

Comparing SSH Keys - RSA, DSA, ECDSA,

or EdDSA?
APR 6 , 2 0 2 1 BY EV KONT SEVOY

Encryption Within the SSH Protocol

Subscribe to our newsletter!

Articles by Topic

Try Teleport Cloud for Free

This blog post was originally released on 08/26/20.

What’s worse than an unsafe private key? An unsafe public key.

The “secure” in secure shell comes from the combination of hashing,

symmetric encryption, and asymmetric encryption. Together, SSH uses

cryptographic primitives to safely connect clients and servers. In the 25

years since its founding, computing power and speeds in accordance

with Moore’s Law have necessitated increasingly complicated low-level

algorithms. This article will focus on asymmetric keygen algorithms.

As of 2020, the most widely adopted algorithms are RSA, DSA,

ECDSA, and EdDSA, but it is RSA and EdDSA that provide the best

security and performance.

SSH is used almost universally to connect to shells on remote machines.

The most important part of an SSH session is establishing a secure

Get the latest product updates and

engineering blog posts

Email Address SUBSCRIBE

access-requests

announcements

bastion

company

cybersecurity

databases

engineering

gravity

kubernetes

mongodb

postgres

programming

security

ssh

teleport

Products Use Cases Docs Learn Pricing Company Sign in Get started

This site uses cookies to improve service. By using this site, you agree to our use of cookies. More info. Ok, got it

How can I help you?

Email address

Submit

Termae Rowshan from Teleport

Hi there! We’re away right now, but if you leave

us your email we'll reach out to you once we're

back online.

https://goteleport.com/blog/index.xml
https://goteleport.com/blog/index.xml
https://goteleport.com/signup/
https://www.quora.com/How-does-Moore-s-Law-affect-the-security-of-cryptographic-algorithms
https://goteleport.com/tags/access-requests/
https://goteleport.com/tags/announcements/
https://goteleport.com/tags/bastion/
https://goteleport.com/tags/company/
https://goteleport.com/tags/cybersecurity/
https://goteleport.com/tags/databases/
https://goteleport.com/tags/engineering/
https://goteleport.com/tags/gravity/
https://goteleport.com/tags/kubernetes/
https://goteleport.com/tags/mongodb/
https://goteleport.com/tags/postgres/
https://goteleport.com/tags/programming/
https://goteleport.com/tags/security/
https://goteleport.com/tags/ssh/
https://goteleport.com/tags/teleport/
https://goteleport.com/
https://goteleport.com/docs/
https://goteleport.com/resources/
https://goteleport.com/pricing/
https://goteleport.com/about/
https://goteleport.com/about/
https://goteleport.com/pricing/
https://goteleport.com/privacy/

Negotiation & Connection

Authentication

Negotiation & Connection

Figure 1: Shared Secret Creation

Authentication

connection. This happens in two broad steps:

In order for an SSH session to work, both client and server must

support the same version of the SSH protocol. Modern clients will

support SSH 2.0, as SSH 1.0 has identi�ed �aws. After coming to a

consensus on which protocol version to follow, both machines

negotiate a per-session symmetric key to encrypt the connection from

the outside. Generating a symmetric key at this stage, when paired with

the asymmetric keys in authentication, prevents the entire session from

being compromised if a key is revealed. Negotiation terms happen

through the Dif�e-Helman key exchange, which creates a shared secret

key to secure the whole data stream by combining the private key of

one party with the public key of the other. These keys are different from

the SSH keys used for authentication. For those interested in learning

more about this step, this comprehensive article, SSH Handshake

Explained, is a great starting point.

This site uses cookies to improve service. By using this site, you agree to our use of cookies. More info. Ok, got it

https://goteleport.com/blog/ssh-handshake-explained/
https://en.wikipedia.org/wiki/Forward_secrecy
https://www.youtube.com/watch?v=NmM9HA2MQGI
https://goteleport.com/blog/ssh-handshake-explained/
https://goteleport.com/privacy/

Figure 2: Only Alice’s private key can decrypt a message signed with Alice’s public key

Asymmetric Encryption Algorithms

After completing the negotiation and connection, a reliable and secure

channel between the client and server has been established. During the

KEX, the client has authenticated the server, but the server has not yet

authenticated the client. In most cases, public-key authentication is

used by the client. This method involves two keys, a public and private

key. Either can be used to encrypt a message, but the other must be

used to decrypt. This is what is meant by asymmetric encryption.

