
This	site	uses	Akismet	to	reduce	spam.	Learn	how	your	comment	data	is	processed.

Standard	Ranges
Posted	on	December	5,	2018	by	Eric	Niebler	—

As	you	may	have	heard	by	now,	Ranges	got	merged	and	will	be	part	of	C++20.	This	is	huge	news	and	represents	probably	the	biggest	shift	the	Standard
Library	has	seen	since	it	was	first	standardized	way	back	in	1998.

This	has	been	a	long	time	coming.	Personally,	I’ve	been	working	toward	this	since	at	least	November	2013,	when	I	opined,	“In	my	opinion,	it’s	time	for	a
range	library	for	the	modern	world,”	in	a	blog	post	on	input	ranges.	Since	then,	I’ve	been	busy	building	that	modern	range	library	and	nailing	down	its
specification	with	the	help	of	some	very	talented	people.

Future	blog	posts	will	discuss	how	we	got	here	and	the	gritty	details	of	how	the	old	stuff	and	the	new	stuff	play	together	(we’re	C++	programmers,	we	love
gritty	details),	but	this	post	is	strictly	about	the	what.

What	is	coming	in	C++20?
All	of	the	Ranges	TS	—	and	then	some	—	will	ship	as	part	of	C++20.	Here’s	a	handy	table	of	all	the	major	features	that	will	be	shipping	as	part	of	the
next	standard:

Feature Example

Fundamental	concepts std::Copyable<T>

Iterator	and	range	concepts std::InputIterator<I>

New	convenience	iterator	traits std::iter_value_t<I>

Safer	range	access	functions std::ranges::begin(rng)

Proxy	iterator	support std::iter_value_t<I>	tmp	=

				std::ranges::iter_move(i);

Contiguous	iterator	support std::ContiguousIterator<I>

Constrained	algorithms std::ranges::sort(v.begin(),	v.end());

Range	algorithms std::ranges::sort(v);

Constrained	function	objects std::ranges::less

Generalized	callables std::ranges::for_each(v,	&T::frobnicate);

Projections std::ranges::sort(employees,	less{},

				&Employee::id);

Range	utilities struct	my_view	:	std::view_interface<my_view>	{

Range	generators auto	indices	=	std::view::iota(0u,	v.size());

Range	adaptors for	(auto	x	:	v	|	std::view::filter(pred))	{

Below,	I	say	a	few	words	about	each.	But	first	I	wanted	to	revisit	an	old	coding	challenge	and	recast	its	solution	in	terms	of	standard	C++20.

Pythagorian	Triples,	Revisited
Some	years	ago	now,	I	wrote	a	blog	post	about	how	to	use	ranges	to	generate	an	infinite	list	of	Pythagorean	triples:	3-tuples	of	integers	where	the	sum	of
the	squares	of	the	first	two	equals	the	square	of	the	third.

Below	is	the	complete	solution	as	it	will	look	in	standard	C++20.	I	take	the	solution	apart	after	the	break.

The	above	program	prints	the	following:

(3,4,5)
(6,8,10)
(5,12,13)
(9,12,15)
(8,15,17)
(12,16,20)
(7,24,25)
(15,20,25)
(10,24,26)
(20,21,29)

This	program	is	(lazily)	generating	an	infinite	list	of	Pythagorean	triples,	taking	the	first	10,	and	printing	them	out.	Below	is	a	quick	rundown	on	how	it
works.	Along	the	way,	I’ll	point	out	the	parts	of	that	solution	that	will	be	standard	starting	in	C++20.

main()

First,	let’s	look	at	main,	which	creates	the	infinite	list	of	triples	and	prints	out	the	first	10.	It	makes	repeated	use	of	for_each	to	define	the	infinite	list.	A
use	like	this:

means:	For	every	element	in	some-range,	call	the	lambda.	Lazily	collect	all	the	views	thus	generated	and	flatten	them	into	a	new	view.	If	the	lambda	were
to	return	view::single(elem),	for	instance	—	which	returns	a	view	of	exactly	one	element	—	then	the	above	is	a	no-op:	first	carve	some-range	into	N
subranges	of	1-element	each,	then	flatten	them	all	back	into	a	single	range.

Armed	with	that	knowledge,	we	can	make	sense	of	the	tripply-nested	invocations	of	for_each:

This	code	is	generating	every	combination	of	integers	x,	y,	and	z	in	some	order	(selecting	the	bounds	so	that	x	and	y	are	never	larger	than	z	to	avoid
dupes).	At	each	level	we	create	structure:	we	start	with	a	single	range	(iota(1),	described	below),	and	then	get	a	range	of	ranges	where	each	inner
range	corresponds	to	all	the	combinations	that	share	a	value	for	z.	Those	inner	ranges	are	themselves	further	decomposed	into	subranges,	each	of
which	represents	all	the	combinations	that	share	a	value	of	x.	And	so	on.

The	innermost	lambda	has	x,	y,	and	z	and	can	decide	whether	to	emit	the	triple	or	not:

yield_if	takes	a	Boolean	(have	we	found	a	Pythagorean	triple?)	and	the	triple,	and	either	emits	an	empty	range	or	a	1-element	range	containing	the
triple.	That	set	of	ranges	then	gets	flattened,	flattened,	and	flattened	again	into	the	infinite	list	of	the	Pythagorean	triples.

