
Linux	and	FreeBSD	networking

Incipit
I	work	on	the	networking	subsystem	of	the	Linux	kernel	and	I	find

networks	rather	fascinating.	Often	I	read	statements	about	the

FreeBSD	networking	stack	being	faster	and	more	mature	than	the

Linux	counterpart,	but	I	didn’t	find	any	comparative	tests	between	the

two	OS,	and	I	was	so	curious	that	I	decided	to	do	some	tests	myself.

Matteo	Croce Follow
Nov	12 · 13	min	read

. . .

Test	setup
To	avoid	having	to	setup	cables	and	interfaces	on	bare	metal	systems,	I

decided	to	get	a	single,	powerful	server,	and	partition	it	into	four	VMs,

two	running	Fedora	29,	and	two	running	FreeBSD	11.2-RELEASE.

The	hardware	is	a	Dell	PowerEdge	R730:

two	E5–2690	v4	@	2.60	GHz	with	a	total	of	28	physical	cores	(56

with	HT)

128	GB	(8	x	16	GB)	GB	DDR4	2400	RAM

Samsung	SM863a	240	GB	SSD

2	x	Intel	82599ES	10	Gbit	ethernet	card

The	hypervysor	is	KVM	on	Fedora	29	with	latest	4.19	kernel.

The	server	was	partitioned	so	that	any	task	of	the	host	OS	couldn’t

interfere	with	the	guests	VCPU:	8	physical	CPUs

(12,14,16,18,20,22,24,26)	were	removed	from	the	scheduler	with	RCU

callback	and	timer	off,	and	system	was	booted	with	 nosmt=force 	to

avoid	using	their	HT	siblings.

Both	the	10	Gbit	cards	were	on	the	first	NUMA	node,	so	I	decided	to

completely	disable	the	second	NUMA	node	by	putting	all	the	CPUs

and	memory	of	the	second	node	off	with	the mem=64G 	kernel	command

line	and	a	script	run	at	boot.

Intel	Turbo	Boost	and	P-states	are	known	to	skew	benchmarks,	so	they

were	disabled	by	the	kernel	command	line	and	writing	with wrmsr-pX
0x1a0	0x4000850089 	in	the	appropriate	register	on	each	CPU.

Spectre	and	Meltdown	mitigations	were	disabled	via	kernel	command

line.

At	the	end,	the	kernel	command	line	was:

mem=64G	pti=off	intel_pstate=disable	l1tf=off	nosmt=force	
spectre_v2=off	spec_store_bypass_disable=off	
isolcpus=12,14,16,18,20,22,24,26	
nohz_full=12,14,16,18,20,22,24,26	
rcu_nocbs=12,14,16,18,20,22,24,26

Guests	were	interconnected	via	a	DPDK	switch,	which	can	handle

milions	of	packets	per	second	with	a	single	core.	Two	cores	were

dedicated	to	DPDK.

While	storage	was	not	relevant	for	our	purposes,	an	LVM	logical	group

was	created	for	every	VM,	instead	of	using	files	or	even	worse,	sparse

qcow2	images.

Guest	OS	setup
Each	VCPU	was	pinned	to	an	isolated	physical	core,	RAM	was	backed

by	1	GB	hugepages	and	VirtIO	drivers	and	peripherals	were	used	when

possible.

2	CPU	and	4	GB	RAM	were	given	to	each	VM.

The	FreeBSD	wiki	suggests	to	disable	entropy	harvesting	when	doing

benchmarks,	so	I	did	it	adding	 harvest_mask="351" 	in	/etc/rc.conf.

The	idea	makes	sense,	even	if	I	didn’t	find	a	way	to	do	the	same	under

linux.

