
Features overview
GrapheneOS is a private and secure mobile operating system with great functionality and usability. It
starts from the strong baseline of the Android Open Source Project (AOSP) and takes great care to
avoid increasing attack surface or hurting the strong security model. GrapheneOS makes substantial
improvements to both privacy and security through many carefully designed features built to
function against real adversaries. The project cares a lot about usability and app compatibility so
those are taken into account for all of our features.

GrapheneOS is focused on substance rather than branding and marketing. It doesn't take the typical
approach of piling on a bunch of insecure features depending on the adversaries not knowing about
them and regressing actual privacy/security. It's a very technical project building privacy and security
into the OS rather than including assorted unhelpful frills or bundling subjective third party apps
choices.

GrapheneOS is also hard at work on filling in gaps from not bundling Google apps and services into
the OS. We aren't against users using Google services but it doesn't belong integrated into the OS in
an invasive way. GrapheneOS won't take the shortcut of simply bundling a very incomplete and
poorly secured third party reimplementation of Google services into the OS. That wouldn't ever be
something users could rely upon. It will also always be chasing a moving target while offering poorer
security than the real thing if the focus is on simply getting things working without great care for
doing it robustly and securely.

This page provides an overview of currently implemented features differentiating GrapheneOS from
AOSP. It doesn't document our many historical features that are no longer included for one reason or
another. Many of our features were implemented in AOSP, Linux, LLVM and other projects
GrapheneOS is based on and those aren't listed here. In many cases, we've been involved in getting
those features implemented in core infrastructure projects.

Table of contents

GrapheneOS
Services
Project

GrapheneOS

Partial list of GrapheneOS features beyond what AOSP 12 provides:

Hardened app runtime
Stronger app sandbox
Hardened libc providing defenses against the most common classes of vulnerabilities (memory
corruption)
Our own hardened malloc (memory allocator) leveraging modern hardware capabilities to
provide substantial defenses against the most common classes of vulnerabilities (heap

GrapheneOS Features Install Build Usage FAQ Releases Source His

https://source.android.com/
https://llvm.org/
https://github.com/GrapheneOS/platform_bionic
https://github.com/GrapheneOS/hardened_malloc
https://grapheneos.org/
https://grapheneos.org/features
https://grapheneos.org/install/
https://grapheneos.org/build
https://grapheneos.org/usage
https://grapheneos.org/faq
https://grapheneos.org/releases
https://grapheneos.org/source
https://grapheneos.org/history/

p g (p
memory corruption) along with reducing the lifetime of sensitive data in memory. The
hardened_malloc README has extensive documentation on it. The hardened_malloc project is
portable to other Linux-based operating systems and is being adopted by other security-
focused operating systems like Whonix. Our allocator also heavily influenced the design of the
next-generation musl malloc implementation which offers substantially better security than
musl's previous malloc while still having minimal memory usage and code size.

Fully out-of-line metadata with protection from corruption, ruling out traditional allocator
exploitation
Separate memory regions for metadata, large allocations and each slab allocation size
class with high entropy random bases and no address space reuse between the different
regions
Deterministic detection of any invalid free
Zero-on-free with detection of write-after-free via checking that memory is still zeroed
before handing it out again
Delayed reuse of address space and memory allocations through the combination of
deterministic and randomized quarantines to mitigate use-after-free vulnerabilities
Fine-grained randomization
Aggressive consistency checks
Memory protected guard regions around allocations larger than 16k with randomization
of guard region sizes for 128k and above
Allocations smaller than 16k have guard regions around each of the slabs containing
allocations (for example, 16 byte allocations are in 4096 byte slabs with 4096 byte guard
regions before and after)
Random canaries with a leading zero are added to these smaller allocations to block C
string overflows, absorb small overflows and detect linear overflows or other heap
corruption when the canary value is checked (primarily on free)

Hardened compiler toolchain
Hardened kernel

Support for dynamically loaded kernel modules is disabled and the minimal set of
modules for the device model are built into the kernel to substantially improve the
granularity of Control Flow Integrity (CFI) and reduce attack surface.
4-level page tables are enabled on arm64 to provide a much larger address space (48-bit
instead of 39-bit) with significantly higher entropy Address Space Layout Randomization
(33-bit instead of 24-bit).
Random canaries with a leading zero are added to the kernel heap (slub) to block C string
overflows, absorb small overflows and detect linear overflows or other heap corruption
when the canary value is checked (on free, copies to/from userspace, etc.).
Memory is wiped (zeroed) as soon as it's released in both the low-level kernel page
allocator and higher level kernel heap allocator (slub). This substantially reduces the
lifetime of sensitive data in memory, mitigates use-after-free vulnerabilities and makes
most uninitialized data usage vulnerabilities harmless. Without our changes, memory
that's released retains data indefinitely until the memory is handed out for other uses and
gets partially or fully overwritten by new data.
Kernel stack allocations are zeroed to make most uninitialized data usage vulnerabilities
harmless.
Assorted attack surface reduction through disabling features or setting up infrastructure
to dynamically enable/disable them only as needed (perf, ptrace).
Assorted upstream hardening features are enabled, including many which we played a
part in developing and landing upstream as part of our linux-hardened project (which we
intend to revive as a more active project again).