We	then	pipe	that	infinite	list	to	view::take(10),	which	truncates	the	infinite	list	to	the	first	10	elements.	Then	we	iterate	over	those	elements	with	an
ordinary	range-based	for	loop	and	print	out	the	results.	Phwew!

Now	that	we	have	a	high-level	understanding	of	what	this	program	is	doing,	we	can	take	a	closer	look	at	the	individual	components.

view::iota

This	is	a	very	simple	view.	It	takes	either	one	or	two	objects	of	Incrementable	type.	It	builds	a	range	out	of	them,	using	the	second	argument	as	the
upper	bound	of	a	half-closed	(i.e.,	exclusive)	range,	taking	the	upper	bound	to	be	an	unreachable	sentinel	if	none	is	specified	(i.e.,	the	range	is	infinite).
Here	we	use	it	to	build	a	range	of	integers,	but	any	incrementable	types	will	do,	including	iterators.

The	name	“iota”	comes	from	the	std::iota	numeric	algorithm,	which	itself	has	an	interesting	naming	history.

for_each

The	range-v3	library	comes	with	view::for_each	and	yield_if,	but	those	haven’t	been	proposed	yet.	But	view::for_each	is	a	trivial	composition
of	view::transform	and	view::join	which	will	be	part	of	C++20,	so	we	can	implement	it	as	follows:

This	declares	an	object	for_each	that	is	a	C++20	constrained	generic	lambda	with	explicitly	specified	template	parameters.	“Range”	and
“IndirectUnaryInvocable”	are	standard	concepts	in	C++20	that	live	in	namespace	std.	They	constrain	the	arguments	r	and	fun	of	the	lambda	to
be	a	range	(duh)	and	a	function	that	is	callable	with	the	values	of	the	range.	We	then	further	constrain	the	lambda	with	a	trailing	requires	clause,
ensuring	that	the	function’s	return	type	must	be	a	Range	as	well.	indirect_result_t	will	also	be	standard	in	C++20.	It	answers	the	question:	if	I	call
this	function	with	the	result	of	dereferencing	this	iterator,	what	type	do	I	get	back?

The	lambda	first	lazily	transforms	the	range	r	by	piping	it	to	view::transform,	moving	fun	in.	view::	is	a	namespace	within	std::	in	which	all	the
new	lazy	range	adaptors	live.	Since	fun	returns	a	Range	(we	required	that!),	the	result	of	the	transformation	is	a	range	of	ranges.	We	then	pipe	that	to
view::join	to	flatten	the	ranges	into	one	big	range.

The	actual	code,	lines	6-8,	kind	of	gets	lost	in	the	sea	of	constraints,	which	are	not	strictly	necessary	to	use	the	library;	I’m	being	a	bit	pedantic	for
didactic	purposes	here,	so	please	don’t	get	let	that	trip	you	up.

I	also	could	have	very	easily	written	for_each	as	a	vanilla	function	template	instead	of	making	it	an	object	initialized	with	a	constrained	generic	lambda.
I	opted	for	an	object	in	large	part	because	I	wanted	to	demonstrate	how	to	use	concepts	with	lambdas	in	C++20.	Function	objects	have	other	nice
properties,	besides.

yield_if

yield_if	is	a	simpler	conceptually,	but	it	requires	a	little	legwork	on	our	part.	It	is	a	function	that	takes	a	Boolean	and	an	object,	and	it	returns	either	an
empty	range	(if	the	Boolean	is	false),	or	a	range	of	length	one	containing	the	object.	For	that,	we	need	to	write	our	own	view	type,	called	maybe_view,
since	there	isn’t	one	in	C++20.	(Not	yet,	at	least.	There	is	a	proposal.)

Writing	views	is	made	a	little	simpler	with	the	help	of	std::view_interface,	which	generates	some	of	the	boilerplate	from	begin()	and	end()
functions	that	you	provide.	view_interface	provides	some	handy	members	like	.size(),	.operator[],	.front(),	and	.back().

maybe_view	is	reproduced	below.	Notice	how	it	is	trivially	implemented	in	terms	of	std::optional	and	std::view_interface.

Once	we	have	maybe_view,	the	implementation	of	yield_if	is	also	trivial.	It	returns	either	an	empty	maybe_view,	or	one	containing	a	single	element,
depending	on	the	Boolean	argument.

Note:	maybe_view	owns	its	elements.	It	is	generally	a	violation	of	the	View	concept’s	semantic	requirements	for	a	view	to	own	its

elements	because	it	gives	the	type’s	copy	and	move	operations	O(N)	behavior.	However,	in	this	case	—	where	N	is	either	0	or	1	—	we	just

squeak	by.

And	that’s	it.	This	program	demonstrates	how	to	use	view::iota,	view::transform,	view::join,	view_interface,	and	some	standard
concepts	to	implement	a	very	useful	bit	of	library	functionality,	and	then	using	it	to	construct	an	infinite	list	with	some	interesting	properties.	If	you	have
used	list	comprehensions	in	Python	or	Haskell,	this	should	feel	pretty	natural.

But	these	features	are	just	a	tiny	slice	of	the	range	support	in	C++20.	Below,	I	go	through	each	row	of	the	table	at	the	top	of	the	post,	and	give	an
example	of	each.

