
Inline	function
In	 the	C	and	C++	programming	languages,	an	 inline	function	 is	one	qualified	with	 the	keyword	inline;	 this	 serves	 two	purposes.	Firstly,	 it	 serves	as	a	 compiler	directive	 that	 suggests	 (but	 does	not	 require)	 that	 the	 compiler

substitute	 the	body	of	 the	 function	 inline	by	performing	 inline	expansion,	 i.e.	by	 inserting	 the	 function	code	at	 the	address	of	each	 function	call,	 thereby	saving	 the	overhead	of	a	 function	call.	 In	 this	 respect	 it	 is	analogous	 to	 the

register	storage	class	 specifier,	which	 similarly	 provides	 an	 optimization	hint.[1]	 The	 second	purpose	 of	inline	 is	 to	 change	 linkage	 behavior;	 the	 details	 of	 this	 are	 complicated.	 This	 is	 necessary	 due	 to	 the	 C/C++	 separate

compilation	+	linkage	model,	specifically	because	the	definition	(body)	of	the	function	must	be	duplicated	in	all	translation	units	where	it	is	used,	to	allow	inlining	during	compiling,	which,	if	the	function	has	external	linkage,	causes	a

collision	during	linking	(it	violates	uniqueness	of	external	symbols).	C	and	C++	(and	dialects	such	as	GNU	C	and	Visual	C++)	resolve	this	in	different	ways.[1]

Example

Standard	support

Nonstandard	extensions

Storage	classes	of	inline	functions

C99

gnu89

C++

armcc

Restrictions

Problems

Quotes

See	also

References

External	links

An	inline	function	can	be	written	in	C	or	C++	like	this:

static	inline	void	swap(int	*m,	int	*n)
{
		int	temp	=	*m;
		*m	=	*n;
		*n	=	temp;
}

Then,	a	statement	such	as	the	following:

swap(&x,	&y);

may	be	translated	into	(if	the	compiler	decides	to	do	the	inlining,	which	typically	requires	optimization	to	be	enabled):

int	temp	=	x;
x	=	y;
y	=	temp;

When	implementing	a	sorting	algorithm	doing	lots	of	swaps,	this	can	increase	the	execution	speed.

C++	and	C99,	but	not	its	predecessors	K&R	C	and	C89,	have	support	for	inline	functions,	though	with	different	semantics.	In	both	cases,	inline	does	not	force	inlining;	the	compiler	is	free	to	choose	not	to	inline	the	function	at	all,	or

only	 in	some	cases.	Different	compilers	vary	 in	how	complex	a	 function	they	can	manage	to	 inline.	Mainstream	C++	compilers	 like	Microsoft	Visual	C++	and	GCC	support	an	option	 that	 lets	 the	compilers	automatically	 inline	any

suitable	function,	even	those	not	marked	as	inline	functions.	However,	simply	omitting	the	inline	keyword	to	let	the	compiler	make	all	inlining	decisions	is	not	possible,	since	the	linker	will	then	complain	about	duplicate	definitions

in	different	translation	units.	This	is	because	inline	not	only	gives	the	compiler	a	hint	that	the	function	should	be	inlined,	it	also	has	an	effect	on	whether	the	compiler	will	generate	a	callable	out-of-line	copy	of	the	function	(see	storage

classes	of	inline	functions).

GNU	C,	as	part	of	the	dialect	gnu89	that	it	offers,	has	support	for	inline	as	an	extension	to	C89.	However,	the	semantics	differ	from	both	those	of	C++	and	C99.	armcc	in	C90	mode	also	offers	inline	as	a	non-standard	extension,	with

semantics	different	from	gnu89	and	C99.

Some	implementations	provide	a	means	by	which	to	force	the	compiler	to	inline	a	function,	usually	by	means	of	implementation-specific	declaration	specifiers:

Microsoft	Visual	C++:	__forceinline

gcc	or	clang:	__attribute__((always_inline))	or	__attribute__((__always_inline__)),	the	latter	of	which	is	useful	to	avoid	a	conflict	with	a	user-defined	macro	named	always_inline.

Indiscriminate	uses	of	that	can	result	in	larger	code	(bloated	executable	file),	minimal	or	no	performance	gain,	and	in	some	cases	even	a	loss	in	performance.	Moreover,	the	compiler	cannot	inline	the	function	in	all	circumstances,	even

when	inlining	is	forced;	in	this	case	both	gcc	and	Visual	C++	generate	warnings.

