
Pakal	De	Bonchamp Follow
Software	Lover	&	Tales	Writer
Dec	15,	2017 · 15	min	read

REST	is	the	new	SOAP
Written	by	Pascal	Chambon,	reviewed	by	Raphaël	Gomès

Update:	this	article	mostly	deals	with	the	RESTish	ecosystem,	which

now	constitutes	a	major	part	of	webservices.	For	more	in-depth

analysis	of	the	original	REST,	and	of	HATEOAS,	see	my	follow-up

article.

Introduction
Some	years	ago,	I	developed	a	new	information	system	in	a	big

telecom	company.	We	had	to	communicate	with	an	increasing	number

of	web	services,	exposed	by	older	systems	or	by	business	partners.

Needless	to	say,	we	had	our	fair	share	of	SOAP	Hell.	Abstruse	WSDLs,

incompatible	libraries,	weird	bugs…	So	whenever	we	could,	we

advocated — and	used — simple	Remote	Procedure	Call	protocols:
XMLRPC	or	JSONRPC.

Our	first	servers	and	clients	for	these	protocols	were	pretty	basic,

limited,	fragile.	But	gradually,	we	improved	them;	and	with	a	few

hundreds	lines	of	additional	code,	we	achieved	the	dream:	support	for

different	dialects	(such	as	Apache-specific	XMLRPC	extensions),	built-

in	conversion	between	python	exceptions	and	hierarchical	error	codes,

separate	handling	of	functional	and	technical	errors,	auto-retries	for

the	latter,	relevant	logging	and	stats	before/after	requests,	thorough

validation	of	input	data…

Now	we	were	able	to	robustly	connect	to	any	such	API,	with	just	a	few

lines	of	code.

Now	we	were	able	to	expose	any	set	of	functions	to	a	wide	audience,	to

servers	and	to	web	browsers,	with	a	few	decorators	and	doc	updates.

And	when	it	came	to	communicating	between	our	different

applications	(microservice-style),	it	was	a	job	for	our	system

administrator;	software-side,	it	was	almost	transparent.

Then	came	REST.	

REpresentational	State	Transfer.

A	wave	of	renewal	shook	the	foundations	of	inter-services

communication.

RPC	was	dead,	the	future	was	RESTful:	resources	living	each	on	its

own	URL,	and	manipulated	exclusively	through	HTTP	protocol.

From	then	on,	every	API	we	had	to	expose	or	consume	became	a	new

challenge;	not	to	say	a	testimony	to	insanity.

What’s	the	problem	with	REST?
A	short	example	is	worth	a	long	talk.	Here	is	a	small	API,	with	data

types	removed	for	readability.

createAccount(username,	contact_email,	password)	->	
account_id

addSubscription(account_id,	subscription_type)	->	
subscription_id

sendActivationReminderEmail(account_id)	->	null

cancelSubscription(subscription_id,	reason,	immediate=True)	
->	null

getAccountDetails(account_id)	->	{full	data	tree}

Just	add	a	properly	documented	hierarchy	of	exceptions

(InvalidParameterError,	MissingParameterError,	WorkflowError…),

with	subclasses	to	identify	important	cases	(eg.

AlreadyExistingUsernameError),	and	you’re	good	to	go.

This	API	is	easy	to	understand,	easy	to	use,	and	robust.	It	is	backed	by

a	precise	state	machine,	but	the	restricted	set	of	available	operations

keeps	users	away	from	nonsensical	interactions	(like	changing	the

creation	date	of	an	Account).

Estimated	time	to	expose	this	API	as	a	simple	RPC	service:	a

few	hours.

Ok,	now	time	to	go	the	RESTful	way.

No	more	standards,	no	more	precise	specifications.	Just	a	vague

“RESTful	philosophy”,	prone	to	endless	metaphysical	debates,	and	as

many	ugly	workarounds.

