
changelog.com/posts

The big idea around unikernels
by Ian Eyberg • 2021-12-01 • #cloud +1

Did you know Linux is approaching 30 years old? Did you know Unix is around 50 years

old? I’m not knocking them — I’ve been using Linux since they were distributed on

floppies. However, Unix was built for machines like the PDP-7 — you know, the kind that

takes up an entire wall.

The PDP-7 - a minicomputer produced by Digital Equipment Corporation

But, have you ever wondered what an operating system built in 2022 would look like? Privacy - Terms

Sign In

https://changelog.com/posts
https://changelog.com/person/eyberg
https://changelog.com/posts/the-big-idea-around-unikernels
https://changelog.com/topic/cloud
https://changelog.com/person/eyberg
https://www.google.com/intl/en/policies/privacy/
https://www.google.com/intl/en/policies/terms/
https://changelog.com/
https://changelog.com/in

Today, cloud infrastructure is so complex that devops/SRE folks are attracting salaries

that sometimes exceed normal software engineers.

Cybersecurity is so insanely bad that there is at least one major data breach every single

week now. If you look at illicit crypto miner bots that infect k8s clusters, they literally

have code that hunts down other bots and kicks them off the server before doing

anything else. Bots having a turf war - that’s the state of our cybersecurity.

Honestly, it is good that Hollywood is not real life because all the cybersecurity woes are

not even close to how bad things could really be. It isn’t like someone has hacked a

nuclear power plant before — *cough*.

Unikernels can be fast

We run websites like ops.city and nanos.org as Go unikernels on Google Cloud. We

routinely benchmark webservers running 2X faster on Google and 3X faster on AWS .

We’ve clocked things like Redis pushing 20% on average more on its benchmark tool.

The numbers don’t lie.

Sign In

https://en.wikipedia.org/wiki/Stuxnet
https://nanovms.com/
https://ops.city/
https://changelog.com/posts/nanos.org
https://changelog.com/
https://changelog.com/in

Go Webserver on Nanos vs Debian 10 "Buster" Linux on GCP G1-Small

There’s no special algorithm being used here - it’s just the architecture that allows this to

happen. Some people ask if you can just use something like Alpine and get the same

results. Unfortunately, the answer is no. Linux is like 30M lines of code and not everything

can just be excluded by building a custom kernel.

For instance, when you remove things like multiple process support you start to see how

infectious that support truly is. That touches the scheduler, that touches shared memory,

that touches signaling, that touches a lot of stuff, so it’s not something where you can just

go in and ifdef/patch it out. Similarly, seccomp doesn’t do everything we want either.

Unikernels can be fast to boot, too. This is a weird point to make, though, as things like

Firecracker usually come to people’s minds when it’s mentioned. However, unikernels

expose other interesting quirks that you’d never see otherwise when you deploy them. For

instance, we crafted a small little Rust webserver that sat on Google and injected a crash

on each request. It would immediately reboot, ready to serve the next request instantly.

However every time it rebooted it came with a brand new memory layout cause of ASLR

Sign In

https://alpinelinux.org/
https://lwn.net/Articles/656307/
https://firecracker-microvm.github.io/
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://changelog.com/
https://changelog.com/in

However, every time it rebooted it came with a brand new memory layout cause of ASLR,

which from a security perspective is very interesting. That’s one way to seriously screw

with an attacker’s head!

Honestly, we haven’t even done the cool stuff with unikernels yet. Imagine being able to

tune your unikernel depending on whether it’s network heavy or filesystem heavy.

Imagine how much easier binary weaving and automated dead code removal can be in

such a system. Some applications like to link to every library under the sun even if they

only use one function from it.

Unikernels give us an excellent opportunity to do some long-overdue house cleaning.

Unikernels are isolated

The isolation of unikernels is what attracted me to them, coming from the security

industry. No users or passwords - interesting. No shell. No remote login or ssh. More

importantly, unikernels can only run one and only one application per VM. So that means

in your typical webserver stack, you have one VM as the actual webserver and another

for your database (you probably already do this anyway).