Forcing	inlining	is	useful	if

inline	is	not	respected	by	the	compiler	(ignored	by	compiler	cost/benefit	analyzer),	and

inlining	results	in	a	necessary	performance	boost

For	code	portability,	the	following	preprocessor	directives	may	be	used:

#ifdef	_MSC_VER
				#define	forceinline	__forceinline
#elif	defined(__GNUC__)
				#define	forceinline	inline	__attribute__((__always_inline__))
#elif	defined(__CLANG__)
				#if	__has_attribute(__always_inline__)
								#define	forceinline	inline	__attribute__((__always_inline__))
				#endif
#else
				#define	forceinline	inline
#endif

static	inline	has	the	same	effects	in	all	C	dialects	and	C++.	It	will	emit	a	locally	visible	(out-of-line	copy	of	the)	function	if	required.

Regardless	of	the	storage	class,	the	compiler	can	ignore	the	inline	qualifier	and	generate	a	function	call	in	all	C	dialects	and	C++.

The	effect	of	the	storage	class	extern	when	applied	or	not	applied	to	inline	functions	differs	between	the	C	dialects[2]	and	C++[3].

In	C99,	a	function	defined	inline	will	never,	and	a	function	defined	extern	inline	will	always,	emit	an	externally	visible	function.	Unlike	in	C++,	there	is	no	way	to	ask	for	an	externally	visible	function	shared	among	translation

units	to	be	emitted	only	if	required.

If	inline	declarations	are	mixed	with	extern	inline	declarations	or	with	unqualified	declarations	(ie.,	without	inline	qualifier	or	storage	class),	 the	 translation	unit	must	contain	a	definition	(no	matter	whether	unqualified,

inline,	or	extern	inline)	and	an	externally	visible	function	will	be	emitted	for	it.

A	function	defined	inline	requires	exactly	one	function	with	that	name	somewhere	else	in	the	program	which	is	either	defined	extern	inline	or	without	qualifier.	If	more	than	one	such	definition	is	provided	in	the	whole	program,

the	linker	will	complain	about	duplicate	symbols.	If,	however,	it	is	lacking,	the	linker	does	not	necessarily	complain,	because,	if	all	uses	could	be	inlined,	it	is	not	needed.	But	it	may	complain,	since	the	compiler	can	always	ignore	the

inline	qualifier	and	generate	calls	to	the	function	instead,	as	typically	happens	if	the	code	is	compiled	without	optimization.	(This	may	be	the	desired	behavior,	if	the	function	is	supposed	to	be	inlined	everywhere	by	all	means,	and	an

error	should	be	generated	if	it	is	not.)	A	convenient	way	is	to	define	the	inline	functions	in	header	files	and	create	one	.c	file	per	function,	containing	an	extern	inline	declaration	for	it	and	including	the	respective	header	file	with

the	definition.	It	does	not	matter	whether	the	declaration	is	before	or	after	the	include.

To	prevent	unreachable	code	from	being	added	to	the	final	executable	if	all	uses	of	a	function	were	inlined,	it	is	advised[3]	to	put	the	object	files	of	all	such	.c	files	with	a	single	extern	inline	function	into	a	static	library	file,	typically

with	ar	rcs,	then	link	against	that	library	instead	of	the	individual	object	files.	That	causes	only	those	object	files	to	be	linked	that	are	actually	needed,	in	contrast	to	linking	the	object	files	directly,	which	causes	them	to	be	always

included	in	the	executable.	However,	the	library	file	must	be	specified	after	all	the	other	object	files	on	the	linker	command	line,	since	calls	from	object	files	specified	after	the	library	file	to	the	functions	will	not	be	considered	by	the

linker.	Calls	from	inline	functions	to	other	inline	functions	will	be	resolved	by	the	linker	automatically	(the	s	option	in	ar	rcs	ensures	this).

