
Async/await
In	computer	programming,	the	async/await	pattern	is	a	syntactic	feature	of	many	programming	languages	that	allows	an	asynchronous,	non-blocking	function	to	be	structured	in	a	way	similar	to	an	ordinary	synchronous	function.	It

is	 semantically	 related	 to	 the	 concept	of	 a	 coroutine	 and	 is	 often	 implemented	using	 similar	 techniques,	 but	 is	 primarily	 intended	 to	provide	opportunities	 for	 the	program	 to	 execute	 other	 code	while	waiting	 for	 a	 long-running,

asynchronous	task	to	complete,	usually	represented	by	promises	or	similar	data	structures.	The	feature	is	found	in	C#	5.0,	Python	3.5,	Hack,	Dart,	Kotlin	1.1,	and	JavaScript,	with	some	experimental	work	in	extensions,	beta	versions,

and	particular	implementations	of	Scala[1],	Rust[2],	and	C++.

Example	C#

In	F#

In	C#

In	Scala

How	it	works

In	Python

In	JavaScript

In	C++

Benefits	and	criticisms

See	also

References

The	C#	function	below,	which	downloads	a	resource	from	a	URI	and	returns	the	resource's	length,	uses	this	async/await	pattern:

public	async	Task<int>	FindPageSize(Uri	uri)	
{
				byte[]	data	=	await	new	WebClient().DownloadDataTaskAsync(uri);
				return	data.Length;
}

First,	the	async	keyword	indicates	to	C#	that	the	method	is	asynchronous,	meaning	that	it	will	use	one	or	more	await	expressions	and	will	bind	the	result	to	a	promise.

The	return	type,	Task<T>,	is	C#'s	analogue	to	the	concept	of	a	promise,	and	here	is	indicated	to	have	a	result	value	of	type	int.

The	first	expression	to	execute	when	this	method	is	called	will	be	new	WebClient().DownloadDataTaskAsync(uri),	which	is	another	asynchronous	method	returning	a	Task<byte[]>.	Because	this
method	is	asynchronous,	it	will	not	download	the	entire	batch	of	data	before	returning.	Instead,	it	will	begin	the	download	process	using	a	non-blocking	mechanism	(such	as	a	background	thread),	and
immediately	return	an	unresolved,	unrejected	Task<byte[]>	to	this	function.

With	the	await	keyword	attached	to	the	Task,	this	function	will	immediately	proceed	to	return	a	Task<int>	to	its	caller,	who	may	then	continue	on	with	other	processing	as	needed.

Once	DownloadDataTaskAsync()	finishes	its	download,	it	will	resolve	the	Task	it	returned	with	the	downloaded	data.	This	will	trigger	a	callback	and	cause	FindPageSize()	to	continue	execution	by
assigning	that	value	to	data.

Finally,	the	method	returns	data.Length,	a	simple	integer	indicating	the	length	of	the	array.	The	compiler	re-interprets	this	as	resolving	the	Task	it	returned	earlier,	triggering	a	callback	in	the	method's
caller	to	do	something	with	that	length	value.

A	function	using	async/await	can	use	as	many	await	expressions	as	it	wants,	and	each	will	be	handled	in	the	same	way	(though	a	promise	will	only	be	returned	to	the	caller	for	the	first	await,	while	every	other	await	will	utilize	internal

callbacks).	A	 function	can	also	hold	a	promise	object	directly	and	do	other	processing	 first	 (including	starting	other	asynchronous	 tasks),	delaying	awaiting	 the	promise	until	 its	 result	 is	needed.	Functions	with	promises	also	have

promise	aggregation	methods	that	allow	you	to	await	multiple	promises	at	once	or	in	some	special	pattern	(such	as	C#'s	Task.WhenAll(),	which	returns	a	valueless	Task	 that	resolves	when	all	of	the	tasks	in	the	arguments	have

resolved).	Many	promise	types	also	have	additional	features	beyond	what	the	async/await	pattern	normally	uses,	such	as	being	able	to	set	up	more	than	one	result	callback	or	inspect	the	progress	of	an	especially	long-running	task.