Linux	is	a	fresh	Fedora	29	install	with	a	vanilla	4.19	kernel	recompiled

with	the	Fedora	config	just	to	make	it	possible	to	unload

iptables_filter:

root@fedora1:~#	uname	-a
Linux	fedora1	4.19.0-matteo	#1	SMP	Tue	Oct	23	00:50:44	CEST	
2018	x86_64	x86_64	x86_64	GNU/Linux

root@fedora1:~#	grep	'^model	name'	/proc/cpuinfo
model	name						:	Intel	Core	Processor	(Skylake)
model	name						:	Intel	Core	Processor	(Skylake)

root@fedora1:~#	grep	-E	'^Mem(Total|Available)'	
/proc/meminfo
MemTotal:								4037340	kB
MemAvailable:				3652888	kB

root@fedora1:~#	lspci	-nn
00:00.0	Host	bridge	[0600]:	Intel	Corporation	440FX	-	
82441FX	PMC	[Natoma]	[8086:1237]	(rev	02)
00:01.0	ISA	bridge	[0601]:	Intel	Corporation	82371SB	PIIX3	
ISA	[Natoma/Triton	II]	[8086:7000]
00:01.1	IDE	interface	[0101]:	Intel	Corporation	82371SB	
PIIX3	IDE	[Natoma/Triton	II]	[8086:7010]
00:01.3	Bridge	[0680]:	Intel	Corporation	82371AB/EB/MB	
PIIX4	ACPI	[8086:7113]	(rev	03)
00:02.0	Ethernet	controller	[0200]:	Red	Hat,	Inc.	Virtio	
network	device	[1af4:1000]
00:05.0	SCSI	storage	controller	[0100]:	Red	Hat,	Inc.	
Virtio	block	device	[1af4:1001]
00:06.0	SCSI	storage	controller	[0100]:	Red	Hat,	Inc.	
Virtio	block	device	[1af4:1001]
00:08.0	Unclassified	device	[00ff]:	Red	Hat,	Inc.	Virtio	
RNG	[1af4:1005]

FreeBSD	is	11.2-p4:

root@freebsd1:~#	uname	-a
FreeBSD	freebsd2	11.2-RELEASE-p4	FreeBSD	11.2-RELEASE-p4	
#0:	Thu	Sep	27	08:16:24	UTC	2018	
root@amd64builder.daemonology.net:/usr/obj/usr/src/sys/GENE
RIC		amd64

root@freebsd1:~#	sysctl	hw.model	hw.ncpu	hw.physmem	
hw.usermem	hw.realmem
hw.model:	Intel	Core	Processor	(Skylake)
hw.ncpu:	2
hw.physmem:	4277608448
hw.usermem:	3704823808
hw.realmem:	4294967296

root@freebsd1:~#	lspci	-nn
00:00.0	Host	bridge	[0600]:	Intel	Corporation	440FX	-	
82441FX	PMC	[Natoma]	[8086:1237]	(rev	02)
00:01.0	ISA	bridge	[0601]:	Intel	Corporation	82371SB	PIIX3	
ISA	[Natoma/Triton	II]	[8086:7000]
00:01.1	IDE	interface	[0101]:	Intel	Corporation	82371SB	
PIIX3	IDE	[Natoma/Triton	II]	[8086:7010]
00:01.3	Bridge	[0680]:	Intel	Corporation	82371AB/EB/MB	
PIIX4	ACPI	[8086:7113]	(rev	03)
00:02.0	Ethernet	controller	[0200]:	Red	Hat,	Inc.	Virtio	
network	device	[1af4:1000]
00:04.0	Communication	controller	[0780]:	Red	Hat,	Inc.	
Virtio	console	[1af4:1003]
00:05.0	SCSI	storage	controller	[0100]:	Red	Hat,	Inc.	
Virtio	block	device	[1af4:1001]
00:06.0	SCSI	storage	controller	[0100]:	Red	Hat,	Inc.	
Virtio	block	device	[1af4:1001]
00:08.0	Unclassified	device	[00ff]:	Red	Hat,	Inc.	Virtio	
RNG	[1af4:1005]

Again,	Spectre	and	Meltdown	were	disabled	in	the	guest	OS:

root@fedora1:/sys/devices/system/cpu/vulnerabilities#	grep	
.	*
meltdown:Vulnerable
spec_store_bypass:Vulnerable
spectre_v1:Mitigation:	__user	pointer	sanitization
spectre_v2:Vulnerable

root@freebsd1:~#	sysctl	vm.pmap.pti	hw.ibrs_disable	
hw.ibrs_active
vm.pmap.pti:	0
hw.ibrs_disable:	1
hw.ibrs_active:	0

•

•

•

•

. . .