How	do	you	map	the	precise	functions	above,	to	a	handful	of	CRUD

operations?	Is	sending	the	activation	reminder	email	an	update	on	a

“must_send_activation_reminder_email”	attribute?	Or	the	creation	of

a	“activation_reminder_email	resource”?	Is	it	sensible	to	use	DELETE

for	cancelSubscription()	if	the	subscription	remains	alive	during	a

grace	period,	and	may	be	resurrected	during	that	time?	How	do	you

split	the	data	tree	of	getAccountDetails()	between	endpoints,	to	respect

the	data	model	of	REST?

What	URL	endpoint	do	you	assign	to	each	of	your	“resources”?	Yeah

it’s	easy,	but	it	has	to	be	done	anyway.

How	do	you	express	the	diversity	of	error	conditions,	using	the	very

limited	bunch	of	HTTP	codes?

What	serialization	formats,	which	specific	dialects	do	you	use	for	input

and	output	payloads?

How	exactly	do	you	scatter	these	simple	signatures	between	HTTP

method,	URL,	query	string,	payload,	headers,	and	status	code?

And	you’re	gone	for	hours,	reinventing	the	wheel.	Not	even	a	tailored,

smart	wheel.	A	broken	and	fragile	wheel,	requiring	tons	of

documentation	to	be	understood,	and	violating	specifications	without

even	knowing	it.

How	come	REST	means	so	much	WORK?	

This	is	both	a	paradox,	and	a	shameless	pun.

Let’s	dive	further	into	the	artificial	problems	born	from	this	design

philosophy.

The	joy	of	REST	verbs
Rest	is	not	CRUD,	its	advocates	will	ensure	that	you	don’t	mix	up	these

two.	Yet	minutes	later	they	will	rejoice	that	HTTP	methods	have	well

defined	semantics	to	create	(POST),	retrieve	(GET),	update

(PUT/PATCH)	and	delete	(DELETE)	resources.

They’ll	delight	in	professing	that	these	few	“verbs”are	enough	to

express	any	operation.	Well,	of	course	they	are;	the	same	way	that	a

handful	of	verbs	would	be	enough	to	express	any	concept	in	English:

“Today	I	updated	my	CarDriverSeat	with	my	body,	and	created	an

EngineIgnition,	but	the	FuelTank	deleted	itself”;	being	possible

doesn’t	make	it	any	less	awkward.	Unless	you’re	an	admirator	of	the

Toki	Pona	language.

If	the	point	is	to	be	minimalist,	at	least	let	it	be	done	right.	Do	you

know	why	PUT,	PATCH,	and	DELETE	have	never	been	implemented

in	web	browser	forms?	Because	they	are	useless	and	harmful.	We	can

just	use	GET	for	read	and	POST	for	write.	Or	POST	exclusively,	when

HTTP-level	caching	is	unwanted.	Other	methods	will	at	best	get	in

your	way,	at	worst	ruin	your	day.

You	want	to	use	PUT	to	update	your	resource?	OK,	but	some	Holy

Specifications	state	that	the	data	input	has	to	be	equivalent	to	the

representation	received	via	a	GET.	So	what	do	you	do	with	the

numerous	read-only	parameters	returned	by	GET	(creation	time,	last

update	time,	server-generated	token…)?	You	omit	them	and	violate	the

PUT	principles?	You	include	them	anyway,	and	expect	an	“HTTP	409

Conflict”	if	they	don’t	match	server-side	values	(forcing	you	to	then

issue	a	GET...)?	You	give	them	random	values	and	expect	servers	to

ignore	them	(the	joy	of	silent	errors)?	Pick	your	poison,	REST	clearly

has	no	clue	what	a	read-only	attribute	it,	and	this	won’t	be	fixed

anytime	soon.	Meanwhile,	a	GET	is	dangerously	supposed	to	return

the	password	(or	credit	card	number)	which	was	sent	in	a	previous

POST/PUT;	good	luck	dealing	with	such	write-only	parameters	too.

Did	I	forget	to	mention	that	PUT	also	brings	dangerous	race

conditions,	where	several	clients	will	override	each	other’s	changes,

whereas	they	just	wanted	to	update	different	fields?