Prevention of dynamic native code execution in-memory or via the filesystem for the base OS
without going via the package manager etc

https://github.com/GrapheneOS/hardened_malloc/blob/main/README.md
https://www.openwall.com/lists/musl/2020/05/13/1

without going via the package manager, etc.
Filesystem access hardening
Enhanced verified boot with better security properties and reduced attack surface

Enhanced hardware-based attestation with more precise version information
Eliminates remaining holes for apps to access hardware-based identifiers
Greatly reduced remote, local and proximity-based attack surface by stripping out unnecessary
code, making more features optional and disabling optional features by default (NFC,
Bluetooth, etc.), when the screen is locked (connecting new USB peripherals, camera access)
and optionally after a timeout (Bluetooth, Wi-Fi)
Option to disable native debugging (ptrace) to reduce local attack surface (still enabled by
default for compatibility)
Low-level improvements to the filesystem-based full disk encryption used on modern Android
Support for logging out of user profiles without needing a device manager: makes them
inactive so that they can't continue running code while using another profile and purges the
disk encryption keys (which are per-profile) from memory and hardware registers
Option to enable automatically rebooting the device when no profile has been unlocked for the
configured time period to put the device fully at rest again.
Improved user visibility into persistent firmware security through version and configuration
verification with reporting of inconsistencies and debug features being enabled.
Support longer passwords by default (64 characters) without a device manager
Stricter implementation of the optional fingerprint unlock feature permitting only 5 attempts
rather than 20 before permanent lockout (our recommendation is still keeping sensitive data in
user profiles without fingerprint unlock)
Support for using the fingerprint scanner only for authentication in apps and unlocking
hardware keystore keys by toggling off support for unlocking.
PIN scrambling option
LTE-only mode to reduce cellular radio attack surface by disabling enormous amounts of
legacy code
Per-connection MAC randomization option (enabled by default) as a more private option than
the standard persistent per-network random MAC.
When the per-connection MAC randomization added by GrapheneOS is being used, DHCP client
state is flushed before reconnecting to a network to avoid revealing that it's likely the same
device as before.
Improved IPv6 privacy addresses to prevent tracking across networks
Vanadium: hardened WebView and default browser — the WebView is what most other apps
use to handle web content, so you benefit from Vanadium in many apps even if you choose
another browser
Hardware-based security verification and monitoring: the Auditor app app and attestation
service provide strong hardware-based verification of the authenticity and integrity of the
firmware/software on the device. A strong pairing-based approach is used which also provides
verification of the device's identity based on the hardware backed key generated for each
pairing. Software-based checks are layered on top with trust securely chained from the
hardware. For more details, see the about page and tutorial.
PDF Viewer: sandboxed, hardened PDF viewer using HiDPI rendering with pinch to zoom, text
selection, etc.
Encrypted backups via integration of the Seedvault app with support for local backups and any
cloud storage provider with a storage provider app
Secure application spawning system avoiding sharing address space layout and other secrets
across applications
Network permission toggle for disallowing both direct and indirect access to any of the
available networks. The device-local network (localhost) is also guarded by this permission,
which is important for preventing apps from using it to communicate between profiles Unlike a

https://source.android.com/security/verifiedboot
https://grapheneos.org/faq#encryption
https://grapheneos.org/usage#lte-only-mode
https://grapheneos.org/usage#wifi-privacy-associated
https://github.com/GrapheneOS/Auditor/releases
https://attestation.app/
https://attestation.app/about
https://attestation.app/tutorial
https://github.com/GrapheneOS/PdfViewer
https://github.com/seedvault-app/seedvault
https://grapheneos.org/usage#exec-spawning

which is important for preventing apps from using it to communicate between profiles. Unlike a
firewall-based implementation, the Network permission toggle prevents apps from using the