Fundamental	Concepts
The	C++20	Standard	Library	is	getting	a	host	of	generally	useful	concept	definitions	that	users	can	use	in	their	own	code	to	constrain	their	templates	and
to	define	higher-level	concepts	that	are	meaningful	for	them.	These	all	live	in	the	new	<concepts>	header,	and	they	include	things	like	Same<A,	B>,
ConvertibleTo<From,	To>,	Constructible<T,	Args...>,	and	Regular<T>.

Say	for	instance	that	you	have	a	thread	pool	class	with	an	enqueue	member	function	that	takes	something	that	is	callable	with	no	arguments.	Today,	you
would	write	it	like	this:

Users	reading	this	code	might	wonder:	what	are	the	requirements	on	the	type	Fun?	We	can	enforce	the	requirement	in	code	using	C++20’s
std::Invocable	concept,	along	with	the	recently-added	support	for	abreviated	function	syntax:

This	states	that	fun	has	to	be	invocable	with	no	arguments.	We	didn’t	even	have	to	type	template	<class	...>!
(std::Invocable<std::error_code	&>	auto	fun	would	declare	a	function	that	must	be	callable	with	a	reference	to	a	std::error_code,	to
take	another	example.)

Iterator	and	Range	Concepts
A	large	part	of	the	Standard	Library	concerns	itself	with	containers,	iterators,	and	algorithms,	so	it	makes	sense	that	the	conceptual	vocabulary	would	be
especially	rich	in	this	area.	Look	for	useful	concept	definitions	like	Sentinel<S,	I>,	InputIterator<I>,	and	RandomAccessIterator<I>	in	the
<iterator>	header,	in	addition	to	useful	compositions	like	IndirectRelation<R,	I1,	I2>	which	test	that	R	imposes	a	relation	on	the	result	of
dereferencing	iterators	I1	and	I2.

Say	for	example	that	you	have	a	custom	container	type	in	your	codebase	called	SmallVector	that,	like	std::vector,	can	be	initialized	by	passing	it
two	iterators	denoting	a	range.	We	can	write	this	with	concepts	from	<iterator>	and	<concepts>	as	follows:

Likewise,	this	type	can	get	a	constructor	that	takes	a	range	directly	using	concepts	defined	in	the	new	<ranges>	header:

Note:	range_value_t<R>	hasn’t	been	formally	accepted	yet.	It	is	an	alias	for	iter_value_t<iterator_t<R>>.

New	Convenience	Iterator	Traits
In	C++17,	if	you	want	to	know	the	value	type	of	an	iterator	I,	you	have	to	type	typename	std::iterator_traits<I>::value_type.	That	is	a
mouthful.	In	C++20,	that	is	vastly	shortened	to	std::iter_value_t<I>.	Here	are	the	newer,	shorter	type	aliases	and	what	they	mean:

New	iterator	type	alias Old	equivalent

iter_difference_t<I> typename	iterator_traits<I>::difference_type

iter_value_t<I> typename	iterator_traits<I>::value_type

iter_reference_t<I> typename	iterator_traits<I>::reference

iter_rvalue_reference<I> no	equivalent,	see	below

There	is	no	iter_category_t<I>	to	get	an	iterator’s	tag	type	because	tag	dispatching	is	now	passé.	Now	that	you	can	dispatch	on	iterator	concept
using	language	support,	there	is	no	need	for	tags.

Safe	Range	Access	Functions
What	is	wrong	with	std::begin	and	std::end?	Surprise!	they	are	not	memory	safe.	Consider	what	this	code	does:

std::begin	has	two	overloads	for	const	and	non-const	lvalues.	Trouble	is,	rvalues	bind	to	const	lvalue	references,	leading	to	the	dangling	iterator
it	above.	If	we	had	instead	called	std::ranges::begin,	the	code	would	not	have	compiled.

ranges::begin	has	other	niceties	besides.	It	does	the	ADL	two-step	for	you	saving	you	from	remembering	to	type	using	std::begin;	in	generic
code.	In	other	words,	it	dispatches	to	a	begin()	free	function	found	by	ADL,	but	only	if	it	returns	an	Iterator.	That’s	an	extra	bit	of	sanity-checking
that	you	won’t	get	from	std::begin.

Basically,	prefer	ranges::begin	in	all	new	code	in	C++20	and	beyond.	It’s	more	better.

Prvalue	and	Proxy	Iterator	Support
The	C++98	iterator	categories	are	fairly	restrictive.	If	your	iterator	returns	a	temporary	(i.e.,	a	prvalue)	from	its	operator*,	then	the	strongest	iterator
category	it	could	model	was	InputIterator.	ForwardIterator	required	operator*	to	return	by	reference.	That	meant	that	a	trivial	iterator	that
returns	monotonically	increasing	integers	by	value,	for	example,	cannot	satisfy	ForwardIterator.	Shame,	because	that’s	a	useful	iterator!	More
generally,	any	iterator	that	computes	values	on-demand	could	not	model	ForwardIterator.	That’s	:’-(.

It	also	means	that	iterators	that	return	proxies	—	types	that	act	like	references	—	cannot	be	ForwardIterators.	Hence,	whether	it	was	a	good	idea	or
not,	std::vector<bool>	is	not	a	real	container	since	its	iterators	return	proxies.