You	want	to	use	PATCH	to	update	your	resource?	Nice,	but	like	99%	of

people	using	this	verb,	you’ll	just	send	a	subset	of	resource	fields	in

your	request	payload,	hoping	that	the	server	properly	understands	the

operation	intended	(and	all	its	possible	side	effects);	lots	of	resource

parameters	are	deeply	linked	or	mutually	exclusive(ex.	it’s	either	credit

card	OR	paypal	token,	in	a	user’s	billing	info),	but	RESTful	design

hides	this	important	information	too.	Anyway,	you’d	violate	specs	once

more:	PATCH	is	not	supposed	to	just	send	a	bunch	of	fields	to	be

overridden.	Instead,	you’re	supposed	to	provide	a	“set	of	instructions”

to	be	applied	on	the	resources.	So	here	you	go	again,	take	your

paperboard	and	your	coffee	mug,	you’ll	have	to	decide	how	to	express

these	instructions.	Often	with	handcrafted	specifications,	since	Not-

Invented-Here	Syndrome	is	a	de-facto	standard	in	the	REST	world.

(Edit:	REST	advocates	have	backpedaled	on	this	subject,	with	Json

Merge	Patch,	an	alternative	to	formats	like	Json	Patch)

You	want	to	DELETE	resources?	OK,	but	I	hope	you	don’t	need	to

provide	substantial	context	data;	like	a	PDF	scan	of	the	termination

request	from	the	user.	DELETE	prohibits	having	a	payload.	A

constraint	that	REST	architects	often	dismiss,	since	most	webservers

don’t	enforce	this	rule	on	the	requests	they	receive.	How	compatible,

anyway,	would	be	a	DELETE	request	with	2	MBs	of	base64	query

string	attached?	(Edit:	the	RFC	2616,	indicating	that	payloads	without

semantics	should	be	ignored,	is	now	obsolete)

REST	aficionados	easily	profess	that	“people	are	doing	it	wrong”	and

their	APIs	are	“actually	not	RESTful”.	For	exemple,	lots	of	developers

use	PUT	to	create	a	resource	directly	on	its	final	URL

(/myresourcebase/myresourceid),	whereas	the	“good	way”	(edit:

according	to	many)	of	doing	it	is	to	POST	on	a	parent	URL

(/myresourcebase),	and	let	the	server	indicate,	with	an	HTTP

“Location”	header,	the	new	resource’s	URL	(edit:	it’s	not	an	HTTP

redirection	though).	The	good	news	is:	it	doesn’t	matter.	These

rigorous	principles	are	like	Big	Endian	vs	Little	Endian,	they	occupy

philosophers	for	hours,	but	have	very	little	impact	on	real	life

problems,	i.e	“getting	stuff	done”.

By	the	way…	handcrafting	URLs	is	always	great	fun.	Do	you	know	how

many	implementations	properly	urlencode()	identifiers	while	building

REST	urls?	Not	that	many.	Get	ready	for	nasty	breakages	and

SSRF/CSRF	attacks.

The	joy	of	REST	error	handling
About	every	coder	is	able	to	make	a	“nominal	case”	work.	Error

handling	is	one	of	these	features	which	will	decide	if	your	code	is

robust	software,	or	a	huge	pile	of	matchsticks.

HTTP	provides	a	list	of	error	codes	out-of-the-box.	Great,	let’s	see	that.

Using	“HTTP	404	Not	Found”	to	notify	about	an	unexisting	resource

sounds	RESTful	as	heck,	doesn’t	it?	Too	bad:	your	nginx	was

misconfigured	for	1	hour,	so	your	API	consumers	got	only	404	errors

and	purged	hundreds	of	accounts,	thinking	they	were	deleted….

Using	“HTTP	401	Unauthorized”	when	a	user	doesn’t	have	access

credentials	to	a	third-party	service	sounds	acceptable,	doesn’t	it?