This concept goes much deeper though. When you think about an attacker breaking into

your servers, it is precisely like a robber breaking into your house. They come through by

kicking in the door or smashing a window but that’s not why they are breaking into the

house. They come for the guns, jewels, money, and flatscreen TVs. For hackers, it is the

same. Breaking your software by exploiting a bug is just the way into the server. That is

why patch management and vulnerability scanning doesn’t actually reduce the number

of security breaches in the news.

The end goal for the attacker is to run their programs - they couldn’t care less about

yours. Those programs could be running mysqldump against your database, or maybe

installing a crypto miner. Regardless, it’s always other pieces of software - usually many

pieces of software. That’s why most exploits focus their shellcode on forking a shell. A

shell is inherently built to run multiple programs. When you type ls , ps aux , or cd

you call those commands, but they are other programs. None of that works in unikernel

land .

So, while you might be able to obtain the use of some memory on a vulnerable piece of

software you probably now have a tough time doing anything useful with it Has anyone

Sign In

https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://changelog.com/
https://changelog.com/in

software you probably now have a tough time doing anything useful with it. Has anyone

seen a MySQL client written in pure ROP gadgets?

Unikernels are simple

The past decade has seen massive infrastructure creep and while it can be easy to blame

the tooling, companies are publishing massive amounts of software now.

So how simple? You can push your application out to Google Cloud with just two

commands. This same set of commands only takes ~20 seconds before your site is live on

AWS:

When first introduced to unikernels, many people wonder, “Where is the Kubernetes for

orchestrating unikernels? Do I have to invest all this time and energy in learning yet

another thing?” The answer is it doesn’t exist, and it doesn’t need to exist. Why? When we

deploy unikernels to AWS or Google, we create a new AMI every time you hit the deploy

button (don’t worry, the entire process can take less than 20 seconds). The VM doesn’t

have Linux installed on it at all - it’s just your app. The underlying storage device and

networking are all taken care of by your cloud of choice, so while you can configure it,

you don’t have to manage it. This is a significant distinction. You can think of it as

serverless without the lock-in because the same commands work on any cloud provider

out there. By shifting this burden of responsibility to the cloud provider, you force the

cloud to do what it does best (manage infrastructure), and you do what you do best

(manage your application).

This makes pushing your application to prod painfully easy.

If the application crashes (which happens to every software developer out there, no

matter how good they are), the entire VM crashes. What’s interesting about debugging

this is that it actually is much easier to debug than a Linux system. Why? Because there

is only one program in question. You aren’t whipping out lsof to figure out what

process is spewing out crap connections or which process didn’t have a proper log

rotation setup and prevented you from SSHing into the instance.

In fact, we used to crash the database backing our Radar monitoring service quite a lot

earlier on. Eating our own dogfood and running it as a Nanos unikernel allowed us to

enumerate many issues. Networking bugs, storage bugs, the whole works. That’s why we

know it works well now because we’ve had to go in and fix a ton of bugs However when

ops image create -c config-prod-myapp.json myapp -i myapp -t gcp

ops instance create myapp -c config-prod-myapp.json -z us-west2-

Sign In

https://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html
https://changelog.com/
https://changelog.com/in

know it works well now because weve had to go in and fix a ton of bugs. However, when

it crashed, we could easily export the VM image and download it locally and run it. We

could attach gdb to it and pinpoint directly where it was having an issue. We could

export the stack trace as well. You can actually clone these VMs in prod, in real-time with

no downtime, and monkey around with the clones too. I can imagine all sorts of

interesting things you can do besides debugging with functionality like that.

I remember another time we were debugging a networking issue on Google. Someone

had reported our site was not showing up for them, but it was showing up for us. Strange.