The	new	C++20	iterator	concepts	solve	both	of	this	problems	with	the	help	of	std::ranges::iter_swap	(a	constrained	version	of
std::iter_swap),	and	the	new	std::ranges::iter_move.	Use	ranges::iter_swap(i,	j)	to	swap	the	values	referred	to	by	i	and	j.	And	use
the	following:

…	to	move	an	element	at	position	i	out	of	sequence	and	into	the	temporary	object	tmp.

Authors	of	proxy	iterator	types	can	hook	these	two	customization	points	to	make	their	iterators	play	nicely	with	the	constrained	algorithms	in	the
std::ranges	namespace	(see	below).

The	new	iter_rvalue_reference_t<I>	type	alias	mentioned	above	names	the	return	type	of	ranges::iter_move(i).

Contiguous	Iterator	Support
In	Stepanov’s	STL,	RandomAccessIterator	is	the	strongest	iterator	category.	But	whether	elements	are	contiguous	in	memory	is	a	useful	piece	of
information	and,	there	exist	algorithms	that	can	take	advantage	of	that	information	to	become	more	efficient.	Stepanov	was	aware	of	that	but	felt	that	raw
pointers	were	the	only	interesting	model	of	contiguous	iterators,	so	he	didn’t	need	to	add	a	new	category.	He	would	have	been	appalled	at	the	library
vendors	who	ship	std::vector	implementations	with	wrapped	debug	iterators.

TL;DR,	we	are	now	defining	an	extra	category	that	subsumes	(refines)	RandomAccessIterator	called	ContiguousIterator.	A	type	must	opt-in	to
contiguity	by	defining	a	nested	type	named	iterator_concept	(note:	not	iterator_category)	that	is	an	alias	for	the	new
std::contiguous_iterator_tag	tag	type.	Or	you	could	specialize	std::iterator_traits	for	your	type	and	specify	iterator_concept	there.

There	is	a	whole	blog	post	coming	about	iterator_category,	iterator_concept,	and	how	to	write	an	iterator	type	that	conforms

both	to	the	old	iterator	concepts	and	the	new,	with	different	strengths	in	each.	It’s	a	brave	new	world	of	back-compat	considerations.

Constrained	Algorithms
Ever	tried	to	pass	a	std::list‘s	iterator	to	std::sort?	Or	any	other	combination	of	nonesense?	When	you	accidentally	fail	to	meet	an	algorithm’s
(unstated)	type	requirements	today,	your	compiler	will	inform	you	in	the	most	obscure	and	voluminous	way	possible,	spewing	errors	that	appear	to	come
within	the	guts	of	your	STL	implementation.

Concepts	are	designed	to	help	with	this.	For	instance,	look	at	this	code	that	is	using	the	cmcstl2	reference	implementation	(which	puts	std::ranges	in
std::experimental::ranges	for	now):

Rather	than	an	error	deep	in	the	guts	of	ranges::sort,	the	error	message	points	right	to	the	line	in	main	that	failed	to	meet	the	constraints	of	the	sort
template.	“error:	no	matching	call	for	ranges::sort(list<int>::iterator,	list<int>::iterator)“,	followed	by	a	message	that	shows	the
prototype	that	failed	to	match	and	an	explanation	that	the	constraints	within	RandomAccessIterator	we	not	satisfied.	You	can	see	the	full	error	here.

Much	can	be	done	to	make	the	error	more	user-friendly,	but	it’s	already	a	vast	improvement	over	the	status	quo.

Range	Algorithms
This	one	is	fairly	obvious.	It’s	been	20	years	since	the	STL	was	standardized,	and	all	I	want	to	do	is	pass	a	vector	to	sort.	Is	that	too	much	to	ask?
Nope.	With	C++20,	you	will	finally	be	able	to	do	this:

Constrained	Function	Objects
Have	you	ever	used	std::less<>,	the	“diamond”	specializations	of	the	comparison	function	objects	that	were	added	in	C++14?	These	let	you	compare
things	without	having	to	say	up	front	what	type	you’re	comparing	or	forcing	conversions.	These	exist	in	the	std::ranges	namespace	too,	but	you	don’t
have	to	type	<>	because	they	are	not	templates.	Also,	they	have	constrained	function	call	operators.	So	less,	greater,	less_equal,	and
greater_equal	are	all	constrained	with	StrictTotallyOrderedWith,	for	instance.

These	types	are	particularly	handy	when	defining	APIs	that	accept	a	user-specified	relation,	but	default	the	relation	to	operator<	or	operator==.	For
instance:

This	function	has	the	nice	property	that	if	the	user	specifies	a	relation,	it	will	be	used	and	the	constraints	guarantee	that	R	is	a	Relation	over	type	T.	If
the	user	doesn’t	specify	a	relation,	then	the	constraints	require	that	T	satisfies	StrictTotallyOrderedWith	itself.	That	is	implicit	in	the	fact	that	R
defaults	to	ranges::less,	and	ranges::less::operator()	is	constrained	with	StrictTotallyOrderedWith.

