
Blog
 Games
 Projects

Lossless Image Compression
in O(n) Time
Introducing QOI — the Quite OK Image format. It losslessly compresses RGB and
RGBA images to a similar size of PNG, while offering a 20x-50x speedup in
compression and 3x-4x speedup in decompression. All single-threaded, no SIMD.
It's also stupidly simple.

tl;dr: 300 lines of C, single header, source on github,
benchmark results here.

Dominic Szablewski, @phoboslab
— Wednesday, November 24th 2021

https://phoboslab.org/
https://phoboslab.org/
https://phoboslab.org/games
https://phoboslab.org/projects
https://github.com/phoboslab/qoi
https://phoboslab.org/files/qoibench/
http://twitter.com/phoboslab

I want to preface this article by saying that I have no idea what I'm doing.
I'm not a
compression guy. I barely understand how Huffman Coding and DCT works.
Luckily,
QOI uses neither.

I was just tinkering with some ideas that I thought would maybe compress images.
The result surprised me quite a bit.

Why? A Short Rant.

File formats. They suck. I absolutely loathe the usual suspects. PNG, JPEG or
even
worse MPEG, MOV, MP4. They burst with complexity at the seams. Every tiny

aspect screams “design by consortium”.

A while ago I dabbled into MPEG a bit. The basic ideas for video compression in
MPEG are ingenious, even more so
for 1993, but the resulting file format is an
abomination.

I can almost picture the meeting of the Moving Picture Experts Group where some
random suit demanded there to be a way to indicate a video stream is copyrighted.
And thus, the copyright bit flag made its way into the standard and successfully
stopped movie piracy before it even began.

MPEG, an industry standard conceived 3 decades past, all patents long expired, all
professional interest abandoned. Yet, the holy specification — there named ISO/IEC
11172-2 — is a well guarded secret, revealed only to those
that fork over a cool $200
to endow the sacred work of the ISO.

Alternative open video codecs exist, but are again immensely complex. They
compete with the state of the art, require huge libraries, are compute hungry
and
difficult to work with. Alternatives for PNG all compete on the compression
ratio too,
with ever increasing complexity.

There absolutely is a market for video, audio and image codecs that trade
compression ratio for speed and simplicity, but no one is serving it. (Well, these guys
maybe, but it's all proprietary.)

Yes, stb_image saved us all from the pains of dealing with libpng and is therefore
used in countless games and apps. A while ago I aimed to do the same for video
with pl_mpeg, with some success.

But with all that we learned, why did no one go back and implement a simple
compression scheme to compete with PNG, but without the cruft? Why did no one
implement a simple video compression scheme similar to MPEG, but in a sane file
format instead?

I was tinkering to do the latter: to take parts of MPEG-1 and make it easier to
parse,
easier to accelerate on a GPU. A good enough video codec.

https://phoboslab.org/log/2019/06/pl-mpeg-single-file-library
http://www.radgametools.com/
https://github.com/nothings/stb
https://github.com/phoboslab/pl_mpeg

Instead I stumbled into a solution for the former: a lossless image format that
competes with PNG for some use cases. A slightly worse compression ratio, but
magnitudes less complexity.

Technical Details

QOI encodes and decodes images in a single pass. It touches every pixel just
once.
Every pixel is encoded in one of four different ways.

The resulting values are packed into chunks starting with a 2..4 bit tag (indicating
one of those four methods) followed by a number of data bits. All of
these chunks
(tag and data bits) are byte aligned, so there's no bit twiddling
needed between
those chunks.

The four different methods are:

1. A run of the previous pixel

If the current pixel is exactly the same as the previous pixel, the run length
is
increased by 1. When a pixel is encountered that is different from the previous one,
this run length is saved to the encoded data and the current pixel
is packed by one of
the other 3 methods.

The run length chunk comes in two different flavors, depending on the number of
bits
needed.

QOI_RUN8 {

 u8 tag : 3; // b010

 u8 run : 5; // 5-bit run-length repeating the previous pixel: 1..32

}

QOI_RUN16 {

 u8 tag : 3; // b011

 u16 run : 13; // 13-bit run-length repeating the previous pixel: 33..82

}

2. An index into a previously seen pixel

The encoder keeps a running array of the 64 pixels it previously encountered.
When
the encoder finds the current pixel still present in this array, the index into this array
is saved to the stream.

To keep things O(n) when encoding, there's only one lookup into this array. The
lookup position is determined by a “hash” of the rgba value (really just r^g^b^a). A
linear search or some more complex bookkeeping would result
in a marginally better
compression ratio, but would also slow things down a bit.

QOI_INDEX {

 u8 tag : 2; // b00

 u8 idx : 6; // 6-bit index into the color index array: 0..63

}

3. The difference to the previous pixel

When the current pixel color is not too far from the previous one, the
difference to the
previous pixel is saved to the stream.

This comes in 3 different flavors, depending on how big the difference is. Note
that
this focuses on the RGB value; alpha changes are more costly.

QOI_DIFF8 {

 u8 tag : 2; // b10

 u8 dr : 2; // 2-bit red channel difference: -1..2

 u8 dg : 2; // 2-bit green channel difference: -1..2

 u8 db : 2; // 2-bit blue channel difference: -1..2

}

QOI_DIFF16 {

 u8 tag : 3; // b110

 u8 dr : 5; // 5-bit red channel difference: -15..16

 u8 dg : 4; // 4-bit green channel difference: -7.. 8

 u8 db : 4; // 4-bit blue channel difference: -7.. 8

}

QOI_DIFF24 {

 u8 tag : 4; // b1110

 u8 dr : 5; // 5-bit red channel difference: -15..16

 u8 dg : 5; // 5-bit green channel difference: -15..16

 u8 db : 5; // 5-bit blue channel difference: -15..16

 u8 da : 5; // 5-bit alpha channel difference: -15..16

}

4. Full rgba values

If all 3 previous methods fail, the r, g, b, a values (but only those that are
different
from the previous pixel) are saved to the stream as full bytes.

QOI_COLOR {

 u8 tag : 4; // b1111

 u8 has_r: 1; // red byte follows

 u8 has_g: 1; // green byte follows

 u8 has_b: 1; // blue byte follows

 u8 has_a: 1; // alpha byte follows

 u8 r; // red value if has_r == 1: 0..255

 u8 g; // green value if has_g == 1: 0..255

 u8 b; // blue value if has_b == 1: 0..255

 u8 a; // alpha value if has_a == 1: 0..255

}

That's it.

If you have a minute, please read through the qoi.h source.

Onward

https://github.com/phoboslab/qoi/blob/master/qoi.h

Seriously, I'm dumbfounded. BMP and TIFF have run-length-encoding and then GIF
comes around with LZW. But there's nothing in between. Why? I found the space
between RLE and LZW to be large enough to spend many days on. And there's a lot
more to explore.

Working on QOI was a lot of fun. I had a "test runner" with some sample
images
lying around. Seeing how every change I made affected the compression
ratio was
quite exciting.

With some more work, QOI could serve as the basis for a lossless video codec,
suitable for screencasts and the like.

SIMD acceleration for QOI would also be cool but (from my very limited knowledge
about some SIMD instructions on ARM), the format doesn't seem to be well suited
for it. Maybe someone with a bit more experience can shed some light?

I'm also quite hyped to explore the even larger space of a simple, lossy
image
compression format. Many texture compression schemes have very exciting
ideas,
yet there's nothing that competes with JPEG but with less complexity.

© 2021 Dominic Szablewski – Imprint – powered by Pagenode
(2ms) –
made with <3

https://phoboslab.org/imprint
http://pagenode.com/