An	alternative	solution	is	to	use	link	time	optimization	instead	of	a	library.	gcc	provides	the	flag	-Wl,--gc-sections	to	omit	sections	in	which	all	functions	are	unused.	This	will	be	the	case	for	object	files	containing	the	code	of	a

single	unused	extern	inline	function.	However,	it	also	removes	any	and	all	other	unused	sections	from	all	other	object	files,	not	just	those	related	to	unused	extern	inline	functions.	(It	may	be	desired	to	link	functions	into	the

executable	that	are	to	be	called	by	the	programmer	from	the	debugger	rather	than	by	the	program	itself,	eg.,	for	examining	the	internal	state	of	the	program.)	With	this	approach,	it	is	also	possible	to	use	a	single	.c	file	with	all	extern

inline	functions	instead	of	one	.c	file	per	function.	Then	the	file	has	to	be	compiled	with	-fdata-sections	-ffunction-sections.	However,	the	gcc	manual	page	warns	about	that,	saying	"Only	use	these	options	when	there	are

significant	benefits	from	doing	so."

Some	recommend	an	entirely	different	approach,	which	is	to	define	functions	as	static	inline	instead	of	inline	 in	header	 files[2].	Then,	no	unreachable	code	will	be	generated.	However,	 this	approach	has	a	drawback	 in	 the

opposite	case:	Duplicate	code	will	be	generated	if	the	function	could	not	be	inlined	in	more	than	one	translation	unit.	The	emitted	function	code	cannot	be	shared	among	translation	units	because	it	must	have	different	addresses.	This	is

another	drawback;	taking	the	address	of	such	a	function	defined	as	static	inline	in	a	header	file	will	yield	different	values	in	different	translation	units.	Therefore,	static	inline	functions	should	only	be	used	if	they	are	used	in

only	one	translation	unit,	which	means	that	they	should	only	go	to	the	respective	.c	file,	not	to	a	header	file.

gnu89	semantics	of	inline	and	extern	inline	are	essentially	the	exact	opposite	of	those	in	C99[4],	with	the	exception	that	gnu89	permits	redefinition	of	an	extern	inline	function	as	an	unqualified	function,	while	C99	inline

does	not[5].	Thus,	gnu89	extern	inline	without	redefinition	is	like	C99	inline,	and	gnu89	inline	is	like	C99	extern	inline;	in	other	words,	in	gnu89,	a	function	defined	inline	will	always	and	a	function	defined	extern

inline	will	never	emit	an	externally	visible	function.	The	rationale	for	this	is	that	it	matches	variables,	for	which	storage	will	never	be	reserved	if	defined	as	extern	and	always	if	defined	without.	The	rationale	for	C99,	in	contrast,	is

that	it	would	be	astonishing	if	using	inline	would	have	a	side-effect—to	always	emit	a	non-inlined	version	of	the	function—that	is	contrary	to	what	its	name	suggests.

The	remarks	for	C99	about	the	need	to	provide	exactly	one	externally	visible	function	instance	for	inlined	functions	and	about	the	resulting	problem	with	unreachable	code	apply	mutatis	mutandis	to	gnu89	as	well.

gcc	up	to	and	including	version	4.2	used	gnu89	inline	semantics	even	when	-std=c99	was	explicitly	specified.[6]	With	version	5[5],	gcc	switched	from	gnu89	to	the	gnu11	dialect,	effectively	enabling	C99	inline	semantics	by	default.

To	use	gnu89	semantics	instead,	they	have	to	be	enabled	explicitly,	either	with	-std=gnu89	or,	to	only	affect	inlining,	-fgnu89-inline,	or	by	adding	the	gnu_inline	attribute	to	all	inline	declarations.	To	ensure	C99	semantics,

either	-std=c99,	-std=c11,	-std=gnu99	or	-std=gnu11	(without	-fgnu89-inline)	can	be	used.[3]

In	C++,	a	function	defined	inline	will,	if	required,	emit	a	function	shared	among	translation	units,	typically	by	putting	it	into	the	common	section	of	the	object	file	for	which	it	is	needed.	The	function	must	have	the	same	definition

everywhere,	always	with	the	inline	qualifier.	In	C++,	extern	inline	is	the	same	as	inline.	The	rationale	for	the	C++	approach	is	that	it	is	the	most	convenient	way	for	the	programmer,	since	no	special	precautions	for	elimination

of	unreachable	code	must	be	taken	and,	like	for	ordinary	functions,	it	makes	no	difference	whether	extern	is	specified	or	not.