It turns out the MTU was set to a different number. We were able to pinpoint the issue

easily and fix the TCP/IP stack.

Unikernels are so much easier to debug than normal Linux systems.

Virtualization, SMP, and the second tech boom

The old paradigm of one server with one operating system hosting many applications

doesn’t make sense anymore.

If you work at a company that is more than 10 or 20 people, you don’t have one server.

You have many servers. If you work at a company like Uber or Airbnb, you don’t have one

database. You have thousands of databases. That’s thousands of operating systems that

have to be managed as well.

Do you remember this graphic?

Sign In

https://cloud.google.com/network-connectivity/docs/vpn/concepts/mtu-considerations
https://changelog.com/
https://changelog.com/in

Google wrote a paper, then wrote another paper, and so many papers later ended up

writing a book that basically said the datacenter is a warehouse-sized computer.

The big idea around unikernels, at least when it comes to the cloud, is that if the

datacenter is the computer, then the cloud is its operating system — so let’s start treating

it like one and stop micro-managing thousands of individual ones.

Ready to run your first unikernel? Check out ops.city and nanos.org. There is no better

way of understanding what these are and how they work than to try it out.

Get the latest news and podcasts for developers in your inbox, every week.

We make it super easy to keep up with developer news that matters.

Sign In

https://sites.cs.ucsb.edu/~rich/class/cs293b-cloud/papers/google-warehouse.pdf
https://ops.city/
https://nanos.org/
https://changelog.com/
https://changelog.com/in

Discussion Sign in or Join to comment or subscribe

About Contact 888-974-CHLG (2454)

News

Subscribe

Topics

Sources

Changelog Weekly

Changelog Nightly

Fresh

Top

Submit

Podcasts

The Changelog

JS Party

Go Time

Ship It!

Founders Talk

Practical AI

Backstage

Brain Science

Master

Request Episode

Community

Join the Community

Etc.

Ten Years

you@example.com Subscribe

Sign In

https://changelog.com/in
https://changelog.com/join
https://changelog.com/about
https://changelog.com/contact
tel:+1-888-974-2454
https://twitter.com/changelog
https://github.com/thechangelog
https://www.youtube.com/changelog
https://www.instagram.com/changelog_
https://www.twitch.tv/changelog_
https://changelog.com/
https://changelog.com/subscribe
https://changelog.com/topics
https://changelog.com/sources
https://changelog.com/weekly
https://changelog.com/nightly
https://changelog.com/news/fresh
https://changelog.com/news/top
https://changelog.com/news/submit
https://changelog.com/podcasts
https://changelog.com/podcast
https://changelog.com/jsparty
https://changelog.com/gotime
https://changelog.com/shipit
https://changelog.com/founderstalk
https://changelog.com/practicalai
https://changelog.com/backstage
https://changelog.com/brainscience
https://changelog.com/master
https://changelog.com/request
https://changelog.com/community
https://changelog.com/community
https://changelog.com/live
https://changelog.com/ten
https://changelog.com/sponsor
https://changelog.com/
https://changelog.com/in

Listen Live

Code of Conduct

Sign in to Slack

Perks

Sponsor

Search

Posts

View Source

Report Issues

Terms & Conditions

Privacy Policy

BANDWIDTH CLOUD HOSTING FEATURE FLAGS

OBSERVABILITY

Sign In

https://changelog.com/live
https://changelog.com/coc
https://changelog.slack.com/
https://changelog.com/community
https://changelog.com/sponsor
https://changelog.com/search
https://changelog.com/posts
https://github.com/thechangelog/changelog.com
https://github.com/thechangelog/changelog.com/issues
https://changelog.com/terms
https://changelog.com/privacy
https://www.fastly.com/?utm_source=changelog
https://www.linode.com/changelog
https://launchdarkly.com/?utm_source=changelog
https://grafana.com/products/cloud/?utm_source=changelog
https://changelog.com/
https://changelog.com/in

