla/page.cgi?id=fields.html#bug_file_loc
https://sourceware.org/bugzilla/describekeywords.cgi
https://sourceware.org/bugzilla/page.cgi?id=fields.html#dependson
https://sourceware.org/bugzilla/page.cgi?id=fields.html#blocked
https://sourceware.org/bugzilla/show_activity.cgi?id=23421
https://sourceware.org/bugzilla/show_bug.cgi?id=23421#
https://sourceware.org/bugzilla/page.cgi?id=fields.html#see_also
https://sourceware.org/bugzilla/page.cgi?id=fields.html#cf_gcchost
https://sourceware.org/bugzilla/page.cgi?id=fields.html#cf_gcctarget
https://sourceware.org/bugzilla/page.cgi?id=fields.html#cf_gccbuild
https://sourceware.org/bugzilla/page.cgi?id=fields.html#cf_reconfirmed_on
https://sourceware.org/bugzilla/attachment.cgi?id=11136
https://sourceware.org/bugzilla/show_bug.cgi?id=23421#attach_11136
https://sourceware.org/bugzilla/attachment.cgi?id=11136&action=edit
https://sourceware.org/bugzilla/attachment.cgi?id=11137
https://sourceware.org/bugzilla/show_bug.cgi?id=23421#attach_11137
https://sourceware.org/bugzilla/attachment.cgi?id=11137&action=edit
https://sourceware.org/bugzilla/attachment.cgi?bugid=23421&action=enter
https://sourceware.org/bugzilla/show_bug.cgi?id=23421&GoAheadAndLogIn=1
https://sourceware.org/bugzilla/attachment.cgi?id=11136
https://sourceware.org/bugzilla/attachment.cgi?id=11136&action=edit
https://sourceware.org/bugzilla/attachment.cgi?id=11137
https://sourceware.org/bugzilla/attachment.cgi?id=11137&action=edit
https://sourceware.org/bugzilla/show_bug.cgi?id=23421#c1
https://sourceware.org/bugzilla/attachment.cgi?id=11137
https://sourceware.org/bugzilla/attachment.cgi?id=11137&action=edit
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap07.html
https://sourceware.org/bugzilla/show_bug.cgi?id=23421#c3
mailto:aurelien@aurel32.net

