
python	to	javascript	compiler

Select	Language 		Powered	by

Translate

Transcrypt	has	exactly	the	same
clear,	powerful	syntax	that	Python
is	famous	for,	without	the	need
for	any	proprietary	extensions.

It	supports	string	slicing	with
[i:j:k],	matrix	and	vector
operations	with	+,	-,	*,	/	and
more,	out	of	the	box.

It	precompiles	to	fast,	readable
JavaScript	that	can	be	debugged
from	the	Python	source	code
using	sourcemaps.

Python	was	designed	for	large
scale	programs	from	the	ground
up.

Hierarchical	modules,	local
classes	and	multiple	inheritance
are	all	supported	by	Transcrypt,
allowing	a	flexible,	yet	stable
overall	structure.

Transcrypt	comes	integrated	with
a	static	type	validator,	a	linter	and
a	minifier,	enabling	effective
cooperation	of	large	teams	on
extensive	projects.

Python	is	used	everywhere	at	the
back-end,	from	web	servers	to
scientific	computing.	Now	you
can	use	it	at	the	front-end	as	well.

Transcrypt	offers	seamless
access	to	any	JavaScript	library
and	also	runs	on	top	of	Node.js.

Python	source	code	and
JavaScript	target	code	roughly
have	the	same	size,	so	your
pages	load	as	fast	as	ever.

Get	started:	Hello,	solar	system...

1.	 Download	Python	3.7	from	www.python.org

2.	 Install	Transcrypt	from	the	command	prompt	by	typing	python	-m	pip	install	transcrypt

3.	 Create	a	new	folder	hello	containing	hello.html	and	hello.py

4.	 Go	to	that	new	folder	and	type	python	-m	transcrypt	-b	-m	-n	hello.py

5.	 In	that	same	new	folder	start	an	HTTP	server	by	typing	python	-m	http.server

6.	 In	your	browser,	navigate	to	localhost:8000/hello.html	to	see	the	result

On	Windows	systems	you	may	have	to	type	python37	or	python3	rather	than	python

On	Linux	and	MacOS	systems	you	may	have	to	type	python3.7	or	python3	rather	than	python

On	some	systems	you	can	just	type	transcrypt	-b	-m	-n	hello.py	to	compile	the	test	program

Run	the	'hello'	example

Code	in	hello/hello.html:	
<script	
type="module">imp
ort	*	as	hello	from	
'./__target__/hello.j
s';	window.hello	=	
hello;</script>
<h2>Hello	
demo</h2>

<p>
<div	id	=	"greet">...
</div>
<button	
onclick="hello.solar
System.greet	
()">Click	me	
repeatedly!
</button>

<p>
<div	id	=	
"explain">...</div>
<button	
onclick="hello.solar
System.explain	
()">And	click	me	
repeatedly	too!
</button>

Code	in	hello/hello.py:	
from	itertools	
import	chain

class	SolarSystem:
				planets	=	[list	
(chain	(planet,	
(index	+	1,)))	for	
index,	planet	in	
enumerate	((
								('Mercury',	
'hot',	2240),
								('Venus',	
'sulphurous',	6052),
								('Earth',	
'fertile',	6378),
								('Mars',	
'reddish',	3397),
								('Jupiter',	
'stormy',	71492),
								('Saturn',	
'ringed',	60268),
								('Uranus',	
'cold',	25559),
								('Neptune',	
'very	cold',	24766)	
))]
				
				lines	=	(
								'{}	is	a	{}	
planet',
								'The	radius	of	
{}	is	{}	km',
								'{}	is	planet	nr.	
{}	counting	from	the	
sun'
)
				
				def	__init__	
(self):
								self.lineIndex	
=	0
				
				def	greet	(self):
								self.planet	=	
self.planets	[int	
(Math.random	()	*	
len	(self.planets))]
								
document.getElem
entById	('greet')	
.innerHTML	=	
'Hello	{}'.format	
(self.planet	[0])
								self.explain	()
								
				def	explain	(self):
								
document.getElem
entById	
('explain').innerHT
ML	=	(
												self.lines	
[self.lineIndex]	
.format	(self.planet	
[0],	self.planet	
[self.lineIndex	+	1])
)
								self.lineIndex	
=	(self.lineIndex	+	
1)	%	3
								
solarSystem	=	
SolarSystem	()

If	you	have	trouble	installing	Transcrypt	or	compiling	this	example,	you'll	find	additional	information	in	the
getting	started	chapter	of	the	documentation.

Harness	the	power	of	Python	for	increasingly	complex	web	applications

Anything	you	can	do	in	JavaScript,	you	can	do	in	Transcrypt.	You'll	always	have	immediate	access	to	the
newest	JavaScript	libraries,	use	the	newest	DOM	functions,	interact	with	the	newest	HTML	or	CSS.	Calling
JavaScript	functions	from	Python,	embedding	JavaScript	code	in	your	Python	source,	attaching	Python
event	handlers	to	DOM	elements,	passing	native	data	between	Python	and	JavaScript,	it	all	happens	without
any	conversion	or	special	syntax.	Just	join	the	party	without	restrictions.

Transcrypt	is	precompiled	for	speed,	rather	than	interpreted	in	the	browser.	It	produces	small,	fast,	yet
readable	code.	The	minified	downloads	are	measured	in	kB's	rather	than	MB's.