Syscall	overhead
Before	starting	the	network	tests	I	wanted	to	measure	the	overhead	of

syscall	invocation,	as	every	I/O	operation	would	trigger	at	least	one.

I	wrote	a	tool	to	measure	the	syscall	overhead	of	the	OS.

Basically	it	does	some	millions	syscalls	in	a	loop	measuring	the	elapse

time	by	reading	the	TSC	register.

The	 syscall(-1) 	call	which	I	used	on	Linux	triggered	a	 SIGSYS
signal	on	FreeBSD,	which	consumes	lot	of	cycles	even	if	trapped,	so	I

switched	to	slightly	a	less	accurate	 getuid(0) ,	which	just	returns	a

number.	The	results	of	the	two	runs	are:

root@fedora1:~#	./ctx_time
ctx:	243	clocks

root@freebsd1:~#	./ctx_time
ctx:	281	clocks

The	same	test	could	be	done	with	 dd	bs=1 	which	performs	a	syscall

for	every	byte	read	or	written

root@fedora1:~#	dd	if=/dev/zero	of=/dev/null	bs=1	count=10M
10485760+0	records	in
10485760+0	records	out
10485760	bytes	(10	MB,	10	MiB)	copied,	3.40924	s,	3.1	MB/s

root@freebsd1:~#	dd	if=/dev/zero	of=/dev/null	bs=1	
count=10M
10485760+0	records	in
10485760+0	records	out
10485760	bytes	transferred	in	4.007083	secs	(2616806	
bytes/sec)

The	result	of	both	tests	are	consistent,	a	syscall	on	FreeBSD	has

roughly	16	%	more	overhead	that	on	Linux.

. . .

Network	with	VirtIO	drivers
As	a	first	test,	iperf3	and	netperf	were	used.	Traffic	was	generated

between	Linux	guests	and	later	between	FreeBSD	guests.	Obviously

tests	were	not	running	in	parallel.

TCP	test	with	iperf3

root@fedora1:~#	iperf3	-c	fedora2
Connecting	to	host	fedora2,	port	5201
[5]	local	192.168.124.11	port	38830	connected	to	
192.168.124.12
[ID]	Interval						Transfer					Bitrate									Retr		Cwnd
[5]			0.00-1.00			1.50	GBytes		12.9	Gbits/sec				1				403	
KBytes
[5]			1.00-2.00			1.48	GBytes		12.7	Gbits/sec				0				403	
KBytes
[5]			2.00-3.00			1.61	GBytes		13.9	Gbits/sec				0				594	
KBytes
[5]			3.00-4.00			1.57	GBytes		13.5	Gbits/sec				0				594	
KBytes
[5]			4.00-5.00			1.50	GBytes		12.9	Gbits/sec				0				594	
KBytes
[5]			5.00-6.00			1.57	GBytes		13.5	Gbits/sec				0				594	
KBytes
[5]			6.00-7.00			1.50	GBytes		12.9	Gbits/sec				0				594	
KBytes
[5]			7.00-8.00			1.49	GBytes		12.8	Gbits/sec				0			1.03	
MBytes
[5]			8.00-9.00			1.50	GBytes		12.9	Gbits/sec				0			1.03	
MBytes
[5]			9.00-10.00		1.49	GBytes		12.8	Gbits/sec			24				744	
KBytes
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
[ID]	Interval						Transfer					Bitrate									Retr
[5]			0.00-10.00		15.2	GBytes		13.1	Gbits/sec			25								
sender
[5]			0.00-10.04		15.2	GBytes		13.0	Gbits/sec													
receiver

