
pypa / pip

Assignees

No	one	assigned

Labels

Projects

None	yet

Milestone

No	milestone

4	participants

Pip	download	prefers	newer	package	version	even	when
local	package	exists	#5500

	Open bendikro	opened	this	issue	Jun	13,	2018	·	8	comments

Join	GitHub	today
GitHub	is	home	to	over	28	million	developers	working	together	to	host	and

review	code,	manage	projects,	and	build	software	together.

Dismiss

Sign	up

New	issue

C:	download

R:	deferred	till	PR

S:	awaiting	response

bendikro	commented	Jun	13,	2018

Environment

pip	version:	10.0.1/master

Python	version:	Tested	on	python	3.6

OS:	Linux

Description
pip	download 	does	not	prefer	package	found	locally	even	if	it	satisfies	the	requirements	when	there	is	a
newer	available	at	the	remote	package	index

Expected	behavior
Prefer	the	already	existing	package	as	long	as	long	as	it	satisfies	the	dependency	requirements

How	to	Reproduce

1.	 Create	directory	 pkg_cache

2.	 Run	 pip3	download	--dest	pkg_cache/	--find-links	pkg_cache/	setuptools==39.0.1	&&	pip3
download	--dest	pkg_cache/	--find-links	pkg_cache/	setuptools

Output

pip3	download	--dest	pkg_cache/		--find-links	pkg_cache/	setuptools==39.0.1	&&	pip3	
download	--dest	pkg_cache/		--find-links	pkg_cache/	setuptools
Looking	in	links:	pkg_cache/
Collecting	setuptools==39.0.1
		Using	cached	
https://files.pythonhosted.org/packages/20/d7/04a0b689d3035143e2ff288f4b9ee4bf6ed80585cc121c90bfd85a1a8c2e/setuptools-
39.0.1-py2.py3-none-any.whl
		Saved	./pkg_cache/setuptools-39.0.1-py2.py3-none-any.whl
Successfully	downloaded	setuptools
Looking	in	links:	pkg_cache/
Collecting	setuptools
		Using	cached	
https://files.pythonhosted.org/packages/7f/e1/820d941153923aac1d49d7fc37e17b6e73bfbd2904959fffbad77900cf92/setuptools-
39.2.0-py2.py3-none-any.whl
		Saved	./pkg_cache/setuptools-39.2.0-py2.py3-none-any.whl
Successfully	downloaded	setuptools

pfmoore	commented	Jun	13,	2018

That	behaviour	is	by	design.	Pip	will	always	prefer	the	latest	available	version,	it	takes	no	account	of	where
a	package	comes	from.

Member

bendikro	added	a	commit	to	bendikro/pip	that	referenced	this	issue	Jun	13,	2018	

	pypa#5500:	Make	pip	download	prefer	local	package	over	remote	

1a297cd

Fix …

bendikro	added	a	commit	to	bendikro/pip	that	referenced	this	issue	Jun	13,	2018	

	#5500:	Make	pip	download	prefer	local	package	over	remote	

3b96381

Fix …

	Open

	pfmoore	referenced	this	issue	Jun	13,	2018

Fix	#5500:	Make	pip	download	prefer	local	package	over	remote	#5501

bendikro	commented	Jun	13,	2018

@pfmoore
I	see.	We	have	multiple	requirement	files,	and	since	pip	does	not	handle	double	requirements	it	is
necessary	to	do	multiple	calls	to	 pip	download ,	one	for	each	requirements	file.	With	the	current	behavior
of	pip,	where	one	file	has	 setuptools 	and	another	has	 setuptools==39.0.1 ,	both	 39.0.1 	and	 39.2.0
will	be	downloaded.

pfmoore	commented	Jun	13,	2018

So?	That's	the	point	of	pip	download.	I	don't	know	if	I'm	missing	something	here	but	I	can't	see	what	the
problem	is.	What	exactly	do	you	use	the	files	downloaded	via	 pip	download 	for?	As	per	the	docs	the
intention	is	that	you	use	 pip	download 	to	populate	a	directory	from	which	you	can	later	use	 pip	install
--find-links 	to	do	an	install	while	offline.	The	 pip	install 	command	is	perfectly	capable	of	handling	a
--find-links 	directory	with	multiple	versions	of	the	same	package	in	it,	so	why	are	you	bothered	that	this
is	happening?