In	the	particular	case	of	C#,	and	in	many	other	languages	with	this	language	feature,	the	async/await	pattern	is	not	a	core	part	of	the	language's	runtime,	but	is	instead	implemented	with	lambdas	or	continuations	at	compile	time.	For

instance,	the	C#	compiler	would	likely	translate	the	above	code	to	something	like	the	following	before	translating	it	to	its	IL	bytecode	format:

public	Task<int>	FindPageSize(Uri	uri)	
{
				Task<byte[]>	data_task	=	new	WebClient().DownloadDataTaskAsync(uri);
				Task<int>	after_data_task	=	data_task.ContinueWith((original_task)	=>	{
						return	original_task.Result.Length;
				});
				return	after_data_task;
}

Because	of	this,	if	an	interface	method	needs	to	return	a	promise	object,	but	itself	does	not	require	await	in	the	body	to	wait	on	any	asynchronous	tasks,	it	does	not	need	the	async	modifier	either	and	can	instead	return	a	promise

object	directly.	For	instance,	a	function	might	be	able	to	provide	a	promise	that	immediately	resolves	to	some	result	value	(such	as	C#'s	Task.FromResult()),	or	it	may	simply	return	another	method's	promise	that	happens	to	be	the

exact	promise	needed	(such	as	when	deferring	to	an	overload).

One	important	caveat	of	this	functionality,	however,	is	that	while	the	code	resembles	traditional	blocking	code,	the	code	is	actually	non-blocking	and	potentially	multithreaded,	meaning	that	many	intervening	events	may	occur	while

waiting	for	the	promise	targeted	by	an	await	to	resolve.	For	instance,	the	following	code,	while	always	succeeding	in	a	blocking	model	without	await,	may	experience	intervening	events	during	the	await	and	may	thus	find	shared

state	changed	out	from	under	it:

var	a	=	state.a;
var	data	=	await	new	WebClient().DownloadDataTaskAsync(uri);
Debug.Assert(a	==	state.a);//potential	failure,	as	value	of	state.a	may	have	been	changed	
																											//		by	the	handler	of	potentially	intervening	event	
return	data.Length;

An	F#	release	of	2007	featured	asynchronous	workflows.[3].	In	this	initial	version,	await	was	called	let!.

In	C#	versions	before	C#	7,	async	methods	are	required	to	return	either	void,	Task,	or	Task<T>.	This	has	been	expanded	in	C#	7	to	include	certain	other	types	such	as	ValueTask<T>.	Async	methods	that	return	void	are	intended

for	event	handlers;	in	most	cases	where	a	synchronous	method	would	return	void,	returning	Task	instead	is	recommended,	as	it	allows	for	more	intuitive	exception	handling.[4]

Methods	 that	make	use	of	await	must	be	declared	with	 the	async	 keyword.	 In	methods	 that	have	a	 return	value	of	 type	Task<T>,	methods	declared	with	async	must	have	a	 return	 statement	of	 type	assignable	 to	T	 instead	of

Task<T>;	the	compiler	wraps	the	value	in	the	Task<T>	generic.	It	is	also	possible	to	await	methods	that	have	a	return	type	of	Task	or	Task<T>	that	are	declared	without	async.

The	following	async	method	downloads	data	from	a	URL	using	await.

public	async	Task<int>	SumPageSizesAsync(IList<Uri>	uris)	
{
				int	total	=	0;
				foreach	(var	uri	in	uris)	{
								statusText.Text	=	string.Format("Found	{0}	bytes	...",	total);
								var	data	=	await	new	WebClient().DownloadDataTaskAsync(uri);
								total	+=	data.Length;
				}
				statusText.Text	=	string.Format("Found	{0}	bytes	total",	total);
				return	total;
}

In	the	experimental	Scala-async	extension	to	Scala,	await	is	a	"method",	although	it	does	not	operate	like	an	ordinary	method.	Furthermore,	unlike	in	C#	5.0	in	which	a	method	must	be	marked	as	async,	in	Scala-async,	a	block	of	code

is	surrounded	by	an	async	"call".