root@freebsd1:~#	iperf3	-c	freebsd2
Connecting	to	host	freebsd2,	port	5201
[5]	local	192.168.124.21	port	35815	connected	to	
192.168.124.22
[ID]	Interval					Transfer					Bitrate									Retr		Cwnd
[5]			0.00-1.00			713	MBytes		5.98	Gbits/sec			205				783	
KBytes
[5]			1.00-2.00			845	MBytes		7.09	Gbits/sec		1662				665	
KBytes
[5]			2.00-3.00			850	MBytes		7.13	Gbits/sec		1814				934	
KBytes
[5]			3.00-4.00			565	MBytes		4.74	Gbits/sec		1204			1.03	
MBytes
[5]			4.00-5.00			852	MBytes		7.14	Gbits/sec		2553				684	
KBytes
[5]			5.00-6.00			849	MBytes		7.13	Gbits/sec		1615				961	
KBytes
[5]			6.00-7.00			569	MBytes		4.77	Gbits/sec		1188			1.07	
MBytes
[5]			7.00-8.00			848	MBytes		7.11	Gbits/sec		2659				885	
KBytes
[5]			8.00-9.00			852	MBytes		7.14	Gbits/sec		2425				558	
KBytes
[5]			9.00-10.00		847	MBytes		7.11	Gbits/sec		1829				905	
KBytes
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
[ID]	Interval					Transfer					Bitrate									Retr
[5]			0.00-10.00	7.61	GBytes		6.53	Gbits/sec		17154							
sender
[5]			0.00-10.01	7.61	GBytes		6.53	Gbits/sec												
receiver

UDP	test	with	iperf3

root@fedora2:~#	iperf3	-s

Server	listening	on	5201

Accepted	connection	from	192.168.124.11,	port	38832
[5]	local	192.168.124.12	port	5201	connected	to	
192.168.124.11	port	34371
[ID]	Interval				Transfer					Bitrate									Lost/Total	
Datagrams
[5]			0.00-1.00		275	MBytes		2.31	Gbits/sec		
310230/509231	(61%)
[5]			1.00-2.00		288	MBytes		2.42	Gbits/sec		
319193/527800	(60%)
[5]			2.00-3.00		286	MBytes		2.40	Gbits/sec		
322674/529772	(61%)
[5]			3.00-4.00		286	MBytes		2.40	Gbits/sec		
322497/529719	(61%)
[5]			4.00-5.00		289	MBytes		2.42	Gbits/sec		
318181/527146	(60%)
[5]			5.00-6.00		284	MBytes		2.38	Gbits/sec		
326001/531413	(61%)
[5]			6.00-7.00		285	MBytes		2.39	Gbits/sec		
322854/529454	(61%)
[5]			7.00-8.00		287	MBytes		2.40	Gbits/sec		
320977/528570	(61%)
[5]			8.00-9.00		294	MBytes		2.47	Gbits/sec		
308189/521425	(59%)
[5]			9.00-10.00	285	MBytes		2.39	Gbits/sec		
323204/529912	(61%)
[5]	90.00-10.04	10.8	MBytes		2.28	Gbits/sec		13636/21470	
(64%)
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
[ID]	Interval					Transfer					Bitrate									Lost/Total	
Datagrams
[5]			0.00-10.04	2.80	GBytes		2.40	Gbits/sec		
3207636/5285912(61%)