Member

� 	1

	pradyunsg	added	 	 	labels	Jun	14,	2018C:	download S:	awaiting	response

bendikro	commented	Aug	21,	2018

The	point	is	that	consistency	is	useful.	Things	that	behave	differently	all	the	time	is	less	useful	than	things
that	do	the	same	thing	every	time.	Had	pip	supported	handling	multiple	requirement	files	and	dealt	properly
with	the	dependencies,	this	wouldn't	be	a	problem	though.

With	two	requirement	files,	as	explained	earlier,	you	never	actually	know	exactly	what	package	versions	will
be	downloaded.

The	pip	install	command	is	perfectly	capable	of	handling	a	--find-links	directory	with

multiple	versions	of	the	same	package	in	it,	so	why	are	you	bothered	that	this	is	happening?

Depending	on	the	order	of	the	requirement	files	you	provide,	different	package	versions	are	installed.
Consistency	is	key.

Second	reason	is	speed.	By	looking	locally	and	finding	a	package	that	satisfies	the	dependencies,	there	is
no	need	to	check	remotely.	Therefore,	a	call	to	 pip	download 	would	be	blazing	fast	if	the	packages	are
already	downloaded.	Currently	it's	very	slow.

pfmoore	commented	Aug	21,	2018

I'm	not	sure	I	follow.	Pip's	current	behaviour	is	perfectly	consistent	-	I	described	it	above:

Pip	will	always	prefer	the	latest	available	version,	it	takes	no	account	of	where	a	package	comes	from.

In	fact,	if	we	preferred	local	files,	we'd	be	harming	consistency,	because	you'd	get	something	different
installed	depending	on	what	was	present	locally.

I	don't	see	anything	actionable	here.	Pip's	current	behaviour	is	by	design,	if	you	want	to	propose	a	change,
you'll	need	to	provide	details	of	what	you	propose,	and	you'll	probably	need	more	persuasive	arguments
than	you've	currently	offered.

Member

bendikro	commented	Aug	21,	2018

I'm	not	sure	I	follow.	Pip's	current	behaviour	is	perfectly	consistent	-	I	described	it

above:

True.	It's	consistent	in	that	you	never	know	which	version	it	will	download	in	the	scenario	I	describe.

In	fact,	if	we	preferred	local	files,	we'd	be	harming	consistency,	because	you'd	get

something	different	installed	depending	on	what	was	present	locally.

The	whole	point	is	to	know	exactly	what	will	be	installed	based	on	the	local	files.	But	having	pip	download
the	same	package	versions	each	time	is	not	possible	with	multiple	requirement	files	as	I	describe.

I	agree	that	the	current	default	behaviour	shouldn't	be	changed,	but	an	option	to	be	able	to	prefer	local
packages	over	checking	remotely	would	still	be	useful.

What	I	propose	is	to	have	an	option	that	makes	pip	check	locally	if	a	package	that	satisfies	the	given
dependency	already	exists	locally,	and	if	so,	do	not	check	remotely.

pfmoore	commented	Aug	21,	2018

OK,	so	what	you're	suggesting	is	an	option	to	 pip	download 	that	says	"for	each	requirement,	if	it	can
already	be	satisfied	from	the	destination	directory,	skip	it,	otherwise	download	the	requirement	as	normal
and	store	the	downloaded	file	in	the	destination	directory.

I	can	see	the	logic	in	that.	If	you	wanted	to	create	a	PR	implementing	it,	I'm	not	going	to	object.	I	can't	say
that	I	find	your	justification	for	the	behaviour	compelling,	but	that's	something	that	can	be	debated	later,
when	there's	a	PR	to	review.

