
The Book
Some things in Nanos are set in stone and others are not. In general
security and performance are top of mind and we abide by KISS
principles.

Quick FYI: This site is mainly for Nanos specific
information. If
you are an end-user and you just want more "getting
started" docs
please check out the DOCS on OPS.CITY which are substantial.

This site is a WIP
(work in progress).

Filesystem

Networking

Performance

Security

Architecture

Infrastructure

Syscalls

Features

Tools

Manifest

Data Structures

Filesystem

The filesystem currently used by Nanos is TFS. Nanos isn't opposed
to other file systems but hasn't
identified a large need yet either.
As with most of these sections if your team requires different
filesystem support please reach out to the NanoVMs team for a

https://nanos.org/index
https://ops.city/

support subscription.

For more info on the TFS
filesystem.

Networking

Nanos supports both IPV4 and IPV6. For more information on
configuring things like VPCs, firewalls and the like please consult
the OPS networking config pages for your specific cloud.

Performance

Not a lot of benchmarking and tuning has been done yet, however,
there is plenty of potential. Currently,
our naive tests can push 2X
the amount of requests/second for Go webservers. This website is
hosted on a Go
webserver running a recent 0.1.27 version of Nanos.
We've also seen up to 3X improvements on AWS.

Security

Nanos has an opionated view of security. Users and their associated
permissions are not supported. Nanos is
also a single process (but
multi-threaded) system. This means there is no support for SSH,
shells or any
other interactive multiple command/program running.

https://github.com/nanovms/nanos/wiki/tuple-serialization-format
https://nanovms.gitbook.io/ops/networking

While this prevents quite a few security issues extra
precaution
should be taken for things such as RFI style attacks. For instance
you wouldn't want to leak your
SSL private key or database
credentials.

Similarily, just cause you can't create a new process
doesn't mean
an attacker couldn't inject their process.

Nanos employs various forms of security
measures found in other
general purpose operating systems including ASLR and respects page
protections that
compilers produce.

Nanos, unlike other general purpose operating systems, only
provision what is
necessary on the filesystem to run an application
so most filesystems will have a few to maybe 10 libraries
and many
applications might have filesystems with only a handful of files on
them.

Nanos's kernel
lives on a different partition and is separated from
the user-viewable partition. Nanos goes further with
the idea of
exec protection with an optional exec_protection flag available in
the manifest. When this is
enabled the application cannot modify the
executable files and cannot create new executable files. For
further
information check out this PR.

For
more info: more info

Nanos reduces its attack surface through a variety of
thrusts.
Compared to a normal Ubuntu or Debian instance has multiple
orders

https://github.com/nanovms/nanos/pull/1251
https://github.com/nanovms/nanos/blob/master/SECURITY.md

of magnitude less lines of code, libraries only that are needed
by
an application and thousands of less executables - in fact it only
can run one.

Architecture

Currently Nanos only targets X86-64 and has limited ARM64 support,
specifically for the rpi4.

RISC-V and the POWER family of architectures have been asked for but
so far there is no roadmap for it. If you are interested in getting
that sooner reach out to the NanoVMs team.

Nanos is always deployed as a guest VM directly on top of a
hypervisor. Unlike Linux that runs many different applications on
top of
it Nanos molds the system and application into one discrete
unit. Unlike
Containers that duplicate storage and networking layers
with an
orchestrator in between Linux and the application Nanos
relies on the
native storage and networking layers present in the
hypervisor of
choice.

Infrastructure

Nanos can currently deploy to the following public cloud providers:

→ Google Cloud

→ Amazon Web Services

→ Digital Ocean

→ Vultr

→ Microsoft Azure

→ Oracle Cloud

→ UpCloud

Nanos can also deploy to the following hypervisors:

→ KVM

→ Xen

→ ESX

FireCracker

VirtualBox

→ Hyper-V

Nanos can even run on
K8S.