The	inline	qualifier	is	automatically	added	to	a	function	defined	as	part	of	a	class	definition.

armcc	in	C90	mode	provides	extern	inline	and	inline	 semantics	 that	are	 the	same	as	 in	C++:	Such	definitions	will	emit	a	 function	shared	among	translation	units	 if	 required.	In	C99	mode,	extern	inline	always	emits	a

function,	but	like	in	C++,	it	will	be	shared	among	translation	units.	Thus,	the	same	function	can	be	defined	extern	inline	in	different	translation	units[7].	This	matches	the	traditional	behavior	of	Unix	C	compilers[8]	for	multiple

non-extern	definitions	of	uninitalized	global	variables.

Taking	the	address	of	an	inline	function	requires	code	for	a	non-inlined	copy	of	that	function	to	be	emitted	in	any	case.

In	C99,	an	inline	or	extern	inline	function	must	not	access	static	global	variables	or	define	non-const	static	local	variables.	const	static	local	variables	may	or	may	not	be	different	objects	in	different	translation	units,

depending	on	whether	the	function	was	inlined	or	whether	a	call	was	made.	Only	static	inline	definitions	can	reference	identifiers	with	internal	linkage	without	restrictions;	those	will	be	different	objects	in	each	translation	unit.	In

C++,	both	const	and	non-const	static	locals	are	allowed	and	they	refer	to	the	same	object	in	all	translation	units.

gcc	cannot	inline	functions	if[3]

1.	 they	are	variadic,

2.	 use	alloca

3.	 use	computed	goto

4.	 use	nonlocal	goto

5.	 use	nested	functions

6.	 use	setjmp

7.	 use	__builtin_longjmp

8.	 use	__builtin_return,	or

9.	 use	__builtin_apply_args

Based	on	Microsoft	Specifications	at	MSDN,	MS	Visual	C++	cannot	inline	(not	even	with	__forceinline),	if

1.	 The	function	or	its	caller	is	compiled	with	/Ob0	(the	default	option	for	debug	builds).

2.	 The	function	and	the	caller	use	different	types	of	exception	handling	(C++	exception	handling	in	one,	structured	exception	handling	in	the	other).

3.	 The	function	has	a	variable	argument	list.

4.	 The	function	uses	inline	assembly,	unless	compiled	with	/Og,	/Ox,	/O1,	or	/O2.

5.	 The	function	is	recursive	and	not	accompanied	by	#pragma	inline_recursion(on).	With	the	pragma,	recursive	functions	are	inlined	to	a	default	depth	of	16	calls.	To	reduce	the	inlining	depth,	use
inline_depth	pragma.

6.	 The	function	is	virtual	and	is	called	virtually.	Direct	calls	to	virtual	functions	can	be	inlined.

7.	 The	program	takes	the	address	of	the	function	and	the	call	is	made	via	the	pointer	to	the	function.	Direct	calls	to	functions	that	have	had	their	address	taken	can	be	inlined.

8.	 The	function	is	also	marked	with	the	naked	__declspec	modifier.

Besides	the	problems	with	inline	expansion	in	general,	inline	functions	as	a	language	feature	may	not	be	as	valuable	as	they	appear,	for	a	number	of	reasons:

Often,	a	compiler	is	in	a	better	position	than	a	human	to	decide	whether	a	particular	function	should	be	inlined.	Sometimes	the	compiler	may	not	be	able	to	inline	as	many	functions	as	the	programmer
indicates.

An	important	point	to	note	is	that	the	code	(of	the	inline	function)	gets	exposed	to	its	client	(the	calling	function).

As	functions	evolve,	they	may	become	suitable	for	inlining	where	they	were	not	before,	or	no	longer	suitable	for	inlining	where	they	were	before.	While	inlining	or	un-inlining	a	function	is	easier	than
converting	to	and	from	macros,	it	still	requires	extra	maintenance	which	typically	yields	relatively	little	benefit.

Inline	functions	used	in	proliferation	in	native	C-based	compilation	systems	can	increase	compilation	time,	since	the	intermediate	representation	of	their	bodies	is	copied	into	each	call	site.