However,	if	an	ajax	call	in	your	Safari	browser	gets	this	error	code,	it

might	startle	your	end	customer	with	a	very	unexpected	password

prompt	[it	did,	years	ago,	YMMV].

HTTP	existed	long	before	“RESTful	webservices”,	and	the	web

ecosystem	is	filled	with	assumptions	about	the	meaning	of	its	error

codes.	Using	them	to	transport	application	errors	is	like	using	milk

bottles	to	dispose	of	toxic	waste:	inevitably,	one	day,	there	will	be

trouble.

Some	standard	HTTP	error	codes	are	specific	to	Webdav,	others	to

Microsoft,	and	the	few	remaining	have	definitions	so	fuzzy	that	they

are	of	no	help.	In	the	end,	like	most	REST	users,	you’ll	probably	use

random	HTTP	codes,	like	“HTTP	418	I’m	a	teapot”	or	unassigned

numbers,	to	express	your	application-specific	exceptions.	Or	you’ll

shamelessly	return	“HTTP	400	Bad	Request”	for	all	functional	errors,

and	then	invent	your	own	clunky	error	format,	with	booleans,	integer

codes,	slugs,	and	translated	messages	stuffed	into	an	arbitrary

payload.	Or	you’ll	give	up	altogether	on	proper	error	handling;	you’ll

just	return	a	plain	message,	in	natural	language,	and	hope	that	the

caller	will	be	a	human	able	to	analyze	the	problem,	and	take	action.

Good	luck	interacting	with	such	APIs	from	an	autonomous	program.

The	joy	of	REST	concepts
REST	has	made	a	career	out	of	boasting	about	concepts	that	any

service	architect	in	his	right	mind	already	respects,	or	about	principles

that	it	doesn’t	even	follow.	Here	are	some	excerpts,	grabbed	from	top-

ranked	webpages.

REST	is	a	client-server	architecture.	The	client	and	the	server	both

have	a	different	set	of	concerns.	What	a	scoop	in	the	software	world.

REST	provides	a	uniform	interface	between	components.	Well,	like

any	other	protocol	does,	when	it’s	enforced	as	the	franca	lingua	of	a

whole	ecosystem	of	services.

REST	is	a	layered	system.	Individual	components	cannot	see	beyond

the	immediate	layer	with	which	they	are	interacting.	It	sounds	like	a

natural	consequence	of	any	well	designed,	loosely	coupled

architecture;	amazing.

Rest	is	awesome,	because	it	is	STATELESS.	Yes	there	is	probably	a

huge	database	behind	the	webservice,	but	it	doesn’t	remember	the

state	of	the	client.	Or,	well,	yes,	actually	it	remember	its	authentication

session,	its	access	permissions…	but	it’s	stateless,	nonetheless.	Or

more	precisely,	just	as	stateless	as	any	HTTP-based	protocol,	like

simple	RPC	mentioned	previously.

With	REST,	you	can	leverage	the	power	of	HTTP	CACHING!	Well	here

is	at	last	one	concluding	point:	a	GET	request	and	its	cache-control

headers	are	indeed	friendly	with	web	caches.	That	being	said,	aren’t

local	caches	(Memcached	etc.)	enough	for	99%	of	web	services?	Out-

of-control	caches	are	dangerous	beasts;	how	many	people	want	to

expose	their	APIs	in	clear	text,	so	that	a	Varnish	or	a	Proxy	on	the	road

may	keep	delivering	outdated	content,	long	after	a	resource	has	been

updated	or	deleted?	Maybe	even	delivering	it	“forever”,	if	a

configuration	mistake	once	occurred?	A	system	must	be	secure	by

default.	I	perfectly	admit	that	some	heavily	loaded	systems	want	to

benefit	from	HTTP	caching,	but	it	costs	much	less	to	expose	a	few	GET

endpoints	for	heavy	read-only	interactions,	than	to	switch	all

operations	to	REST	and	its	dubious	error	handling.