Syscalls

Supported:
socket

bind

listen

accept

accept4

connect

sendto

sendmsg

sendmmsg

recvfrom

recvmsg

setsockopt

getsockname

getpeername

https://nanovms.gitbook.io/ops/google_cloud
https://nanovms.gitbook.io/ops/aws
https://nanovms.gitbook.io/ops/digital_ocean
https://nanovms.gitbook.io/ops/vultr
https://nanovms.gitbook.io/ops/azure
https://nanovms.gitbook.io/ops/oci
https://nanovms.gitbook.io/ops/upcloud
https://nanovms.gitbook.io/ops/vsphere
https://nanovms.gitbook.io/ops/firecracker
https://nanovms.gitbook.io/ops/virtual_box
https://nanovms.gitbook.io/ops/hyper-v
https://nanovms.gitbook.io/ops/k8s

getsockopt

shutdown

futex

clone

arch_prctl

set_tid_address

gettid

timerfd_create

timerfd_gettime

timerfd_settime

timer_create

timer_settime

timer_gettime

timer_getoverrun

timer_delete

getitimer

setitimer

alarm

mincore

mmap

mremap

msync

munmap

mprotect

epoll_create

epoll_create1

epoll_ctl

poll

ppoll

select

pselect6

epoll_wait

epoll_pwait

read

pread64

write

pwrite64

open

openat

dup

dup2

dup3

fstat

fallocate

fadvise64

sendfile

stat

lstat

readv

writev

truncate

ftruncate

fdatasync

fsync

sync

syncfs

io_setup

io_submit

io_getevents

io_destroy

access

lseek

fcntl

ioctl

getcwd

symlink

symlinkat

readlink

readlinkat

unlink

unlinkat

rmdir

rename

renameat

renameat2

close

sched_yield

brk

uname

getrlimit

setrlimit

prlimit64

getrusage

getpid

exit_group

exit

getdents

getdents64

mkdir

mkdirat

getrandom

pipe

pipe2

socketpair

eventfd

eventfd2

creat

chdir

fchdir

utime

utimes

newfstatat

sched_getaffinity

sched_setaffinity

capget

prctl

sysinfo

umask

statfs

fstatfs

io_uring_setup

io_uring_enter

io_uring_register

kill

pause

rt_sigaction

rt_sigpending

rt_sigprocmask

rt_sigqueueinfo

rt_tgsigqueueinfo

rt_sigreturn

rt_sigsuspend

rt_sigtimedwait

sigaltstack

signalfd

signalfd4

tgkill

tkill

clock_gettime

clock_nanosleep

gettimeofday

nanosleep

time

times

unsupported:
shmget

shmat

shmctl

fork

vfork

execve

wait4, syscall_ignore);

semget

semop

semctl

shmdt

msgget

msgsnd

msgrcv

msgctl

flock, syscall_ignore);

link

chmod, syscall_ignore);

fchmod, syscall_ignore);

fchown, syscall_ignore);

lchown, syscall_ignore);

ptrace

syslog

getgid, syscall_ignore);

getegid, syscall_ignore);

setpgid

getppid

getpgrp

setsid

setreuid

setregid

getgroups

setresuid

getresuid

setresgid

getresgid

getpgid

setfsuid

setfsgid

getsid

mknod

uselib

personality

ustat

sysfs

getpriority

setpriority

sched_setparam

sched_getparam

sched_setscheduler

sched_getscheduler

sched_get_priority_max

sched_get_priority_min

sched_rr_get_interval

mlock, syscall_ignore);

munlock, syscall_ignore);

mlockall, syscall_ignore);

munlockall, syscall_ignore);

vhangup

modify_ldt

pivot_root

_sysctl

adjtimex

chroot

acct

settimeofday

mount

umount2

swapon

swapoff

reboot

sethostname

setdomainname

iopl

ioperm

create_module

init_module

delete_module

get_kernel_syms

query_module

quotactl

nfsservctl

getpmsg

putpmsg

afs_syscall

tuxcall

security

readahead

setxattr

lsetxattr

fsetxattr

getxattr

lgetxattr

fgetxattr

listxattr

llistxattr

flistxattr

removexattr

lremovexattr

fremovexattr

set_thread_area

io_cancel

get_thread_area

lookup_dcookie

epoll_ctl_old

epoll_wait_old

remap_file_pages

restart_syscall

semtimedop

clock_settime

vserver

mbind

set_mempolicy

get_mempolicy

mq_open

mq_unlink

mq_timedsend

mq_timedreceive

mq_notify

mq_getsetattr

kexec_load

waitid

add_key

request_key

keyctl

ioprio_set

ioprio_get

inotify_init

inotify_add_watch

inotify_rm_watch

migrate_pages

mknodat

fchownat, syscall_ignore);

