
g_stat	-	possbile	memory	corruption	causing	SEGFAULT
Investigating	a	regression	/	crashing	issue	in	Inkscape	when	built	with	MSYS2's	mingw-w64	I	came	up	with	the	following	minimal	testcase	which
reproduces	the	segmentation	fault:

#include	<iostream>
#include	<vector>

#include	<glib/gstdio.h>

int	main()
{
				std::vector<std::string>	filesFound;

				GStatBuf	st;
				g_stat("C:\\",	&st);
}

(I	compiled	it	with	 g++	test.cpp	 pkg-config	--cflags	--libs	glib-2.0 	-O1	-o	test.exe )

What	I	found	so	far:

The	segfault	seems	to	occur	when	deleting	"filesFound"	and	unless	there's	a	bug	in	gcc	(which	I	can't	rule	out	at	this	point)	this	might	indicate	that
there's	some	sort	of	memory	corruption	while	calling	 g_stat .
The	segfault	occurs	with	glib	2.56.0	and	above	but	not	with	glib	2.54.3	(and	probably	earlier	versions).
The	segfault	occurs	with	gcc	8.2.0	and	gcc	7.3.0	(the	only	other	recent	update	besides	glib	I	can	think	of).
The	segfault	occurs	in	64-bit	builds	bot	not	in	32-bit	builds.
The	segfault	occurs	when	compiled	with	 -O1 	and	below	but	not	with	 -O2 	and	above.

One	change	in	glib	that	might	be	relevant	is	53bd6a35	by	@ruslanizhb .	Maybe	there's	some	discrepancy	in	sizes	of	the	stat	struct	which	is	now	exposed
due	to	using	64-bit	types	in	64-bit	builds	(which	was	not	done	before	AFAIK)?

2	Related	Merge	Requests

!226 gstdio:	use	_stat64	for	GStatBuf	on	64bit	mingw.	Fixes	#1476 Open

!228 meson:	define	_FILE_OFFSET_BITS=64	for	MinGW.	See	#1476 Open

When	these	merge	requests	are	accepted,	this	issue	will	be	closed	automatically.

Please	register	or	sign	in	to	reply

Open Opened	1	week	ago	by	 Patrick	Storz 

Christoph	Reiter	@creiter	·	1	week	ago

Developer

I	suspect	this	is	https://bugzilla.gnome.org/show_bug.cgi?id=728663

From	a	quick	test	with	2.56,	sizeof(GStatBuf)	is	different	at	glib	compile	time	vs	program	compile	time,	which	would	explain	the	stack
corruption.

LRN	@ruslanizhb	·	1	week	ago

Developer

sizeof(GStatBuf) 	shouldn't	change.	I	deliberately	used	 struct	_stat 	for	it,	which	ensures	that	it	always	uses	32-bit	fields.	If	it	does
change,	then	something	is	wrong.

I've	been	meaning	to	debug	this,	but	performance	investigations	ate	a	lot	of	time.

LRN	@ruslanizhb	·	1	week	ago

Developer

Okay,	the	 gstdio.h 	header	has	an	exception	for	 _WIN64 ,	which	means	that	on	x86_64	it	does	use	normal	 struct	stat .	But	when
compiling	for	 x86_64 	MinGW-w64	continues	to	define	 off_t 	to	be	32-bit,	and	 st_size 	has	type	 off_t ,	meaning	that	 st_size
continues	to	be	32-bit.

I've	asked	on	MinGW-w64	ML	about	this.	Meanwhile	a	quick	solution	on	your	part	is	to	compile	with	 -D_FILE_OFFSET_BITS=64 	-	that	is,
use	LFS.

Simon	McVittie	@smcv	added	 1.	Crash 	 gstdio 	 win32 	labels	·	1	week	ago

Christoph	Reiter	@creiter	·	1	week	ago

Developer

I	suspect	this	is	https://bugzilla.gnome.org/show_bug.cgi?id=728663

Oh,	I	assumed	that	patch	wasn't	in	2.56,	but	it	is,	so	ignore	that.	The	reason	I	couldn't	reproduce	on	master	is	likely	meson	vs	autotools	then.

@LRN	could	it	be	that	the	autotools	build	passes	_FILE_OFFSET_BITS=64	by	default?	Problem	then	is	if	we	switch	msys2	to	meson	things
start	to	no	longer	match	again..

Christoph	Reiter	@creiter	·	1	week	ago

Developer

@ruslanizhb 	what	if	we	change	the	"struct	stat"	to	"struct	_stat64"	for	mingw+64bit?	From	what	I	see	that	would	match	the	old	default
autotools	size,	makes	meson+autotools	match,	and	fixes	the	reported	crash	here	if	backported.

Edited	by	Christoph	Reiter	1	week	ago

LRN	@ruslanizhb	·	1	week	ago

Developer

That	could	work.