Generalized	Callables
In	C++17,	the	Standard	Library	got	a	handy	function:	std::invoke.	It	lets	you	call	any	“Callable”	thing	with	some	arguments,	where	“Callable”	includes
ordinary	function-like	things	in	addition	to	pointers	to	members.	However,	the	standard	algorithms	were	not	respecified	to	use	std::invoke,	which
meant	that	code	like	the	following	failed	to	compile:

std::for_each	is	expecting	something	callable	like	fun(t),	not	std::invoke(fun,	t).

The	new	algorithms	in	the	std::ranges	namespace	are	required	to	use	std::invoke,	so	if	the	above	code	is	changed	to	use
std::ranges::for_each,	it	will	work	as	written.

Projections
Ever	wanted	to	sort	a	range	of	things	by	some	property	of	those	things?	Maybe	sort	a	vector	of	Employees	by	their	ids?	Or	last	name?	Or	maybe	you
want	to	seach	an	array	of	points	for	one	where	the	magnitude	is	equal	to	a	certain	value.	For	those	things,	projections	are	very	handy.	A	projection	is	a
unary	transformation	function	passed	to	an	algorithm	that	gets	applied	to	each	element	before	the	algorithm	operates	on	the	element.

To	take	the	example	of	sorting	a	vector	of	Employees	by	id,	you	can	use	a	projection	argument	to	std::ranges::sort	as	follows:

The	third	argument	to	std::ranges::sort	is	the	projection.	Notice	that	we	used	a	generalized	callable	for	it,	from	the	previous	section.	This	sort
command	sorts	the	Employees	by	the	Id	field.

Or	for	the	example	of	searching	an	array	of	points	for	one	where	the	magnitude	is	equal	to	a	certain	value,	you	would	do	the	following:

Here	we	are	using	a	projection	to	compute	a	property	of	each	element	and	operating	on	the	computed	property.

Once	you	get	the	hang	of	projections,	you’ll	find	they	have	many	uses.

Range	Utilities
The	part	of	the	standard	library	shipping	in	the	<ranges>	header	has	a	lot	of	goodies.	Besides	an	initial	set	of	lazy	range	adaptors	(described	below),	it
has	some	handy,	general-purpose	utilities.

view_interface

As	in	the	Pythagorean	triples	example	above,	your	custom	view	types	can	inhert	from	view_interface	to	get	a	host	of	useful	member	functions,	like
.front(),	.back(),	.empty(),	.size(),	.operator[],	and	even	an	explicit	conversion	to	bool	so	that	view	types	can	be	used	in	if	statements:

subrange

std::ranges::subrange<I,	S>	is	probably	the	most	handy	of	the	range	utilities.	It	is	an	iterator/sentinel	pair	that	models	the	View	concept.	You	can
use	it	to	bundle	together	two	iterators,	or	an	iterator	and	a	sentinel,	for	when	you	want	to	return	a	range	or	call	an	API	that	expects	a	range.

It	also	has	deduction	guides	that	make	it	quite	painless	to	use.	Consider	the	following	code:

This	code	is	equivalent	in	effect	to:

The	expression	subrange{vec}	deduces	the	iterator	and	sentinel	template	parameters	from	the	range	vec,	and	since	subrange	is	tuple-like,	we	can
unpack	the	iterator/sentinel	pair	using	structured	bindings.

ref_view

Although	not	officially	merged	yet,	C++20	will	have	a	std::ranges::ref_view<R>	which,	like	std::reference_wrapper	is,	well,	a	wrapper
around	a	reference.	In	the	case	of	ref_view,	it	is	a	reference	to	a	range.	It	turns	an	lvalue	container	like	std::vector<int>&	into	a	View	of	the	same
elements	that	is	cheap	to	copy.

Range	Generators
Now	we	get	to	the	really	fun	stuff.	The	<ranges>	header	has	a	couple	of	ways	to	generate	new	ranges	of	values,	including	std::view::iota	that	we
saw	above.	Here	is	how	to	use	them,	and	what	they	mean:

Syntax Semantics

view::iota(i) Given	the	incrementable	object	i,	generates	an	infinite	range	of	values	like	[i,i+1,i+2,i+3,...).

view::iota(i,j) Given	the	incrementable	object	i	and	some	other	object	j	that	is	comparable	to	i	(but	not	necessarily	the	same	type),
generates	a	range	of	values	like	[i,i+1,i+2,i+3,...,j-1].	Note	that	the	upper	bound	(j)	is	excluded,	which	makes
this	form	usable	with	iterator/sentinel	pairs.	It	can	also	be	used	to	generate	the	indices	of	a	range	with	view::iota(0u,
ranges::size(rng)).

view::single(x) Construct	a	one-element	view	of	the	value	x;	that	is,	[x].

view::empty<T> A	zero-element	view	of	elements	of	type	T.

view::counted(it,

n)

Given	an	iterator	it	and	a	count	n,	constructs	a	finite	range	of	n	elements	starting	at	the	element	denoted	by	it.

Range	Adaptors
This	is	the	really,	really	fun	stuff.	The	true	power	of	ranges	lies	in	the	ability	to	create	pipelines	that	transform	ranges	on	the	fly.	The	range-v3	library	has
dozens	of	useful	range	adaptors.	C++20	will	only	be	getting	a	handful,	but	expect	the	set	to	grow	over	time.