futimesat

linkat

fchmodat, syscall_ignore);

faccessat

unshare

set_robust_list

get_robust_list

splice

tee

sync_file_range

vmsplice

move_pages

utimensat

inotify_init1

preadv

pwritev

perf_event_open

recvmmsg

fanotify_init

fanotify_mark

name_to_handle_at

open_by_handle_at

clock_adjtime

setns

getcpu

process_vm_readv

process_vm_writev

kcmp

finit_module

sched_setattr

sched_getattr

seccomp

memfd_create

kexec_file_load

bpf

execveat

userfaultfd

membarrier

mlock2, syscall_ignore);

copy_file_range

preadv2

pwritev2

pkey_mprotect

pkey_alloc

pkey_free

Features

→ -d strace

→ ftrace

→ http server dump

Tools

Several tools are packaged inside Nanos:
mkfs

➜ ~ ~/.ops/0.1.27/mkfs -help

/Users/eyberg/.ops/0.1.27/mkfs: illegal option -- h

Usage:

mkfs [options] image-file < manifest-file

mkfs [options] -e image-file

Options:

-b boot-image - specify boot image to prepend

-k kern-image - specify kernel image

-r target-root - specify target root

-s image-size - specify minimum image file size; can be expressed in

bytes, KB (with k or K suffix), MB (with m or M suffix), and GB (with g

or G suffix)

-e - create empty filesystem

dump

➜ ~ ~/.ops/0.1.27/dump

Usage: dump [OPTION]...

Options:

 -d Copy filesystem contents from into

 -t Display filesystem from as a tree

There are also development tools available such as plugins for various
editors:
OPS

for Visual Studio

IntelliJ

Manifest

The nanos manifest is an extremely powerful tool as it comes with
many different flags and is the synthesis
of a filesystem merged
with various settings. Most users will never craft their own
manifests by hand,
opting to use OPS to craft it automatically.

→ futex_trace

→ debugsyscalls

https://marketplace.visualstudio.com/items?itemName=nanovms.ops
https://plugins.jetbrains.com/plugin/16899-nanovms-ops

→ fault

→
exec_protect

Data Structures

Nanos uses a variety of internal data structures. This is only a
partial list.

Bitmap

ID Heap

FreeList

Backed Heap

Linear Backed Heap

Paged Back Heap

Priority Queue

RangeMap

Red/Black Tree

Scatter/Gather List

Table

Tuple

Copyright © 2021 NanoVMs Inc. All rights reserved.

Privacy Policy Terms of Service NanoVMs Commercial Support Forums Twitter

GitHub Mailing List IRC

https://github.com/nanovms/nanos/blob/master/src/runtime/bitmap.h
https://github.com/nanovms/nanos/blob/master/src/runtime/heap/id.h
https://github.com/nanovms/nanos/blob/master/src/runtime/heap/freelist.c
https://github.com/nanovms/nanos/blob/master/src/runtime/heap/heap.h
https://github.com/nanovms/nanos/blob/master/src/kernel/linear_backed_heap.c
https://github.com/nanovms/nanos/blob/master/src/kernel/page_backed_heap.c
https://github.com/nanovms/nanos/blob/master/src/runtime/pqueue.h
https://github.com/nanovms/nanos/blob/master/src/runtime/range.h
https://github.com/nanovms/nanos/blob/master/src/runtime/rbtree.h
https://github.com/nanovms/nanos/blob/master/src/runtime/sg.h
https://github.com/nanovms/nanos/blob/master/src/runtime/table.h
https://github.com/nanovms/nanos/blob/master/src/runtime/tuple.h
https://nanos.org/privacy
https://nanos.org/terms
https://nanovms.com/
https://nanovms.com/services/subscription
https://forums.nanovms.com/
https://twitter.com/nanovms
https://github.com/nanovms/nanos
https://groups.google.com/a/nanovms.com/g/nanos-users

