
Simple Python HTTP(S) Server — Example
Mar 20, 2016 13:17 · 889 Words · 5 Minute Read

P Y T H O N

Example of static HTTP web server

Python 3.x

Python 2.x

Example with SSL support

Python 3.x

Python 2.x

Advanced Python HTTP server

do_GET

do_POST

Twisted As A Simple Web HTTP(S) Server

Installation

Usage

Options

Commands

Docker Example

The standard Python library has a built-in module that can be used as minimalistic
HTTP/HTTPS web server. It provides support of the protocol and allows you to extend
capabilities by subclassing.

Serve static HTML/CSS files to outside world can be very helpful and handy in many real life
situations. For example, to show a client HTML pages you’ve created or stub an API by creating
a static file.

Example Of Static HTTP Web Server
Yet another purpose that static web server can serve is to create a dummy API by creating json
or/and xml files. The structure of resources organized in sub-folders will provide RESTful-like
URLs. E.g. /users/all.json.json may contain dummy records of users. This approach even faster
then creating, for instance, a Flask application. No database required, works everywhere. To
download data from a remote server. Let’s say there are some difficulties with scp command. It
is possible to run simple server on the remote machine and download necessary contents via
HTTP.

https://blog.anvileight.com/tags/python/

Python 3.X

python3 -m http.server 8000 --bind 127.0.0.1

Both port and bind address are optional. For more details, please read the official docs.

Python 2.X

python -m SimpleHTTPServer 8000

Python 2.x can only accept port as a parameter Bind address parameter is not available. Python
2.x Docs.

In both cases contents of the current folder will be accessible via http://127.0.0.1:8000

Example With SSL Support
To run secure HTTPs server create a following module:

Python 3.X

from http.server import HTTPServer, BaseHTTPRequestHandler

import ssl

httpd = HTTPServer(('localhost', 4443), BaseHTTPRequestHandler)

httpd.socket = ssl.wrap_socket (httpd.socket,

 keyfile="path/to/key.pem",

 certfile='path/to/cert.pem', server_side=True)

httpd.serve_forever()

Python 2.X

import BaseHTTPServer, SimpleHTTPServer

import ssl

https://docs.python.org/3/library/http.server.html
https://docs.python.org/2/library/simplehttpserver.html
http://127.0.0.1:8000/

httpd = BaseHTTPServer.HTTPServer(('localhost', 4443),

 SimpleHTTPServer.SimpleHTTPRequestHandler)

httpd.socket = ssl.wrap_socket (httpd.socket,

 keyfile="path/tp/key.pem",

 certfile='path/to/cert.pem', server_side=True)

httpd.serve_forever()

To generate key and cert files with OpenSSL use following command

openssl req -x509 -newkey rsa:2048 -keyout key.pem -out cert.pem -days 365

Further examples will assume Python 3.5+ as an interpreter.

Advanced Python HTTP Server
Let’s make our web server a little more advanced by handling requests.

Do_GET

Consider the following code:

from http.server import HTTPServer, BaseHTTPRequestHandler

class SimpleHTTPRequestHandler(BaseHTTPRequestHandler):

 def do_GET(self):

 self.send_response(200)

 self.end_headers()

 self.wfile.write(b'Hello, world!')

httpd = HTTPServer(('localhost', 8000), SimpleHTTPRequestHandler)

httpd.serve_forever()

This is a very trivial HTTP server that responds Hello, world! to the requester. Note, that
self.send_response(200) and self.end_headers() are mandatory, otherwise the response wont
be considered as valid. We can check that it actually works by sending a request using HTTPie:

$ http http://127.0.0.1:8000

HTTP/1.0 200 OK

Date: Sun, 25 Feb 2018 17:26:20 GMT

Server: BaseHTTP/0.6 Python/3.6.1

Hello, world!

Note, that self.wfile is a file like object, thus expects a byte-like objects to the write function.
Another way of feeding the wfile is by using BytesIO object (see example below).