The	specification	of	inline	in	C99	requires	exactly	one	external	definition	of	the	function,	if	it	is	used	somewhere.	If	such	a	definition	wasn't	provided	by	the	programmer,	that	can	easily	lead	to	linker
errors.	This	can	happen	with	optimization	turned	off,	which	typically	prevents	inlining.	Adding	the	definitions,	on	the	other	hand,	can	cause	unreachable	code	if	the	programmer	does	not	carefully	avoid
it,	by	putting	them	in	a	library	for	linking,	using	link	time	optimization,	or	static	inline.

In	C++,	it	is	necessary	to	define	an	inline	function	in	every	module	(translation	unit)	that	uses	it,	whereas	an	ordinary	function	must	be	defined	in	only	a	single	module.	Otherwise	it	would	not	be
possible	to	compile	a	single	module	independently	of	all	other	modules.	Depending	on	the	compiler,	this	may	cause	each	respective	object	file	to	contain	a	copy	of	the	function's	code,	for	each	module
with	some	use	that	could	not	be	inlined.

In	embedded	software,	oftentimes	certain	functions	need	to	be	placed	in	certain	code	sections	by	use	of	special	compiler	instructions	such	as	"pragma"	statements.	Sometimes,	a	function	in	one
memory	segment	might	need	to	call	a	function	in	another	memory	segment,	and	if	inlining	of	the	called	function	occurs,	then	the	code	of	the	called	function	might	end	up	in	a	segment	where	it
shouldn't	be.	For	example,	high-performance	memory	segments	may	be	very	limited	in	code	space,	and	if	a	function	belonging	in	such	a	space	calls	another	large	function	that	is	not	meant	to	be	in	the
high-performance	section	and	the	called	function	gets	inappropriately	inlined,	then	this	might	cause	the	high-performance	memory	segment	to	run	out	of	code	space.	For	this	reason,	sometimes	it	is
necessary	to	ensure	that	functions	do	not	become	inlined.

"A	function	declaration	[	.	.	.	]	with	an	inline	specifier	declares	an	inline	function.	The	inline	specifier	indicates	to	the	implementation	that	inline	substitution	of
the	function	body	at	the	point	of	call	is	to	be	preferred	to	the	usual	function	call	mechanism.	An	implementation	is	not	required	to	perform	this	inline	substitution
at	the	point	of	call;	however,	even	if	this	inline	substitution	is	omitted,	the	other	rules	for	inline	functions	defined	by	7.1.2	shall	still	be	respected."
—	ISO/IEC	14882:2011,	the	current	C++	standard,	section	7.1.2

"A	function	declared	with	an	inline	function	specifier	is	an	inline	function.	[	.	.	.	]	Making	a	function	an	inline	function	suggests	that	calls	to	the	function	be	as	fast
as	possible.	The	extent	to	which	such	suggestions	are	effective	is	implementation-defined	(footnote:	For	example,	an	implementation	might	never	perform	inline
substitution,	or	might	only	perform	inline	substitutions	to	calls	in	the	scope	of	an	inline	declaration.)

"[	.	.	.	]	An	inline	definition	does	not	provide	an	external	definition	for	the	function,	and	does	not	forbid	an	external	definition	in	another	translation	unit.	An	inline
definition	provides	an	alternative	to	an	external	definition,	which	a	translator	may	use	to	implement	any	call	to	the	function	in	the	same	translation	unit.	It	is
unspecified	whether	a	call	to	the	function	uses	the	inline	definition	or	the	external	definition."
—	ISO	9899:1999(E),	the	C99	standard,	section	6.7.4

Macro	(computer	science)

1.	 Meyers,	Randy	(July	1,	2002).	"The	New	C:	Inline	Functions"	(http://www.drdobbs.com/the-new-c-inline-functions/184401540).

2.	 http://www.greenend.org.uk/rjk/tech/inline.html

3.	 https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Inline.html

4.	 http://blahg.josefsipek.net/?p=529

5.	 https://gcc.gnu.org/gcc-5/porting_to.html

6.	 https://gcc.gnu.org/ml/gcc-patches/2007-02/msg00119.html

7.	 http://infocenter.arm.com/help/topic/com.arm.doc.faqs/ka15831.html

8.	 gcc	manual	page,	description	of	-fno-common

JANA,	DEBASISH	(1	January	2005).	C++	AND	OBJECT-ORIENTED	PROGRAMMING	PARADIGM	(https://books.google.com/books?id=DnsM0WD-6iMC&pg=PA131).	PHI	Learning	Pvt.	Ltd.	ISBN	978-81-203-
2871-6.