Syntax Semantics

r	|	view::all Create	a	View	over	all	the	elements	in	Range	r.	Perhaps	r	is	already	a	View.	If	not,	turn	it	into	one	with	ref_view	if
possible,	or	subrange	failing	that.	Rvalue	containers	are	not	“viewable,”	and	so	code	like	std::vector<int>{}	|
view::all	will	fail	to	compile.

r	|

view::filter(pred)

Given	a	viewable	range	r	and	a	predicate	pred,	return	a	View	that	consists	of	all	the	elements	e	for	which
invoke(pred,	e)	returns	true.

r	|

view::transform(fn)

Given	a	viewable	range	r	and	a	function	fn,	return	a	View	that	consists	of	all	the	elements	of	r	transformed	with	fn.

r	|	view::reverse Given	a	viewable	range	r,	return	a	View	that	iterates	r‘s	values	in	reverse	order.

r	|	view::take(n) Given	a	viewable	range	r,	return	a	View	containing	the	first	n	elements	of	r,	or	all	the	elements	of	r	if	r	has	fewer	than	n
elements.

r	|	view::join Given	a	viewable	range	of	ranges,	flatten	all	the	ranges	into	a	single	range.

r	|	view::split(r2) Given	a	viewable	range	r	and	a	pattern	range	r2,	return	a	View	of	Views	where	the	inner	ranges	are	delimited	by	r2.
Alternativly,	the	delimiter	can	be	a	single	value	v	which	is	treated	as	if	it	were	view::single(v).

r	|	view::common Given	a	viewable	range	r,	return	a	View	for	which	the	begin	and	end	iterators	of	the	range	have	the	same	type.	(Some
ranges	use	a	sentinel	for	the	end	position.)	This	range	adaptor	is	useful	primarily	as	a	means	of	interfacing	with	older
code	(like	the	std::	algorithms)	that	expects	begin	and	end	to	have	the	same	type.

These	adaptors	can	be	chained,	so	for	instance,	you	can	do	the	following:

Of	course,	you	can	also	use	range	adaptor	pipelines	as	arguments	to	the	range-based	algorithms	in	std::ranges:

Lazily	adapting	ranges	is	a	powerful	way	to	structure	your	programs.	If	you	want	a	demonstration	of	how	far	this	programming	style	can	take	you,	see	my
CppCon	keynote	on	ranges	from	2015,	or	just	skim	the	code	of	the	calendar	application	I	describe	there,	and	note	the	lack	of	loops,	branches,	and	overt
state	manipulation.	‘Nuf	said.

Future	Directions
Clearly,	C++20	is	getting	a	lot	of	new	functionality	in	support	of	ranges.	Getting	here	has	taken	a	long	time,	mostly	because	nobody	had	ever	built	a	fully
general,	industrial	strength,	generic	library	using	the	C++20	language	support	for	concepts	before.	But	now	we	are	over	that	hump.	All	the	foundational
pieces	are	in	place,	and	we’ve	acrued	a	lot	of	knowledge	in	the	process.	Expect	the	feature	set	to	expand	rapidly	post-C++20.	There	are	already	papers
in	flight.

Things	currently	in	the	works	include:

Constructors	for	the	standard	containers	that	accept	ranges,
A	take_while	range	adaptor	that	accepts	a	predicate	and	returns	a	view	of	the	first	N	elements	for	which	the	predicate	evaluates	to	true,
A	drop	range	adaptor	that	returns	a	view	after	dropping	the	first	N	elements	of	the	input	range,
A	drop_while	view	that	drops	elements	from	an	input	range	that	satisfy	a	predicate.
An	istream_view	that	is	parameterized	on	a	type	and	that	reads	elements	of	that	type	from	a	standard	istream,
A	zip	view	that	takes	N	ranges	and	produces	a	view	where	the	elements	are	N-tuples	of	the	elements	of	the	input	ranges,	and
A	zip_with	view	that	takes	N	ranges	and	a	N-ary	function,	and	produces	a	view	where	the	elements	are	the	result	of	calling	the	function	with	the
elements	of	the	input	ranges.

And	there’s	more,	lots	more	in	range-v3	that	has	proven	useful	and	will	eventually	be	proposed	by	myself	or	some	other	interested	range-r.	Things	I
would	especially	like	to	see:

An	iterator	façade	class	template	like	range-v3’s	basic_iterator;
A	view	façade	class	template	like	range-v3’s	view_facade;
Range-ified	versions	of	the	numeric	algorithms	(e.g.,	accumulate,	partial_sum,	inner_product);
More	range	generators	and	adaptors,	like	view::chunk,	view::concat,	view::group_by,	view::cycle,	view::slice,	view::stride,
view::generate[_n],	view::repeat[_n],	a	view::join	that	takes	a	delimiter,	view::intersperse,	view::unique,	and
view::cartesian_product,	to	name	the	more	important	ones;	and
A	“complete”	set	of	actions	to	go	along	with	the	views.	Actions,	like	the	adaptors	in	the	view::	namespace,	operate	on	ranges	and	compose	into
pipelines,	but	actions	act	eagerly	on	whole	containers,	and	they	are	potentially	mutating.	(The	views	are	non-mutating.)

With	actions,	it	should	be	possible	to	do:

…to	sort	a	vector	and	remove	all	duplicate	elements.

And	I	haven’t	even	mentioned	asynchronous	ranges	yet.	But	that’s	a	whole	other	blog	post.	