Do_POST

Let’s handle a POST request now. Full example:

from http.server import HTTPServer, BaseHTTPRequestHandler

from io import BytesIO

class SimpleHTTPRequestHandler(BaseHTTPRequestHandler):

 def do_GET(self):

 self.send_response(200)

 self.end_headers()

 self.wfile.write(b'Hello, world!')

 def do_POST(self):

 content_length = int(self.headers['Content-Length'])

 body = self.rfile.read(content_length)

https://httpie.org/
https://docs.python.org/3/library/io.html#io.BytesIO

 self.send_response(200)

 self.end_headers()

 response = BytesIO()

 response.write(b'This is POST request. ')

 response.write(b'Received: ')

 response.write(body)

 self.wfile.write(response.getvalue())

httpd = HTTPServer(('localhost', 8000), SimpleHTTPRequestHandler)

httpd.serve_forever()

The request body can be accessed via self.rfile . It is a BufferedReader so read([size])
method should be executed in order to get the contents. Note, that size should be explicitly
passed to the function, otherwise the request will hang and never end.

This is why obtaining content_length is necessary. It could be retrieved via self.headers and
converted into an integer. An example above just prints back whatever he receives, like follows:

http http://127.0.0.1:8000 key=value

HTTP/1.0 200 OK

Date: Sun, 25 Feb 2018 17:46:06 GMT

Server: BaseHTTP/0.6 Python/3.6.1

This is POST request. Received: {"key": "value"}

You may consider to parse the JSON if you like.

Twisted As A Simple Web HTTP(S) Server
Another great example of a web server is Twisted. Clearly, it is much faster than one built in
Python and provides lots of features out of the box. It supports SSL without a need to write a
single line of code. It supports both Python 3.x and 2.x.

Installation

pip install twisted

https://docs.python.org/3/library/io.html#io.BufferedReader

Usage

To run a twisted as a web server to serve current directory:

twistd -no web --path

You will see the output like follows:

Options

-n, –nodaemon don’t daemonize, don’t use default umask of 0077

-o, –no_save do not save state on shutdown

–path= is either a specific file or a directory to be set as the root of the web server. Use this if
you have a directory full of HTML, cgi, epy, or rpy files or any other files that you want to be

Commands

web A general-purpose web server which can serve from a filesystem or application resource.

If you are looking for HTTPS and SSL support, consider the following options:

–https= Port to listen on for Secure HTTP.

-c, –certificate= SSL certificate to use for HTTPS. [default: server.pem]

-k, –privkey= SSL certificate to use for HTTPS. [default: server.pem]

Docker Example
Here are an example of Dockerfile I use to serve simple html pages to outside world.

(.venv) andrey@work$ ~/Projects/test_app � twistd -no web --path=.

2016-10-23T19:05:02+0300 [twisted.scripts._twistd_unix.UnixAppLogger#info] twis

2016-10-23T19:05:02+0300 [twisted.scripts._twistd_unix.UnixAppLogger#info] reac

2016-10-23T19:05:02+0300 [-] Site starting on 8080

2016-10-23T19:05:02+0300 [twisted.web.server.Site#info] Starting factory <twist

FROM python:3.5

VOLUME ["/code"]

ADD . /code

WORKDIR /code

EXPOSE 5000

CMD ["python", "-m", "http.server", "5000"]

It is possible to write custom handlers and extend the basic functionality. Including creating
HTTPS server etc. Find official documentation for python 3 http server is here. Python 2
documentation is here

17

© Copyright 2020 Andrey Zarubin

Created by AnvilEight

ALSO ON ANVILEIGHT

4 years ago 1 comment

This book is exactly what a
company like ours requires
at this point of transition. …

ReviewReview of of "Succeeding "Succeeding
WithWith Agile" Agile" by by Mike Mike … …

• 4 years ago 8 comments

Let's explore how to store
email template in Django
database and manage …

SendingSending Emails Emails With With
DjangoDjango Templates Templates … …

• 6 years ago 13 comments

Setting up BDD with Django
is an easy task. Especially,
using PyCharm IDE. This …

BehaviorBehavior Driven Driven
DevelopmentDevelopment … …

• 4 yea

An ex
appro
using

GrapGrap
and and

SHARES

https://anvileight.com/