root@freebsd2:~#	iperf3	-s

Server	listening	on	5201

Accepted	connection	from	192.168.124.21,	port	10172
[5]	local	192.168.124.22	port	5201	connected	to	
192.168.124.21
[ID]	Interval					Transfer				Bitrate									Lost/Total	
Datagrams
[5]			0.00-1.00		58.9	MBytes		494	Mbits/sec		0/42301	(0%)
[5]			1.00-2.00		64.7	MBytes		543	Mbits/sec		0/46472	(0%)
[5]			2.00-3.00		64.5	MBytes		541	Mbits/sec		0/46347	(0%)
[5]			3.00-4.00		64.6	MBytes		542	Mbits/sec		0/46381	(0%)
[5]			4.00-5.00		64.7	MBytes		542	Mbits/sec		0/46446	(0%)
[5]			5.00-6.00		64.7	MBytes		542	Mbits/sec		0/46441	(0%)
[5]			6.00-7.00		64.4	MBytes		540	Mbits/sec		0/46226	(0%)
[5]			7.00-8.00		64.8	MBytes		543	Mbits/sec		0/46506	(0%)
[5]			8.00-9.00		64.8	MBytes		544	Mbits/sec		0/46542	(0%)
[5]			9.00-10.00	64.8	MBytes		544	Mbits/sec		0/46551	(0%)
[5]		10.00-10.09	5.85	MBytes		542	Mbits/sec		0/4200	(0%)
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
[ID]	Interval					Transfer				Bitrate									Lost/Total	
Datagrams
[5]			0.00-10.09		647	MBytes		538	Mbits/sec		0/464413	
(0%)

TCP	test	with	netperf

root@fedora1:~#	netperf	-H	fedora2	-t	TCP_STREAM
Recv			Send				Send
Socket	Socket		Message		Elapsed
Size			Size				Size					Time					Throughput
bytes		bytes			bytes				secs.				10^6bits/sec

	65536		32768		32768				10.00				12612.46

root@freebsd1:~#	netperf	-H	freebsd2	-t	TCP_STREAM
Recv			Send				Send
Socket	Socket		Message		Elapsed
Size			Size				Size					Time					Throughput
bytes		bytes			bytes				secs.				10^6bits/sec

	65536		32768		32768				10.20				1233.02

UDP	test	with	netperf

root@fedora1:~#	netperf	-H	fedora2	-t	UDP_STREAM
Socket		Message		Elapsed						Messages
Size				Size					Time									Okay	Errors			Throughput
bytes			bytes				secs												#						#			10^6bits/sec

		9216				9216			10.00					1809700						0				13342.52
	42080											10.00					1769508											13046.20

root@freebsd1:~#	netperf	-H	freebsd2	-t	UDP_STREAM
Socket		Message		Elapsed						Messages
Size				Size					Time									Okay	Errors			Throughput
bytes			bytes				secs												#						#			10^6bits/sec

		9216				9216			10.03					1377361						0				10126.59
	42080											10.03					1374845											10108.09

The	smarter	readers	will	note	that	the	Linux	buffer	sizes	are	different

than	the	one	on	your	distro,	this	because	I	changed	the	Linux	values	to

be	the	same	as	the	FreeBSD	one	with	this	sysctl,	even	if	the	difference

was	negligible:

net.ipv4.tcp_rmem	=	4096	65536	6291456
net.ipv4.tcp_wmem	=	4096	32768	6291456
net.core.wmem_default	=	9216
net.core.rmem_default	=	42080

At	first	look,	FreeBSD	performances	looks	disastrous,	so	I’ve	shared

my	results	with	the	#freebsd	folks	on	IRC,	and	they	told	me	that	slow

VirtIO	drivers	for	FreeBSD	are	a	known	issue.	Not	a	big	deal	then,

KVM	was	developed	on	Linux	and	sure	Linux	guest	drivers	are	more

optimized.

I	changed	the	VM	setup	to	use	an	emulated	Intel	Gigabit	ethernet	or

Realtek	rtl8139,	but	I	get	very	poor	results	from	both	OS	so	I	don’t

even	report	them.

So	I	did	the	test	again	on	the	loopback	interface	on	both	guests.	It’s	not

a	very	professional	test,	but	at	least	I’m	not	facing	any	VirtIO

deficience.