Summary
C++20	is	rapidly	approaching,	and	now	that	the	Ranges	work	has	been	officially	merged	into	the	working	draft,	I	have	been	hearing	from	Standard
Library	vendors	who	are	starting	to	think	about	implementing	all	of	this.	Only	GCC	is	in	a	position	to	ship	the	ranges	support	any	time	soon,	since	it	is	the
only	compiler	currently	shipping	with	support	for	concepts.	But	clang	has	a	concepts	branch	which	is	already	usable,	so	there	is	hope	for	concepts	—	and
ranges	—	in	clang	trunk	sometime	in	the	not-too-distant	future.	And	Microsoft	has	publicly	committed	to	supporting	all	of	C++20	including	concepts	and
ranges,	and	the	conformance	of	C++20	has	been	rapidly	improving,	recently	gaining	the	ability	to	compile	range-v3.	So	things	are	looking	good	there,
too.

It’s	a	stRANGE	new	world.	Thanks	for	reading.

This	entry	was	posted	in	generic-programming,	library-design,	ranges,	std,	std2	by	Eric	Niebler.	Bookmark	the	permalink
[http://ericniebler.com/2018/12/05/standard-ranges/]	.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

//	A	sample	standard	C++20	program	that	prints
//	the	first	N	Pythagorean	triples.
#include	<iostream>
#include	<optional>
#include	<ranges>			//	New	header!
	
using	namespace	std;
	
//	maybe_view	defines	a	view	over	zero	or	one
//	objects.
template<Semiregular	T>
struct	maybe_view	:	view_interface<maybe_view<T>>	{
		maybe_view()	=	default;
		maybe_view(T	t)	:	data_(std::move(t))	{
		}
		T	const	*begin()	const	noexcept	{
				return	data_	?	&*data_	:	nullptr;
		}
		T	const	*end()	const	noexcept	{
				return	data_	?	&*data_	+	1	:	nullptr;
		}
private:
		optional<T>	data_{};
};
	
//	"for_each"	creates	a	new	view	by	applying	a
//	transformation	to	each	element	in	an	input
//	range,	and	flattening	the	resulting	range	of
//	ranges.
//	(This	uses	one	syntax	for	constrained	lambdas
//	in	C++20.)
inline	constexpr	auto	for_each	=
		[]<Range	R,
					Iterator	I	=	iterator_t<R>,
					IndirectUnaryInvocable<I>	Fun>(R&&	r,	Fun	fun)
								requires	Range<indirect_result_t<Fun,	I>>	{
						return	std::forward<R>(r)
								|	view::transform(std::move(fun))
								|	view::join;
		};
	
//	"yield_if"	takes	a	bool	and	a	value	and
//	returns	a	view	of	zero	or	one	elements.
inline	constexpr	auto	yield_if	=
		[]<Semiregular	T>(bool	b,	T	x)	{
				return	b	?	maybe_view{std::move(x)}
													:	maybe_view<T>{};
		};
	
int	main()	{
		//	Define	an	infinite	range	of	all	the
		//	Pythagorean	triples:
		using	view::iota;
		auto	triples	=
				for_each(iota(1),	[](int	z)	{
						return	for_each(iota(1,	z+1),	[=](int	x)	{
								return	for_each(iota(x,	z+1),	[=](int	y)	{
										return	yield_if(x*x	+	y*y	==	z*z,
												make_tuple(x,	y,	z));
								});
						});
				});
	
				//	Display	the	first	10	triples
				for(auto	triple	:	triples	|	view::take(10))	{
						cout	<<	'('
											<<	get<0>(triple)	<<	','
											<<	get<1>(triple)	<<	','
											<<	get<2>(triple)	<<	')'	<<	'\n';
		}
}

1
2
3

auto	x	=	for_each(some-range,	[](auto	elem)	{
		return	some-view;
});

1
2
3

for_each(iota(1),	[](int	z)	{
		return	for_each(iota(1,	z+1),	[=](int	x)	{
				return	for_each(iota(x,	z+1),	[=](int	y)	{

1
2

return	yield_if(x*x	+	y*y	==	z*z,
				make_tuple(x,	y,	z));

1
2
3
4
5
6
7
8
9

inline	constexpr	auto	for_each	=
		[]<Range	R,
					Iterator	I	=	iterator_t<R>,
					IndirectUnaryInvocable<I>	Fun>(R&&	r,	Fun	fun)
							requires	Range<indirect_result_t<Fun,	I>>	{
					return	std::forward<R>(r)
							|	view::transform(std::move(fun))
							|	view::join;
		};

1
2
3
4
5
6
7
8
9
10
11
12
13
14

template<Semiregular	T>
struct	maybe_view	:	view_interface<maybe_view<T>>	{
		maybe_view()	=	default;
		maybe_view(T	t)	:	data_(std::move(t))	{
		}
		T	const	*begin()	const	noexcept	{
				return	data_	?	&*data_	:	nullptr;
		}
		T	const	*end()	const	noexcept	{
				return	data_	?	&*data_	+	1	:	nullptr;
		}
private:
		optional<T>	data_{};
};

1
2
3
4
5

inline	constexpr	auto	yield_if	=
		[]<Semiregular	T>(bool	b,	T	x)	{
				return	b	?	maybe_view{std::move(x)}
													:	maybe_view<T>{};
		};

1
2
3
4

struct	ThreadPool	{
		template	<class	Fun>
		void	enqueue(Fun	fun);
};

1
2
3
4
5

#include	<concepts>
	
struct	ThreadPool	{
		void	enqueue(std::Invocable	auto	fun);
};

1
2
3
4
5
6
7
8

template	<std::Semiregular	T>
struct	SmallVector	{
		template	<std::InputIterator	I>
				requires	std::Same<T,	std::iter_value_t<I>>
		SmallVector(I	i,	std::Sentinel<I>	auto	s)	{
				//	...push	back	all	elements	in	[i,s)
		}
		//	...