Member

� 	3

	pfmoore	added	the	 	label	Aug	21,	2018R:	deferred	till	PR

mboisson	commented	Aug	30,	2018

This	would	also	be	very	useful	for	HPC	clusters	on	which	the	staff	may	build	python	wheels	that	are
optimized	for	their	CPU	architecture.	The	current	behavior	requires	HPC	staff	to	always	be	recompiling	new
versions	as	soon	as	they	are	out,	or	risk	users	using	dramatically	slower	python	packages	in	some
situations.	Being	able	to	tell	pip	to	favor	a	local	wheelhouse	over	some	minor	version	increase	found	online
would	be	very	useful	to	us.

https://github.com/pypa
https://github.com/pypa/pip
https://github.com/bendikro
https://github.com/pfmoore
https://github.com/mboisson
https://github.com/pradyunsg
https://github.com/bendikro
https://github.com/join?source=prompt-issue-show
https://github.com/pypa/pip/labels/C%3A%20download
https://github.com/pypa/pip/labels/R%3A%20deferred%20till%20PR
https://github.com/pypa/pip/labels/S%3A%20awaiting%20response
https://github.com/bendikro
https://github.com/bendikro
https://github.com/pypa/pip/issues/5500#issue-332107826
https://github.com/pfmoore
https://github.com/pfmoore
https://github.com/pypa/pip/issues/5500#issuecomment-397037261
https://github.com/bendikro
https://github.com/pypa/pip/issues/5500#ref-commit-1a297cd
https://github.com/pypa/pip/issues/5500
https://github.com/bendikro/pip/commit/1a297cd9e9ad6b05323377381af41f3a65c4ce95
https://github.com/bendikro/pip/commit/1a297cd9e9ad6b05323377381af41f3a65c4ce95
https://help.github.com/articles/closing-issues-via-commit-messages
https://github.com/bendikro/pip/commit/1a297cd9e9ad6b05323377381af41f3a65c4ce95
https://github.com/bendikro
https://github.com/pypa/pip/issues/5500#ref-commit-3b96381
https://github.com/pypa/pip/issues/5500
https://github.com/bendikro/pip/commit/3b963819e9695d8a9bde3d88afb1d94fba341e68
https://github.com/bendikro/pip/commit/3b963819e9695d8a9bde3d88afb1d94fba341e68
https://help.github.com/articles/closing-issues-via-commit-messages
https://github.com/bendikro/pip/commit/3b963819e9695d8a9bde3d88afb1d94fba341e68
https://github.com/pfmoore
https://github.com/pfmoore
https://github.com/pypa/pip/issues/5500#ref-pullrequest-332114511
https://github.com/pypa/pip/pull/5501
https://github.com/bendikro
https://github.com/bendikro
https://github.com/pypa/pip/issues/5500#issuecomment-397053674
https://github.com/pfmoore
https://github.com/pfmoore
https://github.com/pfmoore
https://github.com/pypa/pip/issues/5500#issuecomment-397086055
https://pip.pypa.io/en/latest/reference/pip_download/#overview
https://github.com/pradyunsg
https://github.com/pradyunsg
https://github.com/pypa/pip/issues/5500#event-1680288155
https://github.com/pypa/pip/labels/C%3A%20download
https://github.com/pypa/pip/labels/S%3A%20awaiting%20response
https://github.com/bendikro
https://github.com/bendikro
https://github.com/pypa/pip/issues/5500#issuecomment-414613293
https://github.com/pfmoore
https://github.com/pfmoore
https://github.com/pypa/pip/issues/5500#issuecomment-414624571
https://github.com/bendikro
https://github.com/bendikro
https://github.com/pypa/pip/issues/5500#issuecomment-414641047
https://github.com/pfmoore
https://github.com/pfmoore
https://github.com/pypa/pip/issues/5500#issuecomment-414656141
https://github.com/pfmoore
https://github.com/pfmoore
https://github.com/pypa/pip/issues/5500#event-1800010610
https://github.com/pypa/pip/labels/R%3A%20deferred%20till%20PR
https://github.com/mboisson
https://github.com/mboisson
https://github.com/pypa/pip/issues/5500#issuecomment-417418501
https://github.com/bendikro
https://github.com/bendikro