[Figure 2] If Bob encrypts a message with Alice’s public key, only Alice’s

private key can decrypt the message. This principle is what allows the

SSH protocol to authenticate identity. If Alice (client) can decrypt Bob’s

(server) message, then it proves Alice is in possession of the paired

private key. This is, in theory, how SSH keys authentication should

work. Unfortunately with the dynamic nature of infrastructure today,

SSH keys are increasingly shared or managed improperly,

compromising its integrity. To learn more, read this article, How to SSH

Properly.

This site uses cookies to improve service. By using this site, you agree to our use of cookies. More info. Ok, got it

https://en.wikipedia.org/wiki/Public-key_cryptography#/media/File:Public_key_encryption.svg
https://www.cloudflare.com/learning/ssl/how-does-public-key-encryption-work/
https://goteleport.com/blog/ssh-key-management/
https://goteleport.com/blog/how-to-ssh-properly/
https://goteleport.com/privacy/

RSA: Integer Factorization

DSA: Discrete Logarithm Problem & Modular Exponentiation

What makes asymmetric encryption powerful is that a private key can

be used to derive a paired public key, but not the other way around. This

principle is core to public-key authentication. If Alice had used a weak

encryption algorithm that could be brute-forced by today’s processing

capabilities, a third party could derive Alice’s private key using her

public key. Protecting against a threat like this requires careful selection

of the right algorithm.

There are three classes of these algorithms commonly used for

asymmetric encryption: RSA, DSA, and elliptic curve based algorithms.

To properly evaluate the strength and integrity of each algorithm, it is

necessary to understand the mathematics that constitutes the core of

each algorithm.

First used in 1978, the RSA cryptography is based on the held belief

that factoring large semi-prime numbers is dif�cult by nature. Given

that no general-purpose formula has been found to factor a compound

number into its prime factors, there is a direct relationship between the

size of the factors chosen and the time required to compute the

solution. In other words, given a number n=p*q where p and q

are suf�ciently large prime numbers, it can be assumed that anyone

who can factor n into its component parts is the only party that

knows the values of p and q . The same logic exists for public and

private keys. In fact, p & q are necessary variables for the creation

of a private key, and n is a variable for the subsequent public key. This

presentation simpli�es RSA integer factorization. For those interested

in learning more, click here.

DSA follows a similar schema, as RSA with public/private keypairs that

are mathematically related. What makes DSA different from RSA is

that DSA uses a different algorithm. It solves an entirely different

problem using different elements, equations, and steps. While the

discrete log problem is fun, it is out of scope for this post. What is

important to note is the use of a randomly generated number, m , is

used with signing a message along with a private key, k . This number

m must be kept private. More in this later.

This site uses cookies to improve service. By using this site, you agree to our use of cookies. More info. Ok, got it

https://www.slideshare.net/dganesan11/security-of-rsa-and-integer-factorization
https://www.youtube.com/watch?v=PQ8AruHaoLo
https://goteleport.com/privacy/

ECDSA & EdDSA: Elliptic Curve Discrete Logarithm Problem

Figure 3 - Elliptic curve, Secp256k1 used in the Bitcoin protocol

Comparing Encryption Algorithms

Implementation - Can the experts handle it, or does it need to be rolled?

Compatibility - Are there SSH clients that do not support a method?

Performance - How long will it take to generate a suf�ciently secure key?

Algorithms using elliptic curves are also based on the assumption that

there is no generally ef�cient solution to solving a discrete log problem.

However, ECDSA/EdDSA and DSA differ in that DSA uses a

mathematical operation known as modular exponentiation while

ECDSA/EdDSA uses elliptic curves. The computational complexity of

the discrete log problem allows both classes of algorithms to achieve

the same level of security as RSA with signi�cantly smaller keys.

Choosing the right algorithm depends on a few criteria:

This site uses cookies to improve service. By using this site, you agree to our use of cookies. More info. Ok, got it

https://goteleport.com/privacy/

Security - Can the public key be derived from the private key? (The use of

quantum computing to break encryption is not discussed in this article.)

RSA

Implementation

RSA libraries can be found for all major languages, including in-

depth libraries

Compatibility
Usage of SHA-1 (OpenSSH) or public keys under 2048-bits may be

unsupported.

Performance Larger keys require more time to generate.

Security
Specialized algorithms like Quadratic Sieve and General Number

Field Sieve exist to factor integers with speci�c qualities.

Figure 4 - NIST 2020 Recommendations for RSA key bit-length (Factoring Modulus)

DSA

(JS, Python, Go, Rust, C).