Christoph	Reiter	@creiter	mentioned	in	commit	631893f7	·	1	week	ago

Christoph	Reiter	@creiter	mentioned	in	merge	request	!226	·	1	week	ago

Christoph	Reiter	@creiter	·	1	week	ago

Developer

I've	opened	!226	(might	be	good	for	msvc	as	well,	but	it	would	be	an	ABI	break	there	I	guess?)

Emmanuele	Bassi	@ebassi	·	1	week	ago

Maintainer

could	it	be	that	the	autotools	build	passes	 _FILE_OFFSET_BITS=64 	by	default?

Meson	does	this	by	default	on	any	Linux-like	C	compiler,	i.e.	GCC,	Clang,	and	ICC,	so	I'm	not	entirely	sure	this	applies.

LRN	@ruslanizhb	·	1	week	ago

Developer

Most	advanced	buildsystems	do.	But	users	of	glib	could	be	using	anything	-	plain	makefiles	or	even	self-written	scripts.	We	can't	expect	them
to	define	 _FILE_OFFSET_BITS=64 .	And	without	that	their	version	of	 GStatBuf 	will	not	match	our	version.	So	-	yes,	 struct	_stat64 ,
which	has	64-bit	time	and	size	fields,	regardless	of	LFS	being	enabled	or	disabled,	is	the	right	thing	to	use,	as	long	as	there	aren't	any	[or
many]	glib	users	out	there	that	assumed	something	else.

Patrick	Storz	@Ede123	·	1	week	ago

From	the	user's	point	of	view	the	whole	idea	of	 GStatBuf 	is	to	guarantee	that	it	will	always	have	the	correct	type	(regardless	of	the
environment	and	of	what	the	build	system	might	or	might	not	do).

So	whatever	that	type	might	be	there	mustn't	be	any	possibility	for	the	build	system	to	influence	it.

Christoph	Reiter	@creiter	·	1	week	ago

Developer

could	it	be	that	the	autotools	build	passes	 _FILE_OFFSET_BITS=64 	by	default?	Meson	does	this	by	default	on	any	Linux-like
C	compiler,	i.e.	GCC,	Clang,	and	ICC,	so	I'm	not	entirely	sure	this	applie

It	doesn't	with	mingw	(I	just	tested	it).	I	found	https://github.com/mesonbuild/meson/issues/3049	which	is	somewhat	related.

Ideally	it	shouldn't	matter,	as	msvc	ignores	it	and	we	should	use	the	right	windows	API	instead,	but	I'd	enable	it	anyway	in	case	we	somehow
depend	on	it.

Christoph	Reiter	@creiter	mentioned	in	commit	7e6fb333	·	1	week	ago

Christoph	Reiter	@creiter	mentioned	in	merge	request	!228	·	1	week	ago

Simon	McVittie	@smcv	·	1	week	ago

Developer

could	it	be	that	the	autotools	build	passes	_FILE_OFFSET_BITS=64	by	default?

The	Autotools	build	uses	 AC_SYS_LARGEFILE ,	which	defines	 _FILE_OFFSET_BITS=64 	(or	some	obsolete	equivalent	on	rarer	platforms)	by
default,	but	can	be	told	not	to	do	so	with	 ./configure	--disable-largefile .	So	this	has	always	been	conditional.

Simon	McVittie	@smcv	·	1	week	ago

Developer

From	the	user's	point	of	view	the	whole	idea	of	 GStatBuf 	is	to	guarantee	that	it	will	always	have	the	correct	type	(regardless	of	the
environment	and	of	what	the	build	system	might	or	might	not	do).

Yes.	Specifically,	it's	whatever	type	is	correct	for	 g_stat() .

When	a	third	party	uses	GLib,	there	are	two	relevant	build	systems:	the	build	system	for	GLib	itself,	and	the	build	system	for	the	user	code
(for	example	Inkscape	or	the	minimal	reproducer	at	the	top	of	this	bug	report).

A	complication	here	is	that	 g_stat 	is	inlined	into	 gstdio.h 	(as	a	call	to	 stat )	on	Unix	if	 G_STDIO_NO_WRAP_ON_UNIX 	is	undefined,	but
not	on	Windows	or	if	 G_STDIO_NO_WRAP_ON_UNIX 	is	defined.

In	the	normal	Unix	case	where	 g_stat 	is	just	a	 #define 	for	 stat ,	the	buffer	type	for	both	 g_stat 	and	 GStatBuf 	must	come	from	user
code's	build	system:	it	could	be	the	large-file-support	version,	or	the	legacy	version,	depending	whether	user	code	has	used	
AC_SYS_LARGEFILE 	or	the	various	non-Autotools	equivalents	(which	it	should	-	all	code	that	might	call	 stat() 	should	enable	large	file
support,	even	if	it	will	never	actually	open	large	files,	so	that	it	can	cope	with	large	inode	numbers).