Thanks	to	all	this,	REST	has	HIGH	PERFORMANCE!	Are	we	sure	of

that?	Any	API	designer	knows	it:	locally,	we	want	fine-grained	APIs,	to

be	able	to	do	whatever	we	want;	and	remotely,	we	want	coarse-grained

APIs,	to	limit	the	impact	of	network	round-trips.	Here	is	again	a

domain	in	which	REST	fails	miserably.	The	split	of	data	between

“resources”,	each	instance	on	its	own	endpoint,	naturally	leads	to	the

N+1	Query	problem.	To	get	a	user’s	full	data	(account,	subscriptions,

billing	information…),	you	have	to	issue	as	many	HTTP	requests;	and

you	can’t	parallelize	them,	since	you	don’t	know	in	advance	the	unique

IDs	of	related	resources.	This,	plus	the	inability	to	fetch	only	part	of

resource	objects,	naturally	creates	nasty	bottlenecks.

REST	offers	better	compatibility.	How	so?	Why	do	so	many	REST

webservices	have	“/v2/”	or	“/v3/”	in	their	base	URLs	then?	Backwards

and	forward	compatible	APIs	are	not	hard	to	achieve,	with	high	level

languages,	as	long	as	simple	rules	are	followed	when

adding/deprecating	parameters.	As	far	as	I	know,	REST	doesn’t	bring

anything	new	on	the	subject.

REST	is	SIMPLE,	everyone	knows	HTTP!	Well,	everyone	knows

pebbles	too,	yet	people	are	happy	to	have	better	blocks	when	building

their	house.	The	same	way	XML	is	a	meta-language,	HTTP	is	a	meta-

protocol.	To	have	a	real	application	protocol	(like	“dialects”	are	to

XML),	you’ll	need	to	specify	lots	of	things;	and	you’ll	end	up	with	Yet

Another	RPC	Protocol,	as	if	there	were	not	enough	already.

REST	is	so	easy,	it	can	be	queried	from	any	shell,	with	CURL!	OK,

actually,	every	HTTP-based	protocol	can	be	queried	with	CURL.	Even

SOAP.	Issuing	a	GET	is	particularly	straightforward,	for	sure,	but	good

luck	writing	json	or	xml	POST	payloads	by	hand;	people	usually	use

fixture	files,	or,	much	more	handy,	full-fledged	API	clients	instantiated

directly	in	the	command	line	interface	of	their	favorite	language.

“The	client	does	not	need	any	prior	knowledge	of	the	service	in	order

to	use	it”.	This	is	by	far	my	favourite	quote.	I’ve	found	it	numerous

times,	under	different	forms,	especially	when	the	buzzword	HATEOAS

lurked	around;	sometimes	with	some	careful	(but	insufficient)

“except”	phrases	following.	Still,	I	don’t	know	in	which	fantasy	world

these	people	live,	but	in	this	one,	a	client	program	is	not	a	colony	of

ants;	it	doesn’t	browse	remote	APIs	randomly,	and	then	decide	how	to

best	handle	them,	based	on	pattern	recognition	or	black	magic.	Quite

the	opposite;	the	client	has	strong	expectations	on	what	it	means,	to

PUT	this	one	field	to	this	one	URL	with	this	one	value,	and	the	server

had	better	respect	the	semantic	which	was	agreed	upon	during

integration,	else	all	hell	might	break	loose.

How	to	do	REST	right	and	quick?
Forget	about	the	“right”	part.	REST	is	like	a	religion,	no	mere	mortal

will	ever	grasp	the	extent	of	its	genius,	nor	“do	it	right”.

So	the	real	question	is:	if	you’re	forced	to	expose	or	consume

webservices	in	a	kinda-RESTful	way,	how	to	rush	through	this	job,	and

switch	to	more	constructive	tasks	asap?

Update:	it	turns	out	that	there	are	actually	lots	of	“standards”	and

industrialization	efforts	for	REST,	although	I	had	never	encountered

them	personnally	(maybe	because	few	people	use	them?).	More

information	in	my	follow-up	article.