Sengupta,	Probal	(1	August	2004).	Object-Oriented	Programming:	Fundamentals	And	Applications	(https://books.google.com/books?id=ZLzt5WtsdzIC&pg=PA50).	PHI	Learning	Pvt.	Ltd.	ISBN	978-81-203-
1258-6.

Svenk,	Goran	(2003).	Object-oriented	Programming:	Using	C++	for	Engineering	and	Technology	(https://books.google.com/books?id=Miq73i_J1i4C&pg=PA36).	Cengage	Learning.	ISBN	0-7668-3894-3.

Balagurusamy	(2013).	Object	Oriented	Programming	with	C++	(https://books.google.com/books?id=WCHZAgAAQBAJ&pg=PA74).	Tata	McGraw-Hill	Education.	ISBN	978-1-259-02993-6.

Kirch-Prinz,	Ulla;	Prinz,	Peter	(2002).	A	Complete	Guide	to	Programming	in	C++	(https://books.google.com/books?id=-yhuY0Wg_QcC&pg=PA181).	Jones	&	Bartlett	Learning.	ISBN	978-0-7637-1817-6.

Conger,	David	(2006).	Creating	Games	in	C++:	A	Step-by-step	Guide	(https://books.google.com/books?id=1F6ipojt7DcC&pg=PA79).	New	Riders.	ISBN	978-0-7357-1434-2.

Skinner,	M.	T.	(1992).	The	Advanced	C++	Book	(https://books.google.com/books?id=fgGLZ7WYxCMC&pg=PA97).	Silicon	Press.	ISBN	978-0-929306-10-0.

Love	(1	September	2005).	Linux	Kernel	Development	(https://books.google.com/books?id=NXVkcCjPblcC&pg=PA18).	Pearson	Education.	ISBN	978-81-7758-910-8.

DEHURI,	SATCHIDANANDA;	JAGADEV,	ALOK	KUMAR;	RATH,	AMIYA	KUMAR	(8	May	2007).	OBJECT-ORIENTED	PROGRAMMING	USING	C++	(https://books.google.com/books?id=fxUVrhjD4k0C&pg=PA78).	PHI
Learning	Pvt.	Ltd.	ISBN	978-81-203-3085-6.

Inline	functions	(https://gcc.gnu.org/onlinedocs/gcc/Inline.html)	with	the	GNU	Compiler	Collection	(GCC)

Retrieved	from	"https://en.wikipedia.org/w/index.php?title=Inline_function&oldid=860883608"

This	page	was	last	edited	on	23	September	2018,	at	18:22	(UTC).

Text	is	available	under	the	Creative	Commons	Attribution-ShareAlike	License;	additional	terms	may	apply.	By	using	this	site,	you	agree	to	the	Terms	of	Use	and	Privacy	Policy.	Wikipedia®	is	a	registered
trademark	of	the	Wikimedia	Foundation,	Inc.,	a	non-profit	organization.