To	make	the	test	fair,	I	lowered	the	Linux	MTU	to	16384	as	this	is	the

maximum	allowed	on	FreeBSD	loopback	device.

root@fedora1:~#	iperf3	-s	&

Server	listening	on	5201

root@fedora1:~#	iperf3	-c	127.0.0.1	>/dev/null
Accepted	connection	from	127.0.0.1,	port	48438
[5]	local	127.0.0.1	port	5201	connected	to	127.0.0.1	port	
48440
[ID]	Interval											Transfer					Bitrate
[5]			0.00-1.00			sec		5.68	GBytes		48.8	Gbits/sec
[5]			1.00-2.00			sec		6.05	GBytes		52.0	Gbits/sec
[5]			2.00-3.00			sec		6.00	GBytes		51.5	Gbits/sec
[5]			3.00-4.00			sec		6.12	GBytes		52.6	Gbits/sec
[5]			4.00-5.00			sec		6.15	GBytes		52.8	Gbits/sec
[5]			5.00-6.00			sec		6.11	GBytes		52.5	Gbits/sec
[5]			6.00-7.00			sec		6.10	GBytes		52.4	Gbits/sec
[5]			7.00-8.00			sec		6.07	GBytes		52.2	Gbits/sec
[5]			8.00-9.00			sec		6.06	GBytes		52.0	Gbits/sec
[5]			9.00-10.00		sec		6.01	GBytes		51.7	Gbits/sec
[5]		10.00-10.04		sec			246	MBytes		52.4	Gbits/sec
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
[ID]	Interval											Transfer					Bitrate
[5]			0.00-10.04		sec		60.6	GBytes		51.9	Gbits/sec								
receiver

root@freebsd1:~#	iperf3	-s	&

Server	listening	on	5201

root@freebsd1:~#	iperf3	-c	127.0.0.1	>/dev/null
Accepted	connection	from	127.0.0.1,	port	50250
[5]	local	127.0.0.1	port	5201	connected	to	127.0.0.1	port	
50251
[ID]	Interval											Transfer					Bitrate
[5]			0.00-1.00			sec		1.89	GBytes		16.2	Gbits/sec
[5]			1.00-2.00			sec		2.65	GBytes		22.8	Gbits/sec
[5]			2.00-3.00			sec		2.67	GBytes		22.9	Gbits/sec
[5]			3.00-4.00			sec		2.68	GBytes		23.1	Gbits/sec
[5]			4.00-5.00			sec		2.66	GBytes		22.9	Gbits/sec
[5]			5.00-6.00			sec		2.66	GBytes		22.8	Gbits/sec
[5]			6.00-7.00			sec		2.66	GBytes		22.8	Gbits/sec
[5]			7.00-8.00			sec		2.66	GBytes		22.8	Gbits/sec
[5]			8.00-9.00			sec		2.62	GBytes		22.5	Gbits/sec
[5]			9.00-10.00		sec		2.68	GBytes		23.0	Gbits/sec
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
[ID]	Interval											Transfer					Bitrate
[5]			0.00-10.00		sec		25.8	GBytes		22.2	Gbits/sec								
receiver

An	asciinema	recording	of	one	of	the	benchmarking	session	is	here:

Linux	&	FreeBSD	networking

iperf3	netperf	tests	on	Linux	and
FreeBSD	with	VirtIO	drivers

asciinema.org

. . .

Physical	interface	test
So,	I	finally	made	up	my	mind	and	prepared	a	more	professional	and

precise	test.

Xeon	processors	from	Broadwell	on,	have	a	feature	named	Posted

Interrupts.

This	feature	allows	a	guest	OS	to	receive	interrupts	from	a	device,

without	passing	through	the	hypervisor.	KVM	supports	this	since

2013,	and	by	doing	this,	performance	of	a	device	passed	via	PCI

passtrough	are	identical	to	bare	metal:

“Although	close	to	bare	metal,	the	average	interrupt	invocation

latency	of	KVM+DID	is	0.9µs	higher.

[…]

As	a	result,	there	is	no	noticeable	difference	between	the	packet

latency	of	the	SRIOV-BM	configuration	and	the	SRIOV-DID

configuration,	because	the	latter	does	not	incur	a	VM	exit	on

interrupt	delivery.”