How	to	industrialize	server-side	exposure?
Each	web	framework	has	its	own	way	of	defining	URL	endpoint.	So

expect	some	big	dependencies,	or	a	good	layer	of	handwritten

boilerplate,	to	plug	your	existing	API	onto	your	favorite	server	as	a	set

of	REST	endpoint.

Libraries	like	Django-Rest-Framework	automate	the	creation	of	REST

APIs,	by	acting	as	data-centric	wrappers	above	SQL/noSQL	schemas.

If	you	just	want	to	make	“CRUD	over	HTTP”,	you	could	be	fine	with

them.	But	if	you	want	to	expose	common	“do-this-for-me”	APIs,	with

workflows,	constraints,	complex	data	impacts	and	such,	you’ll	have	a

hard	time	bending	any	REST	framework	to	fit	your	needs.

Be	prepared	to	connect,	one	by	one,	each	HTTP	method	of	each

endpoint,	to	the	corresponding	method	call;	with	a	fair	share	of

handmade	exception	handling,	to	translate	passing-through

exceptions	into	corresponding	error	codes	and	payloads.

How	to	industrialize	client-side	integration?
From	experience,	my	guess	is:	you	don’t.

For	each	API	integration,	you’ll	have	to	browse	lengthy	docs,	and

follow	detailed	recipes	on	how	each	of	the	N	possible	operations	has	to

be	performed.

You’ll	have	to	craft	URLs	by	hand,	write	serializers	and	deserializers,

and	learn	how	to	workaround	the	ambiguities	of	the	API.	Expect	quite

some	trial-and-error	before	you	tame	the	beast.

Do	you	know	how	webservices	providers	make	up	for	this,	and	ease

adoption?

Simple,	they	write	their	own	official	client	implementations.

FOR.	EVERY.	MAJOR.	LANGUAGE.	AND.	PLATFORM.

I’ve	recently	dealt	with	a	subscription	management	system.	They

provide	clients	for	PHP,	Ruby,	Python,	.NET,	iOS,	Android,	Java…

plus	some	external	contributions	for	Go	and	NodeJS.

Each	client	lives	in	its	own	Github	repository.	Each	with	its	own	big	list

of	commits,	bug	tracking	tickets,	and	pull	requests.	Each	with	its	own

usage	examples.	Each	with	its	own	awkward	architecture,	somewhere

between	ActiveRecord	and	RPC	proxy.

This	is	astounding.	How	much	time	is	spent	developing	such	weird

wrappers,	instead	of	improving	the	real,	the	valuable,	the	getting-stuff-

done,	webservice?

Conclusion
For	decades,	about	every	programming	language	has	functioned	with

the	same	workflow:	sending	inputs	to	a	callable,	and	getting	results	or

errors	as	output.	This	worked	well.	Quite	well.

With	Rest,	this	has	turned	into	an	insane	work	of	mapping	apples	to

oranges,	and	praising	HTTP	specifications	to	better	violate	them

minutes	later.

In	an	era	where	MICROSERVICES	are	more	and	more	common,	how

come	such	an	easy	task — linking	libraries	over	networks — remains	so
artificially	crafty	and	cumbersome?

I	don’t	doubt	that	some	smart	people	out	there	will	provide	cases

where	REST	shines;	they’ll	showcase	their	homemade	REST-based

protocol,	allowing	to	discover	and	do	CRUD	operation	on	arbitrary

object	trees,	thanks	to	hyperlinks;	they’ll	explain	how	the	REST	design

is	so	brilliant,	that	I’ve	just	not	read	enough	articles	and	dissertations

about	its	concepts.

I	don’t	care.	Trees	are	recognized	by	their	own	fruits.	What	took	me	a

few	hours	of	coding	and	worked	very	robustly,	with	simple	RPC,	now

takes	weeks	and	can’t	stop	inventing	new	ways	of	failing	or	breaking

expectations.	Development	has	been	replaced	by	tinkering.