1
2
3
4
5
6
7
8

		//	...	as	before
		template	<std::InputRange	R>
				requires	std::Same<T,	std::range_value_t<R>>
		explicit	SmallVector(R	&&	r)
				:	SmallVector(std::ranges::begin(r),
																		std::ranges::end(r))	{
		}
};

1
2
3

extern	std::vector<int>	get_data();
auto	it	=	std::begin(get_data());
int	i	=	*it;	//	BOOM

1 iter_value_t<I>	tmp	=	ranges::iter_move(i);

1
2
3
4
5
6
7
8

#include	<list>
#include	<stl2/algorithm.hpp>
using	ranges	=	std::experimental::ranges;
	
int	main()	{
		std::list<int>	l	{82,3,7,2,5,8,3,0,4,23,89};
		ranges::sort(l.begin(),	l.end());
}

1
2

std::vector<	int	>	v	=		//	...
std::ranges::sort(v);	//	Hurray!

1
2
3
4

template	<class	T,	Relation<T,	T>	R	=	ranges::less>
T	max(T	a,	T	b,	R	r	=	{})	{
		return	r(a,	b)	?	b	:	a;
}

1
2
3
4
5
6
7
8
9

struct	Wizard	{
		void	frobnicate();
};
	
int	main()	{
		std::vector<Wizard>	vw	{	/*...*/	};
		std::for_each(vw.begin(),	vw.end(),
																	&Wizard::frobnicate);	//	Nope!
}

1
2
3
4
5
6
7
8
9
10
11
12

struct	Employee	{
		int	Id;
		std::string	Name;
		Currency	Salary;
};
	
int	main()	{
		using	namespace	std;
		vector<Employee>	employees	{	/*...*/	};
		ranges::sort(employees,	ranges::less{},
																&Employee::Id);
}

1
2
3
4
5

using	namespace	std;
array<	Point	>	points	{	/*...*/	};
auto	it	=	ranges::find(points,	value,	[](auto	p)	{
		return	sqrt(p.x*p.x	+	p.y*p.y);
});

1
2
3
4

//	Boolean	conversion	operator	comes	from	view_interface:
if	(auto	evens	=	vec	|	view::filter(is_even))	{
		//	yup,	we	have	some	evens.	Do	something.
}

1 auto	[b,e]	=	subrange{vec};

1
2

auto	b	=	ranges::begin(vec);
auto	e	=	ranges::end(vec);

1
2
3
4
5

using	namespace	std;
for	(auto	&&	e	:	r	|	view::filter(pred)
																				|	view::transform(fn))	{
		//	Iterate	over	filtered,	transformed	range
}

1
2
3
4
5
6

using	namespace	std;
//	Insert	a	filtered,	transformed	range	into
//	the	back	of	container	`v`.
ranges::copy(r	|	view::filter(pred)
																|	view::transform(fn),
														back_inserter(v));

1 v	=	move(v)	|	action::sort	|	action::unique;

Eric	Niebler
Judge	me	by	my	C++,	not	my	WordPress

https://akismet.com/privacy/
http://ericniebler.com/2018/12/05/standard-ranges/
http://ericniebler.com/author/eric_niebler/
http://ericniebler.com/2013/11/07/input-iterators-vs-input-ranges/
https://github.com/ericniebler/range-v3
http://wg21.link/P0896
https://twitter.com/CoderCasey
http://ericniebler.com/2014/04/27/range-comprehensions/
https://stackoverflow.com/a/9244949/195873
http://ericniebler.com/2014/10/21/customization-point-design-in-c11-and-beyond/
http://wg21.link/p1255
http://ericniebler.com/2014/10/21/customization-point-design-in-c11-and-beyond/
https://github.com/CaseyCarter/cmcstl2
https://godbolt.org/z/6FXw65
https://www.youtube.com/watch?v=mFUXNMfaciE
https://github.com/ericniebler/range-v3/blob/master/example/calendar.cpp
http://ericniebler.com/2017/08/17/ranges-coroutines-and-react-early-musings-on-the-future-of-async-in-c/
https://github.com/saarraz/clang-concepts
https://blogs.msdn.microsoft.com/vcblog/2018/11/07/use-the-official-range-v3-with-msvc-2017-version-15-9/
http://ericniebler.com/category/generic-programming/
http://ericniebler.com/category/library-design/
http://ericniebler.com/category/ranges/
http://ericniebler.com/category/std/
http://ericniebler.com/category/std2/
http://ericniebler.com/author/eric_niebler/
http://ericniebler.com/2018/12/05/standard-ranges/
http://ericniebler.com/