So	I	got	some	Intel	82599ES	10	Gigabit	cards	as	suggested	by	the

FreeBSD	Network	Performance	Tuning,	another	identical	server	and	I

connected	the	servers	back	to	back	with	this	setup.

										+----------------+											+----------------+
										|																|											|																|
										|							NIC2-----+--<--<--<--+-----NIC1							|
										|																|											|																|
										|					Server					|											|					TRex							|
										|																|											|																|
										|							NIC3-----+-->-->-->--+-----NIC4							|
										|																|											|																|
										+----------------+											+----------------+

The	server	was	running	a	single	Linux	or	FreeBSD	machine	at	once

with	PCIE	passthrough,	while	another	server	is	running	TRex	bound

to	two	10	Gbit	cards.

TRex	is	a	powerful	DPDK	based	traffic	generator	which	is	capable	to

generate	dozens	of	millions	of	packet	per	second.	It	can	easily	achieve

line	rate	with	10	Gbit	cards	by	sending	64	byte	frames	from	4	CPU.

TRex	sends	10	Gbit	(14.8	millions	of	64	byte	packets)	per	seconds	from

NIC1,	packets	got	received	from	NIC2,	gets	handled	by	the	OS	under

test,	which	sends	the	packets	to	NIC3,	and	it	finally	the	packets	go

back	to	TRex,	which	checks	them	and	makes	statistics.

With	this	setup,	and	PCI	passthrough	tests	results	became	more	stable

and	reproducible	between	different	runs,	so	I	assume	that	this	is	the

correct	way	to	do	it.

Each	test	was	repeated	ten	times,	the	graph	line	plots	the	average,

while	min	and	max	values	are	reported	with	candlesticks.

First	test	is	a	software	bridge.	The	two	interfaces	are	bridged	and

packets	are	just	forwarded.

The	first	thing	that	struck	me,	is	that	FreeBSD	packet	rate	was

substantially	the	same	with	one	or	8	CPU.	I	investigated	a	bit,	and	I’ve

found	it	to	be	a	known	issue:	bridging	under	FreeBSD	is	known	to	be

slow	because	the	if_bridge	driver	is	pratically	monothread	due	to

excessive	locking,	as	written	in	the	FreeBSD	network	optimization

guide.

The	second	thing	that	I	noted	is	that	when	running	a	test	on	a	single

core	FreeBSD	guest,	the	system	freezes	until	traffic	is	stopped.	It	only

happens	to	FreeBSD	when	the	guest	has	only	one	core.	Initially	I

tought	that	it	could	be	a	glitch	of	the	serial	or	tty	driver,	but	then	I	ran

a	 while	sleep	1;	do	date;	done 	loop,	and	if	it	was	just	an	output

issue,	the	time	wouldn’t	freeze.	I	looked	in	all	the	sysctl	to	find	if	the

FreeBSD	kernel	was	preemptible,	and	it	is,	so	I	can’t	explain	what	is

going	on.	I	made	an	asciinema	which	better	illustrates	this	weird

behavior.

Second	test	is	routing.	Two	IP	adresses	belonging	to	different

networks	are	assigned	to	the	interfaces,	and	the	TRex	NIC4	address	is

set	as	default	route.	TRex	is	sending	packets	to	the	first	interface	and

packets	are	forwarded.

When	talking	about	L3	forwarding	both	OS	scale	quite	well.	While

achieving	more	or	less	the	same	performances	with	a	single	core,

Linux	does	a	better	job	with	multiple	processors.

Third	test	is	about	firewall.	The	setup	is	the	same	as	the	routing	test,

except	that	some	firewall	rules	are	loaded	in	the	firewall.

The	rules	are	generated	in	a	way	that	they	can’t	match	any	packet

sending	from	TRex	(different	port	range	than	the	generated	traffic),

they	are	here	only	to	weigh.