In	Scala-async,	async	 is	actually	 implemented	using	a	Scala	macro,	which	causes	 the	compiler	 to	emit	different	code,	and	produce	a	 finite	 state	machine	 implementation	 (which	 is	 considered	 to	be	more	efficient	 than	a	monadic

implementation,	but	less	convenient	to	write	by	hand).

There	are	plans	for	Scala-async	to	support	a	variety	of	different	implementations,	including	non-asynchronous	ones.

Python	3.5	has	added	support	for	Async/Await	as	described	in	PEP0492	(https://www.python.org/dev/peps/pep-0492/).

The	await	operator	in	JavaScript	can	only	be	used	from	inside	an	async	function.	If	the	parameter	is	a	promise,	execution	of	the	async	function	will	resume	when	the	promise	is	resolved	(unless	the	promise	is	rejected,	in	which	case	an

error	will	be	thrown	that	can	be	handled	with	normal	JavaScript	exception	handling.)	If	the	parameter	is	not	a	promise,	the	parameter	itself	will	be	returned	immediately.[5]

Many	libraries	provide	promise	objects	that	can	also	be	used	with	await,	as	long	as	they	match	the	specification	for	native	JavaScript	promises.	However,	promises	from	the	jQuery	library	were	not	Promises/A+	compatible	until	jQuery

3.0.[6]

Here's	an	example	(modified	from	this[7]	article):

async	function	createNewDoc()	{
		let	response	=	await	db.post({});	//	post	a	new	doc
		return	await	db.get(response.id);	//	find	by	id
}

async	function	main()	{
		try	{
				let	doc	=	await	createNewDoc();
				console.log(doc);
		}	catch	(err)	{
				console.log(err);
		}
}()

Node.js	version	8	includes	a	utility	that	enables	using	the	standard	library	callback-based	methods	as	promises.[8]

Async	functions	always	return	a	promise.	If	the	coder	explicitly	returns	a	value	at	the	end	of	the	async	function,	the	promise	will	be	resolved	with	that	value;	otherwise,	it	resolves	with	undefined.[9]	This	means	async	functions	can	be

chained	like	pure	promise	based	functions.

In	C++,	await	is	a	part	of	Coroutines	TS,	and	uses	the	keyword	co_await.	Coroutines	TS	may	or	may	not	be	merged	into	C++20,	[10]	but	MSVC	and	Clang	compilers	are	already	supporting	at	least	some	form	of	co_await	(GCC	has	still

no	support	for	it).

A	significant	benefit	of	the	async/await	pattern	in	languages	that	support	it	is	that	asynchronous,	non-blocking	code	can	be	written,	with	minimal	overhead,	and	looking	almost	like	traditional	synchronous,	blocking	code.	In	particular,

it	 has	 been	 argued	 that	 await	 is	 the	 best	 way	 of	 writing	 asynchronous	 code	 in	message-passing	 programs;	 in	 particular,	 being	 close	 to	 blocking	 code,	 readability	 and	 the	minimal	 amount	 of	 boilerplate	 code	were	 cited	 as	 await

benefits.[11]	As	a	result,	async/await	makes	it	easier	for	most	programmers	to	reason	about	their	programs,	and	await	tends	to	promote	better,	more	robust	non-blocking	code	in	applications	that	require	it.	Such	applications	range	from

programs	presenting	graphical	user	interfaces	to	massively	scalable	stateful	server-side	programs,	such	as	games	and	financial	applications.