Almost-transparent	remote	procedure	call	was	what	99%	people	really

needed,	and	existing	protocols,	as	imperfect	as	they	were,	did	the	job

just	fine.	This	mass	monomania	for	the	lowest	common	denominator

of	the	web,	HTTP,	has	mainly	resulted	in	a	huge	waste	of	time	and	grey

matter.

REST	promised	simplicity	and	delivered	complexity.

REST	promised	robustness	and	delivered	fragility.

REST	promised	interoperability	and	delivered

heterogeneity.

REST	is	the	new	SOAP.

Epilogue
The	future	could	be	bright.	There	are	still	tons	of	excellent	protocols

available,	in	binary	or	text	format,	with	or	without	schema,	some

leveraging	the	new	abilities	of	HTTP2…	so	let’s	move	on,	people.	We

can’t	forever	remain	in	the	Stone	Age	of	Webservices.

Edit:	many	people	asked	for	these	alternative	protocols,	the	subject

would	deserve	its	own	story,	but	one	could	have	a	look	at	XMLRPC

and	JSONRPC	(simple	but	quite	relevant),	or	JSONWSP	(includes

schemas),	or	language-specific	layers	like	Pyro	or	RMI	when	for

internal	use,	or	new	kids	in	the	block	like	GraphQL	and	gRPC	for

public	APIs…

Edited	on	December	12,	2017:

normalize	section	titles

remove	some	typos

rectify	improper	“HTTP	redirection”	wording	after	POST

operations

add	suggestions	of	alternative	protocols

Edited	on	December	28,	2017:

fix	mixup	between	“HTTP	methods”	and	“REST	verbs”

Edited	on	January	7,	2018

fix	ambiguous	wordings

Edited	on	January	19,	2018

fix	wrong	wording	on	“PUT	vs	GET”	remarks

precise	the	notion	of	“real	APIs”	(non-CRUD)

mention	risk	of	overrides	with	PUT

update	paragraphs	on	PATCH	and	DELETE	troubles

Edited	on	January	19,	2018

fix	wording	around	Not-Invented-Here	Syndrome

Edited	on	February	2,	2018

add	links	to	follow-up	article	on	The	Original	REST,	in

“introduction”	and	“how	to	industrialize”	chapters

•

•

•

•

•

•

•

•

•

•

•

•

Developer	resting	after	a	tough	30mn	spent	integrating	an	RPC	API.

When	you	forget	to	urlencode	usernames	in	1	of	your	30	handcrafted	URLs.

Our	customers,	after	we	deleted	their	gigabytes	of	kitten	images	by	error.

When	you	ask	how	HATEOAS	is	supposed	to	work.

Sisyphus	developing	Yet	Another	Client	for	his	API.

“Always	finish	a	rant	on	a	positive	note”,	momma	said.

Medium	uses	browser	cookies	to	give	you	the	best	possible	experience.	
To	make	Medium	work,	we	log	user	data	and	share	it	with	processors.	To	use	Medium,	you	must	agree	to	our	Privacy

Policy,	including	cookie	policy.
I	agree.

https://medium.freecodecamp.org/@pakaldebonchamp?source=post_header_lockup
https://medium.freecodecamp.org/@pakaldebonchamp?source=post_header_lockup
https://medium.com/@pakaldebonchamp/follow-up-to-rest-is-the-new-soap-the-origins-of-rest-21c59d243438
https://en.wikipedia.org/wiki/SOAP
https://en.wikipedia.org/wiki/Web_Services_Description_Language
https://en.wikipedia.org/wiki/Toki_Pona
https://tools.ietf.org/html/rfc7386
https://tools.ietf.org/html/rfc6902
https://tools.ietf.org/html/rfc2616#section-4.3
https://fr.wikipedia.org/wiki/HATEOAS
https://medium.com/@pakaldebonchamp/follow-up-to-rest-is-the-new-soap-the-origins-of-rest-21c59d243438
https://en.wikipedia.org/wiki/Microservices
https://medium.com/policy/f03bf92035c9