network via APIs provided by the OS or other apps in the same profile as long as they're marked
appropriately.
The standard INTERNET permission used as the basis for the Network permission toggle is
enhanced with a second layer of enforcement and proper support for granting/revoking it on a
per-profile basis.
Sensors permission toggle: disallow access to all other sensors not covered by existing Android
permissions (Camera, Microphone, Body Sensors, Activity Recognition) including an
accelerometer, gyroscope, compass, barometer, thermometer and any other sensors present on
a given device. To avoid breaking compatibility with Android apps, the added permission is
enabled by default.
Authenticated encryption for network time updates via a first party server to prevent attackers
from changing the time and enabling attacks based on bypassing certificate / key expiry, etc.
Proper support for disabling network time updates rather than just not using the results
Connectivity checks via a first party server with the option to revert to the standard checks (to
blend in) or to fully disable them
Hardened local build / signing infrastructure
Seamless automatic OS update system that just works and stays out of the way in the
background without disrupting device usage, with full support for the standard automatic
rollback if the first boot of the updated OS fails
Require unlocking to access sensitive functionality via quick tiles
Minor changes to default settings to prefer privacy over small conveniences: personalized
keyboard suggestions based on gathering input history are disabled by default, sensitive
notifications are hidden on the lockscreen by default and passwords are hidden during entry by
default
Minimal bundled apps and services. Only essential apps are integrated into the OS. We don't
make partnerships with apps and services to bundle them into the OS. An app may be the best
choice today and poor choice in the future. Our approach will be recommending certain apps
during the initial setup, not hard-wiring them into the OS.
No Google apps and services. These can be used on GrapheneOS but only if they avoid
requiring invasive OS integration. Building privileged support for Google services into the OS
isn't something we're going to be doing, even if that's partially open source like microG.
Compatibility layer for coercing user installed Google Play services into running as sandboxed
apps without any special privileges.
Fixes for multiple serious vulnerabilities not yet fixed upstream due to a flexible release cycle /
process prioritizing security.

Services

Service infrastructure features:

Strict privacy and security practices for our infrastructure
Unnecessary logging is avoided and logs are automatically purged after 10 days
Services are hosted entirely via our own dedicated servers and virtual machines from OVH
without involving any additional parties for CDNs, SaaS platforms, mirrors or other services
Our services are built with open technology stacks to avoid being locked in to any particular
hosting provider or vendor
Open documentation on our infrastructure including listing out all of our services, guides on
making similar setups, published configurations for each of our web services, etc.

https://grapheneos.org/usage#updates
https://grapheneos.org/faq#bundled-apps
https://grapheneos.org/usage#sandboxed-play-services

No proprietary services
Authenticated encryption for all of our services

Strong cipher configurations for all of our services (SSH, TLS, etc.) with only modern AEAD
ciphers providing forward secrecy
Our web sites do not include any third party content and entirely forbid it via strict Content
Security Policy rules
Our web sites disable referrer headers to maximize privacy
Our web sites fully enable cross origin isolation and disable embedding in other content
DNSSEC implemented for all of our domains to provide a root of trust for encryption and
authentication for domain/server configuration
DNS Certification Authority Authorization (CAA) records for all of our domains permitting only
Let's Encrypt to issue certificates with fully integrated support for the experimental
accounturi and validationmethods pinning our Let's Encrypt accounts as the only ones
allowed to issue certificates
DANE TLSA records for pinning keys for all our TLS services
Our mail server enforces DNSSEC/DANE to provide authenticated encryption when sending
mail including alert messages from the attestation service
SSHFP across all domains for pinning SSH keys
Static key pinning for our services in apps like Auditor
Our web services use robust OCSP stapling with Must-Staple
No persistent cookies or similar client-side state for anything other than login sessions, which
are set up via SameSite=strict cookies and have server-side session tracking with the ability to
log out of other sessions
scrypt-based password hashing (likely Argon2 when the available implementations are more
mature)

Project

Beyond the technical features of the OS:

Collaborative, open source project with a very active community and contributors
Can make your own builds and make desired changes, so you aren't stuck with the decisions
made by the upstream project
Non-profit project avoiding conflicts of interest by keeping commercialization at a distance.
Companies support the project rather than the project serving the needs of any particular
company
Strong privacy policies across all our software and services
Proven track record of the team standing up against attempts to compromise the integrity of
the project and placing it above personal gain

GrapheneOS

Twitter GitHub Reddit LinkedIn

https://internet.nl/faqs/dnssec/
https://grapheneos.org/source
https://grapheneos.org/contact#community
https://grapheneos.org/faq#company
https://grapheneos.org/faq#privacy-policy
https://grapheneos.org/history/
https://grapheneos.org/
https://twitter.com/GrapheneOS
https://github.com/GrapheneOS
https://reddit.com/r/GrapheneOS
https://www.linkedin.com/company/grapheneos/