Transcrypt	stays	as	close	to	the	Python	original	as	possible	without	sacrificing	performance.	Multiple
inheritance,	recursive	tuple	assignment,	multi-loop	nested	list	comprehensions,	LHS	and	RHS	extended
slices,	assignment	of	bound	functions,	lambdas,	named,	default,	*args	and	**kwargs	parameters,	properties,
optional	operator	overloading,	iterators,	generators,	async/await,	selective	exception	handling	and	a
hierarchical	module	system	are	just	a	few	of	its	characteristics	that	make	this	clear.	Transcrypt	is	parsed	by
CPython's	AST	module,	so	no	surprises	there.

Transcrypt	features	multi-level	sourcemaps,	so	you	can	debug	your	application	comfortably,	working	from
the	Python	source	code	in	your	browser,	even	if	the	generated	JavaScript	is	minified.	It	also	has	a	unique
autotest	feature	that	makes	back	to	back	regression	testing	with	CPython	a	snap.

Transcrypt	comes	with	3rd	party	tools	for	optional	static	type	validation,	lightweight	consistency	checks	and
minification,	all	at	the	tip	of	a	command	line	switch.	It	generates	code	for	JavaScript	6.	All	tools	are	fully
integrated	in	the	distribution,	one	single	pip	install	will	put	them	at	your	disposal.

Even	with	multiple	inheritance	there's	a	simple	correspondence	between	Python	and
JavaScript

The	ability	to	understand	exactly	what's	going	on	under	the	hood,	allows	for	fine	grained	optimizations.
Speed	up	an	inner	loop?	Use	__pragma__('js',...)	to	freely	mix	Python	with	native	JavaScript.	Not	that	you'll
need	it	often...	An	expression	like	i+=1	is	compiled	to	i++,	and	optional	call	caching	bypasses	the	prototype
chain,	making	repeated	function	calls	even	faster	than	handwritten	JavaScript.

Transcrypt	is	suitable	for	a	broad	area	of	applications

Transcrypt	supports	customization	through	the	use	of	pragmas.	Pragmas	are	function	calls	that	allow	you	to
switch	on	and	off	compiler	facilities	locally,	to	conditionally	compile	code,	comparable	to	the	use	of
#ifdef...#endif	and	#ifndef...#endif	in	C++	and	to	include	native	JavaScript	code	anywhere	in	your	program.
They	also	allow	efficient,	selective	operator	overloading.

Many	people	know	Python	from	internet	programming,	especially	from	the	Django	webserver.	But	it	is	also
tremendously	popular	in	world	of	scientific	computing	and	education.	Selective	operator	overloading	enables
the	use	of	elegant	notation	for	mathematical	expressions,	making	Transcrypt	an	attractive	choice	for	writing
small	to	medium	scale	numerical	applications	that	have	to	run	in	a	browser.

Being	able	to	write	matrix	multiplication	and	vector	addition	as

v3	=	M3	*	(M1	*	v1	+	M2	*	v2)

rather	than

v3	=	multiply	(M3,	add	(multiply	(M1,	v1,	multiply	(M2,	v2))))

is	a	big	advantage	if	the	formulas	get	complicated.

Being	able	to	write

c	=	(3	+	5j)	*	(-4	-	2j)	+	(1	+	1j)

rather	than

c	=	add	(multiply	(complex	(3,	5),	complex	(-4,	-2)),	complex	(1,	1)

when	complex	numbers	are	involved	is	equally	handy.

While	operator	overloading	is	very	powerful,	when	compiling	to	JavaScript	it	is	important	to	be	able	to	switch
it	on	and	off	selectively	to	prevent	something	simple	like

x	=	3	*	4	+	5	*	6

from	being	translated	to

x	=	add	(multiply	(3,	4),	multiply	(5,	6)

everywhere	in	your	program.

An	example	of	the	efficient	use	of	operator	overloading	is	Numscrypt.	Numscrypt	is	a	port	of	a	small	part	of
Numpy	to	Transcrypt.	It	currently	supports	real	and	complex	matrix	and	vector	multiplication,	division,
addition,	subtraction,	dot	product,	inverse,	transpose,	FFT,	IFFT,	FFT2	and	IFFT2,	using	Numpy's	familiar
notation,	including	array	slicing.	To	achieve	speed,	Numscrypt	uses	JavaScript	TypedArray's	under	the
hood.	While	it's	just	as	fast	and	compact	as	comparable	native	JavaScript	numerical	libraries,	its	notation
much	more	simple	and	concise,	closely	resembling	mathematical	notation.

It's	free.	It's	open.	It's	yours.

Transcrypt	is	licensed	under	the	Apache	2.0	open	source	license.	You	can	download	the	source	code,
modify	it,	keep	it	in	a	locker,	cut	and	paste	from	it,	contribute	to	it,	or	make	it	part	of	your	product.

Follow	@TranscryptOrg 	Like	it?	Star	it!

>>>	Web	client	coding	can	be	fun!_

T	r	a	n	s	c	r	y	p	t
Python	in	the	browser

https://translate.google.com/
https://www.python.org/downloads
https://www.transcrypt.org/live/transcrypt/demos/hello/hello.html
https://www.transcrypt.org/docs/html/installation_use.html
http://www.transcrypt.org/numscrypt/numscrypt.html
https://www.apache.org/licenses/LICENSE-2.0
https://twitter.com/intent/follow?original_referer=https%3A%2F%2Fwww.transcrypt.org%2F&ref_src=twsrc%5Etfw®ion=follow_link&screen_name=TranscryptOrg&tw_p=followbutton
https://www.addtoany.com/share?linkurl=www.transcrypt.org&linkname=www.transcrypt.org
https://github.com/qquick/transcrypt