Contents

Example

Standard	support

Nonstandard	extensions

Storage	classes	of	inline	functions

C99

gnu89

C++

armcc

Restrictions

Problems

Quotes

See	also

References

External	links

https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Keyword_(computer_programming)
https://en.wikipedia.org/wiki/Compiler_directive
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Inline_expansion
https://en.wikipedia.org/wiki/Storage_class_specifier
https://en.wikipedia.org/wiki/Inline_function#cite_note-meyers2002-1
https://en.wikipedia.org/wiki/Translation_unit_(programming)
https://en.wikipedia.org/wiki/Linkage_(software)
https://en.wikipedia.org/wiki/Inline_function#cite_note-meyers2002-1
https://en.wikipedia.org/wiki/Inline_function#Example
https://en.wikipedia.org/wiki/Inline_function#Standard_support
https://en.wikipedia.org/wiki/Inline_function#Nonstandard_extensions
https://en.wikipedia.org/wiki/Inline_function#C99
https://en.wikipedia.org/wiki/Inline_function#gnu89
https://en.wikipedia.org/wiki/Inline_function#C++
https://en.wikipedia.org/wiki/Inline_function#armcc
https://en.wikipedia.org/wiki/Inline_function#Storage_classes_of_inline_functions
https://en.wikipedia.org/wiki/Inline_function#Restrictions
https://en.wikipedia.org/wiki/Inline_function#Problems
https://en.wikipedia.org/wiki/Inline_function#Quotes
https://en.wikipedia.org/wiki/Inline_function#See_also
https://en.wikipedia.org/wiki/Inline_function#References
https://en.wikipedia.org/wiki/Inline_function#External_links
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/C99
https://en.wikipedia.org/wiki/K%26R_C
https://en.wikipedia.org/wiki/C89_(C_version)
https://en.wikipedia.org/wiki/Visual_C_Plus_Plus
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://en.wikipedia.org/wiki/Inline_function#Storage_classes_of_inline_functions
https://en.wikipedia.org/wiki/GNU_C
https://en.wikipedia.org/wiki/Inline_function#cite_note-inline-c99-vs-gnu-2
https://en.wikipedia.org/wiki/Inline_function#cite_note-gcc-inline-3
https://en.wikipedia.org/wiki/Unreachable_code
https://en.wikipedia.org/wiki/Inline_function#cite_note-gcc-inline-3
https://en.wikipedia.org/wiki/Static_library
https://en.wikipedia.org/wiki/Inline_function#cite_note-inline-c99-vs-gnu-2
https://en.wikipedia.org/wiki/Inline_function#cite_note-4
https://en.wikipedia.org/wiki/Inline_function#cite_note-gcc-5-porting-5
https://en.wikipedia.org/wiki/Principle_of_least_astonishment
https://en.wikipedia.org/wiki/Inline_function#cite_note-6
https://en.wikipedia.org/wiki/Inline_function#cite_note-gcc-5-porting-5
https://en.wikipedia.org/wiki/Inline_function#cite_note-gcc-inline-3
https://en.wikipedia.org/wiki/Inline_function#cite_note-7
https://en.wikipedia.org/wiki/Inline_function#cite_note-8
https://en.wikipedia.org/wiki/Inline_function#cite_note-gcc-inline-3
https://en.wikipedia.org/wiki/Exception_handling
https://en.wikipedia.org/wiki/Variable_argument_list
https://en.wikipedia.org/wiki/Inline_assembly
https://en.wikipedia.org/wiki/Recursion_(computer_science)
https://en.wikipedia.org/wiki/Virtual_function
https://en.wikipedia.org/wiki/Inline_expansion#Problems
https://en.wikipedia.org/wiki/Embedded_software
https://en.wikipedia.org/wiki/Translation_unit_(programming)
https://en.wikipedia.org/wiki/Macro_(computer_science)
http://www.drdobbs.com/the-new-c-inline-functions/184401540
http://www.greenend.org.uk/rjk/tech/inline.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Inline.html
http://blahg.josefsipek.net/?p=529
https://gcc.gnu.org/gcc-5/porting_to.html
https://gcc.gnu.org/ml/gcc-patches/2007-02/msg00119.html
http://infocenter.arm.com/help/topic/com.arm.doc.faqs/ka15831.html
https://books.google.com/books?id=DnsM0WD-6iMC&pg=PA131
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-81-203-2871-6
https://books.google.com/books?id=ZLzt5WtsdzIC&pg=PA50
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-81-203-1258-6
https://books.google.com/books?id=Miq73i_J1i4C&pg=PA36
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-7668-3894-3
https://books.google.com/books?id=WCHZAgAAQBAJ&pg=PA74
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-1-259-02993-6
https://books.google.com/books?id=-yhuY0Wg_QcC&pg=PA181
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-7637-1817-6
https://books.google.com/books?id=1F6ipojt7DcC&pg=PA79
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-7357-1434-2
https://books.google.com/books?id=fgGLZ7WYxCMC&pg=PA97
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-929306-10-0
https://books.google.com/books?id=NXVkcCjPblcC&pg=PA18
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-81-7758-910-8
https://books.google.com/books?id=fxUVrhjD4k0C&pg=PA78
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-81-203-3085-6
https://gcc.gnu.org/onlinedocs/gcc/Inline.html
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://en.wikipedia.org/w/index.php?title=Inline_function&oldid=860883608
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://foundation.wikimedia.org/wiki/Terms_of_Use
https://foundation.wikimedia.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/