Time has been RSA’s greatest ally and greatest enemy. First published

in 1977, RSA has the widest support across all SSH clients and

languages and has truly stood the test of time as a reliable key

generation method. Subsequently, it has also been subject to Moore’s

Law for decades and key bit-length has grown in size. According to

NIST standards, achieving 128-bit security requires a key with length

3072 bits whereas other algorithms use smaller keys. Bit security

measures the number of trials required to brute-force a key. 128 bit

security means 2 trials to break.128

This site uses cookies to improve service. By using this site, you agree to our use of cookies. More info. Ok, got it

https://www.openssh.com/txt/release-8.3
https://mathworld.wolfram.com/QuadraticSieve.html
https://en.wikipedia.org/wiki/General_number_field_sieve
https://www.keylength.com/en/4/
https://gist.github.com/jo/8619441
https://cryptography.io/en/latest/
https://golang.org/pkg/crypto/rsa/
https://docs.rs/rsa/0.3.0/rsa/
https://www.libtom.net/LibTomCrypt/
https://goteleport.com/privacy/

Implementation
DSA was adopted by FIPS-184 in 1994. It has ample

representation in major crypto libraries, similar to RSA.

Compatibility
While DSA enjoys support for PuTTY-based clients, OpenSSH 7.0

disables DSA by default.

Performance

Signi�cant improvement in key generation times to achieve

comparable security strengths, though recommended bit-length is

the same as RSA.

Security
DSA requires the use of a randomly generated unpredictable and

secret value that, if discovered, can reveal the private key.

Teleport cybersecurity blog posts and tech news

Recall earlier in the article:

“What is important to note is the use of a randomly generated number,

m , is used with signing a message along with a private key, k . This

number m must be kept privately.”

The value m is meant to be a nonce, which is a unique value included in

many cryptographic protocols. However, the additional conditions of

unpredictability and secrecy makes the nonce more akin to a key, and

therefore extremely important.

Not only is it dif�cult to ensure true randomness within a machine, but

improper implementation can break encryption. For example:

1. Android’s Java SecureRandom class was known to create

colliding R values. In other words, the class reused some randomly

generated numbers. This exposed a number of different Android-

based Bitcoin wallets to having their private keys stolen. The

requirements of the nonce m means that any two instances with

the same nonce value could be reverse engineered and reveal the

private key used to sign transactions.

2. Taking this a step further, fail0ver�ow discovered the private key

used to sign �rmware updates for the Sony Playstation 3. In other

words, programmers could write their own code, sign it with the

revealed private key, and run it on the PS3. As it turns out, Sony was

using the same random number to sign each message.

This site uses cookies to improve service. By using this site, you agree to our use of cookies. More info. Ok, got it

https://en.wikipedia.org/wiki/Comparison_of_cryptography_libraries
https://www.openssh.com/legacy.html
https://security.stackexchange.com/questions/97411/significance-of-the-difference-between-dsa-and-rsa-in-signature-verifying-speed
https://rdist.root.org/2010/11/19/dsa-requirements-for-random-k-value/
https://blog.cloudflare.com/ensuring-randomness-with-linuxs-random-number-generator/
https://crypto.stackexchange.com/questions/9694/technical-details-of-attack-on-android-bitcoin-usage-of-securerandom
https://bitcoin.org/en/alert/2013-08-11-android
https://fail0verflow.com/blog/
https://www.youtube.com/watch?v=LP1t_pzxKyE
https://goteleport.com/privacy/

ECDSA & EdDSA

Implementation
EdDSA is fairly new. Crypto++ and cryptlib do not currently

support EdDSA.

Compatibility

Compatible with newer clients, Ed25519 has seen the largest

adoption among the Edward Curves, though NIST also proposed

Ed448 in their recent draft of SP 800-186.

Performance

Ed25519 is the fastest performing algorithm across all metrics. As

with ECDSA, public keys are twice the length of the desired bit

security.

Every other week we'll send a newsletter with the latest cybersecurity news and Teleport

updates.

EMAIL ADDRESS

Email Address SUBSCRIBE

The two examples above are not entirely sincere. Both Sony and the

Bitcoin protocol employ ECDSA, not DSA proper. ECDSA is an elliptic

curve implementation of DSA. Functionally, where RSA and DSA

require key lengths of 3072 bits to provide 128 bits of security, ECDSA

can accomplish the same with only 256-bit keys. However, ECDSA

relies on the same level of randomness as DSA, so the only gain is

speed and length, not security.

In response to the desired speeds of elliptic curves and the undesired

security risks, another class of curves has gained some notoriety.

EdDSA solves the same discrete log problem as DSA/ECDSA, but uses

a different family of elliptic curves known as the Edwards Curve

(EdDSA uses a Twisted Edwards Curve). While offering slight

advantages in speed over ECDSA, its popularity comes from an

improvement in security. Instead of relying on a random number for the

nonce value, EdDSA generates a nonce deterministically as a hash

making it collision resistant.