In	the	Windows	case	and	the	weird	Unix	case	where	 g_stat 	is	a	real	function	in	 gstdio.c ,	the	definition	of	 GStatBuf 	must	match
whatever	type	was	selected	by	GLib's	build	system,	ignoring	whatever	large-file	support	is	selected	or	not	selected	by	the	build	system	of
user	code.	That	would	have	to	be	done	by	hard-coding	it	in	 glibconfig.h 	during	GLib's	 ./configure 	or	Meson/MSVC	equivalent.

One	solution	to	this	whole	mess	is	to	use	the	GIO	APIs,	which	use	a	properly	opaque	data	structure,	instead.

https://github.com/Alexpux/MINGW-packages/issues/4134
https://gitlab.gnome.org/GNOME/glib/commit/53bd6a359f2c48e7729f89902097c892c8aa6fea
https://gitlab.gnome.org/ruslanizhb
https://gitlab.gnome.org/GNOME/glib/pipelines/23423
https://gitlab.gnome.org/GNOME/glib/merge_requests/226
https://gitlab.gnome.org/GNOME/glib/pipelines/23530
https://gitlab.gnome.org/GNOME/glib/merge_requests/228
https://gitlab.gnome.org/users/sign_in?redirect_to_referer=yes#register-pane
https://gitlab.gnome.org/users/sign_in?redirect_to_referer=yes
https://gitlab.gnome.org/Ede123
https://gitlab.gnome.org/GNOME/glib/issues/1476#note_287253
https://gitlab.gnome.org/creiter
https://bugzilla.gnome.org/show_bug.cgi?id=728663
https://gitlab.gnome.org/GNOME/glib/issues/1476#note_287256
https://gitlab.gnome.org/ruslanizhb
https://gitlab.gnome.org/GNOME/glib/issues/1476#note_287317
https://gitlab.gnome.org/ruslanizhb
https://users.suse.com/~aj/linux_lfs.html
https://gitlab.gnome.org/GNOME/glib/issues?label_name=1.+Crash
https://gitlab.gnome.org/GNOME/glib/issues?label_name=gstdio
https://gitlab.gnome.org/GNOME/glib/issues?label_name=win32
https://gitlab.gnome.org/GNOME/glib/issues/1476#note_287358
https://gitlab.gnome.org/smcv
https://gitlab.gnome.org/GNOME/glib/issues/1476#note_287424
https://gitlab.gnome.org/creiter
https://bugzilla.gnome.org/show_bug.cgi?id=728663
https://gitlab.gnome.org/GNOME/glib/issues/1476#note_287427
https://gitlab.gnome.org/creiter
https://gitlab.gnome.org/ruslanizhb
https://gitlab.gnome.org/creiter
https://gitlab.gnome.org/GNOME/glib/issues/1476#note_287433
https://gitlab.gnome.org/ruslanizhb
https://gitlab.gnome.org/GNOME/glib/commit/631893f750746fe7d873ab6dcd63a41ac66fad0a
https://gitlab.gnome.org/GNOME/glib/issues/1476#note_287459
https://gitlab.gnome.org/creiter
https://gitlab.gnome.org/GNOME/glib/merge_requests/226
https://gitlab.gnome.org/GNOME/glib/issues/1476#note_287460
https://gitlab.gnome.org/creiter
https://gitlab.gnome.org/GNOME/glib/issues/1476#note_287462
https://gitlab.gnome.org/creiter
https://gitlab.gnome.org/GNOME/glib/merge_requests/226
https://gitlab.gnome.org/GNOME/glib/issues/1476#note_287475
https://gitlab.gnome.org/ebassi
https://gitlab.gnome.org/GNOME/glib/issues/1476#note_287509
https://gitlab.gnome.org/ruslanizhb
https://gitlab.gnome.org/GNOME/glib/issues/1476#note_287517
https://gitlab.gnome.org/Ede123
https://gitlab.gnome.org/GNOME/glib/issues/1476#note_287636
https://gitlab.gnome.org/creiter
https://github.com/mesonbuild/meson/issues/3049
https://gitlab.gnome.org/GNOME/glib/commit/7e6fb333f7a5f50d73a354790d9cbaf19b762724
https://gitlab.gnome.org/GNOME/glib/issues/1476#note_287840
https://gitlab.gnome.org/creiter
https://gitlab.gnome.org/GNOME/glib/merge_requests/228
https://gitlab.gnome.org/GNOME/glib/issues/1476#note_287841
https://gitlab.gnome.org/creiter
https://gitlab.gnome.org/GNOME/glib/issues/1476#note_289002
https://gitlab.gnome.org/smcv
https://gitlab.gnome.org/GNOME/glib/issues/1476#note_289006
https://gitlab.gnome.org/smcv