We	know	that	both	OS	have	two	firewall	systems,	Linux	has	iptables

and	nftables,	while	FreeBSD	has	PF	and	IPFW.	I	tested	all	of	them	and

in	the	graph	below	I	report	performances	for	iptables	and	IPFW

because	they	resulted	faster	than	the	other	two	solutions.

FreeBSD	under	load

Weird	behaviour	of	FreeBSD
under	heavy	tra%c	load

asciinema.org

As	said	before,	I	deliberately	omitted	the	nftables	and	PF	numbers	to

avoid	confusion,	if	you	want	to	have	a	look	to	the	full	numbers,	here

there	are	the	raw	data.

. . .

Conclusions
Both	OS	performs	well,	being	able	to	forward	more	than	1	million	of

pps	per	core,	which	lets	you	achieve	the	10	gbit	line	rate	with	1500	byte

frames.

FreeBSD	scales	relatively	well	with	core	numbers	(except	in	bridge

mode	which	is	kinda	monothread),	but	Linux	does	a	near	perfect	job

using	all	the	power	of	a	multicore	system.	The	same	applies	to

firewalling,	where	we	can	see	that	a	large	firewall	ruleset	can	disrupt

the	performance	of	both	kernels,	unless	using	tricks	like	fastpath	and

HW	offloading.

. . .

About	me
I	have	been	working	in	Red	Hat	for	a	year,	but	I	have	been

collaborating	to	the	Linux	kernel	and	a	lot	of	other	open	source

software	for	15	years.	I	used	FreeBSD	in	production	back	in	2008	and

I	ported	one	of	my	programs	to	the	FreeBSD	ports.

I	love	open	source	in	general,	I’m	a	FSFE	supporter	and	I’m	all	against

DRM	and	proprietary	software.

L2	forwarding

packet	filtering

Medium	uses	browser	cookies	to	give	you	the	best	possible	experience.	
To	make	Medium	work,	we	log	user	data	and	share	it	with	processors.	To	use	Medium,	you	must	agree	to	our	Privacy

Policy,	including	cookie	policy.
I	agree.

https://medium.com/@matteocroce?source=post_header_lockup
https://medium.com/@matteocroce?source=post_header_lockup
https://www.dell.com/en-us/work/shop/povw/poweredge-r730
https://ark.intel.com/products/91770
https://www.samsung.com/semiconductor/minisite/ssd/product/enterprise/sm863a/
https://ark.intel.com/products/41282
https://gist.github.com/teknoraver/a3372417b18cc1badca8cd84e0310f6f
https://meltdownattack.com/
https://www.dpdk.org/
https://wiki.freebsd.org/NetworkPerformanceTuning
https://gist.github.com/teknoraver/ebee75c5bc4eb8533b8e761d0e57b7d9
https://iperf.fr/
https://hewlettpackard.github.io/netperf/
https://asciinema.org/a/204316
https://asciinema.org/a/204316
https://software.intel.com/sites/default/files/managed/c5/15/vt-directed-io-spec.pdf
https://git.kernel.org/linus/5a71785dde307f6ac80e83c0ad3fd694912010a1
http://compas.cs.stonybrook.edu/~mferdman/downloads.php/VEE15_Comprehensive_Implementation_and_Evaluation_of_Direct_Interrupt_Delivery.pdf
https://wiki.freebsd.org/NetworkPerformanceTuning
http://trex-tgn.cisco.com/
https://wiki.freebsd.org/NetworkPerformanceTuning
https://asciinema.org/a/205477
https://asciinema.org/a/205477
https://docs.google.com/spreadsheets/d/e/2PACX-1vQqhCYLDEyngnWJAcBV4xahScYXt_edKL-HDxzsdIjuTIdg8LOdYZU1hvcwklJ_Np1aaLmP0fzrzOz5/pubhtml?gid=1147998389&single=true
https://www.freshports.org/audio/aacplusenc/
https://fsfe.org/
https://medium.com/policy/f03bf92035c9