Taking a step back, the use of elliptic curves does not automatically

guarantee some level of security. Not all curves are the same. Only a

few curves have made it past rigorous testing. Luckily, the PKI industry

has slowly come to adopt Curve25519 in particular for EdDSA. Put

together that makes the public-key signature algorithm, Ed25519.

This site uses cookies to improve service. By using this site, you agree to our use of cookies. More info. Ok, got it

https://en.wikipedia.org/wiki/Crypto%2B%2B#Algorithms
https://en.wikipedia.org/wiki/Cryptlib#Algorithm_support
https://ianix.com/pub/ed25519-deployment.html#ed25519-libraries
https://www.nist.gov/news-events/news/2019/10/digital-signatures-and-elliptic-curve-cryptography-request-comments-draft
https://blog.trailofbits.com/2020/06/11/ecdsa-handle-with-care/
https://en.wikipedia.org/wiki/Edwards_curve
https://en.wikipedia.org/wiki/Twisted_Edwards_curve
https://safecurves.cr.yp.to/
https://en.wikipedia.org/wiki/Curve25519
https://ed25519.cr.yp.to/
https://goteleport.com/privacy/

Security EdDSA provides the highest security level compared to key length.

It also improves on the insecurities found in ECDSA.

Conclusion

Tutorial for setting up an SSH Jump Server

In Search of a Perfect Access Control System

SSH Certi�cates Security Hardening

ssh

When it comes down to it, the choice is between RSA ⁄ and

Ed25519 and the trade-off is between performance and compatibility.

RSA is universally supported among SSH clients while EdDSA

performs much faster and provides the same level of security with

signi�cantly smaller keys. Peter Ruppel puts the answer succinctly:

2048
4096

“The short answer to this is: as long as the key strength is

good enough for the foreseeable future, it doesn’t really

matter. Because here we are considering a signature for

authentication within an SSH session. The cryptographic

strength of the signature just needs to withstand the current,

state-of-the-art attacks.

- Ed25519 for SSH

Just don’t use ECDSA/DSA!

Related Posts

This site uses cookies to improve service. By using this site, you agree to our use of cookies. More info. Ok, got it

https://ed25519.cr.yp.to/
https://goteleport.com/blog/ssh-jump-server/
https://goteleport.com/blog/access-controls/
https://goteleport.com/blog/ssh-certificates/
https://goteleport.com/tags/ssh/
https://blog.peterruppel.de/ed25519-for-ssh/
https://goteleport.com/privacy/

Get the latest product updates and engineering blog

posts

Products

Teleport Overview

Teleport Server Access

Teleport Kubernetes

Access

Teleport Application

Access

Teleport Database Access

Teleport Features

Teleport Pricing

Documentation

Documentation home

How Teleport works

GitHub repository

Learn

Blog

Customers

Resources

Events

Company

About us

Careers

News

Swag Store

Get in touch

(855) 818 9008

General inquiries

Customer support

Connect

Community forum

Slack

Github

Twitter

LinkedIn

© 2021 Gravitational Inc.; all rights reserved. Terms of service Privacy policy Security policy Site map

Try Teleport today
In the cloud, self-hosted, or open source

Get Started

View Developer Docs

Email Address SUBSCRIBE

This site uses cookies to improve service. By using this site, you agree to our use of cookies. More info. Ok, got it

https://goteleport.com/
https://goteleport.com/ssh-server-access/
https://goteleport.com/kubernetes-access/
https://goteleport.com/teleport/application/
https://goteleport.com/database-access/
https://goteleport.com/features/
https://goteleport.com/pricing/
https://goteleport.com/docs/
https://goteleport.com/how-it-works/
https://github.com/gravitational/teleport
https://goteleport.com/blog/
https://goteleport.com/case-study/
https://goteleport.com/resources/
https://goteleport.com/about/events/
https://goteleport.com/about/
https://goteleport.com/careers/
https://goteleport.com/about/press/
https://swag-teleport.myshopify.com/
tel:855-818-9008
https://goteleport.com/contact-us/
https://gravitational.zendesk.com/hc/en-us
https://github.com/gravitational/teleport/discussions
https://goteleport.com/slack
https://github.com/gravitational
https://twitter.com/goteleport
https://www.linkedin.com/company/go-teleport
https://goteleport.com/tos/
https://goteleport.com/privacy/
https://goteleport.com/security/
https://goteleport.com/html-sitemap/
https://goteleport.com/pricing/
https://goteleport.com/teleport/docs/
https://goteleport.com/privacy/