When	criticising	await,	it	has	been	noted	that	await	tends	to	cause	surrounding	code	to	be	asynchronous	too;	on	the	other	hand,	it	has	been	argued	that	this	contagious	nature	of	the	code	(sometimes	being	compared	to	a	"zombie	virus")

is	inherent	to	all	kinds	of	asynchronous	programming,	so	await	as	such	is	not	unique	in	this	regard.[4]

Coroutines

Continuation-passing	style

Direct	style

Cooperative	multitasking

1.	 "Scala	Async"	(https://github.com/scala/async).	Retrieved	20	October	2013.

2.	 "alexcrichton/futures-await"	(https://github.com/alexcrichton/futures-await).	GitHub.	Retrieved	2018-03-29.

3.	 "Introducing	F#	Asynchronous	Workflows"	(https://blogs.msdn.microsoft.com/dsyme/2007/10/10/introducing-f-asynchronous-workflows/).

4.	 Stephen	Cleary,	Async/Await	-	Best	Practices	in	Asynchronous	Programming	(https://msdn.microsoft.com/en-us/magazine/jj991977.aspx)

5.	 "await	-	JavaScript	(MDN)"	(https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await).	Retrieved	2	May	2017.

6.	 "jQuery	Core	3.0	Upgrade	Guide"	(https://jquery.com/upgrade-guide/3.0/#breaking-change-and-feature-jquery-deferred-is-now-promises-a-compatible).	Retrieved	2	May	2017.

7.	 "Taming	the	asynchronous	beast	with	ES7"	(http://pouchdb.com/2015/03/05/taming-the-async-beast-with-es7.html).	Retrieved	12	November	2015.

8.	 Foundation,	Node.js.	"Node	v8.0.0	(Current)	-	Node.js"	(https://nodejs.org/en/blog/release/v8.0.0/#improved-support-for-promises).	Node.js.

9.	 Chiang,	George.	"Introduction	to	JavaScript	Async	Functions-	Promises	simplified"	(http://www.javascriptkit.com/javatutors/intro-javascript-async-functions.shtml).

10.	 "Trip	report:	Fall	ISO	C++	standards	meeting	(San	Diego)"	(https://herbsutter.com/2018/11/13/trip-report-fall-iso-c-standards-meeting-san-diego/).	13	Nov	2018.

11.	 'No	Bugs'	Hare.	Eight	ways	to	handle	non-blocking	returns	in	message-passing	programs	(http://ithare.com/eight-ways-to-handle-non-blocking-returns-in-message-passing-programs-with-script/)
CPPCON,	2018

Retrieved	from	"https://en.wikipedia.org/w/index.php?title=Async/await&oldid=868754371"

This	page	was	last	edited	on	14	November	2018,	at	06:29	(UTC).

Text	is	available	under	the	Creative	Commons	Attribution-ShareAlike	License;	additional	terms	may	apply.	By	using	this	site,	you	agree	to	the	Terms	of	Use	and	Privacy	Policy.	Wikipedia®	is	a	registered
trademark	of	the	Wikimedia	Foundation,	Inc.,	a	non-profit	organization.

Contents

Example	C#

In	F#

In	C#

In	Scala

How	it	works

In	Python

In	JavaScript

In	C++

Benefits	and	criticisms

See	also

References

https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Asynchronous_I/O
https://en.wikipedia.org/wiki/Non-blocking_I/O
https://en.wikipedia.org/wiki/Subroutine
https://en.wikipedia.org/wiki/Coroutine
https://en.wikipedia.org/wiki/Futures_and_promises
https://en.wikipedia.org/wiki/C_Sharp_5.0
https://en.wikipedia.org/wiki/Hack_(programming_language)
https://en.wikipedia.org/wiki/Dart_(programming_language)
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Scala_(programming_language)
https://en.wikipedia.org/wiki/Async/await#cite_note-scala-async-1
https://en.wikipedia.org/wiki/Async/await#cite_note-2
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Async/await#Example_C%23
https://en.wikipedia.org/wiki/Async/await#In_F%23
https://en.wikipedia.org/wiki/Async/await#In_C%23
https://en.wikipedia.org/wiki/Async/await#How_it_works
https://en.wikipedia.org/wiki/Async/await#In_Scala
https://en.wikipedia.org/wiki/Async/await#In_Python
https://en.wikipedia.org/wiki/Async/await#In_JavaScript
https://en.wikipedia.org/wiki/Async/await#In_C++
https://en.wikipedia.org/wiki/Async/await#Benefits_and_criticisms
https://en.wikipedia.org/wiki/Async/await#See_also
https://en.wikipedia.org/wiki/Async/await#References
https://en.wikipedia.org/wiki/C_Sharp_5.0
https://en.wikipedia.org/wiki/Thread_(computer_programming)
https://en.wikipedia.org/wiki/Lambda_(programming)
https://en.wikipedia.org/wiki/Continuation
https://en.wikipedia.org/wiki/Bytecode
https://en.wikipedia.org/w/index.php?title=Overload_(computer_programming)&action=edit&redlink=1
https://en.wikipedia.org/wiki/F_Sharp_(programming_language)
https://en.wikipedia.org/wiki/Async/await#cite_note-3
https://en.wikipedia.org/wiki/Async/await#cite_note-Cleary-4
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Finite_state_machine
https://en.wikipedia.org/wiki/Monad_(functional_programming)
https://www.python.org/dev/peps/pep-0492/
https://en.wikipedia.org/wiki/Futures_and_promises
https://en.wikipedia.org/wiki/Exception_handling
https://en.wikipedia.org/wiki/Async/await#cite_note-5
https://en.wikipedia.org/wiki/JQuery
https://en.wikipedia.org/wiki/Async/await#cite_note-6
https://en.wikipedia.org/wiki/Async/await#cite_note-JavaScript-async-await-7
https://en.wikipedia.org/wiki/Node.js
https://en.wikipedia.org/wiki/Async/await#cite_note-8
https://en.wikipedia.org/wiki/Async/await#cite_note-9
https://en.wikipedia.org/wiki/Async/await#cite_note-10
https://en.wikipedia.org/wiki/MSVC
https://en.wikipedia.org/wiki/Clang
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://en.wikipedia.org/wiki/Message_passing
https://en.wikipedia.org/wiki/Async/await#cite_note-11
https://en.wikipedia.org/wiki/Graphical_User_Interface
https://en.wikipedia.org/wiki/Async/await#cite_note-Cleary-4
https://en.wikipedia.org/wiki/Coroutines
https://en.wikipedia.org/wiki/Continuation-passing_style
https://en.wikipedia.org/wiki/Direct_style
https://en.wikipedia.org/wiki/Cooperative_multitasking
https://github.com/scala/async
https://github.com/alexcrichton/futures-await
https://blogs.msdn.microsoft.com/dsyme/2007/10/10/introducing-f-asynchronous-workflows/
https://msdn.microsoft.com/en-us/magazine/jj991977.aspx
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://jquery.com/upgrade-guide/3.0/#breaking-change-and-feature-jquery-deferred-is-now-promises-a-compatible
http://pouchdb.com/2015/03/05/taming-the-async-beast-with-es7.html
https://nodejs.org/en/blog/release/v8.0.0/#improved-support-for-promises
http://www.javascriptkit.com/javatutors/intro-javascript-async-functions.shtml
https://herbsutter.com/2018/11/13/trip-report-fall-iso-c-standards-meeting-san-diego/
http://ithare.com/eight-ways-to-handle-non-blocking-returns-in-message-passing-programs-with-script/
https://en.wikipedia.org/w/index.php?title=Async/await&oldid=868754371
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://foundation.wikimedia.org/wiki/Terms_of_Use
https://foundation.wikimedia.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/

