
subprocess — Subprocess management
Source code: Lib/subprocess.py

The subprocess module allows you to spawn new processes, connect to their
input/output/error pipes, and
obtain their return codes. This module intends to
replace several older modules and functions:

Information about how the subprocess module can be used to replace these
modules and functions can be
found in the following sections.

See also:
PEP 324 – PEP proposing the subprocess module

Using the subprocess Module

The recommended approach to invoking subprocesses is to use the run()
function for all use cases it can
handle. For more advanced use cases, the
underlying Popen interface can be used directly.

The run() function was added in Python 3.5; if you need to retain
compatibility with older versions, see the Older
high-level API section.

subprocess.run(args, *, stdin=None, input=None, stdout=None, stderr=None,
capture_output=False, shell=False, cwd=None, timeout=None, check=False, encoding=None,
errors=None, text=None, env=None, universal_newlines=None, **other_popen_kwargs)

Run the command described by args. Wait for command to complete, then
return a CompletedProcess
instance.

The arguments shown above are merely the most common ones, described below
in Frequently Used
Arguments (hence the use of keyword-only notation
in the abbreviated signature). The full function signature
is largely the
same as that of the Popen constructor - most of the arguments to
this function are passed
through to that interface. (timeout, input,
check, and capture_output are not.)

If capture_output is true, stdout and stderr will be captured.
When used, the internal Popen object is
automatically created with
stdout=PIPE and stderr=PIPE. The stdout and stderr arguments may
not be
supplied at the same time as capture_output. If you wish to capture
and combine both streams into one, use
stdout=PIPE and stderr=STDOUT
instead of capture_output.

The timeout argument is passed to Popen.communicate(). If the timeout
expires, the child process will be
killed and waited for. The
TimeoutExpired exception will be re-raised after the child process
has
terminated.

The input argument is passed to Popen.communicate() and thus to the
subprocess’s stdin. If used it must
be a byte sequence, or a string if
encoding or errors is specified or text is true. When
used, the internal
Popen object is automatically created with
stdin=PIPE, and the stdin argument may not be used as well.

If check is true, and the process exits with a non-zero exit code, a
CalledProcessError exception will be

os.system

os.spawn*

Go3.10.2

https://github.com/python/cpython/tree/3.10/Lib/subprocess.py
https://www.python.org/dev/peps/pep-0324
https://www.python.org/

raised. Attributes of that
exception hold the arguments, the exit code, and stdout and stderr if they
were
captured.
If encoding or errors are specified, or text is true,
file objects for stdin, stdout and stderr are opened in text
mode using the
specified encoding and errors or the io.TextIOWrapper default.
The universal_newlines
argument is equivalent to text and is provided
for backwards compatibility. By default, file objects are opened
in binary mode.

If env is not None, it must be a mapping that defines the environment
variables for the new process; these
are used instead of the default
behavior of inheriting the current process’ environment. It is passed directly
to
Popen.

Examples:

New in version 3.5.

Changed in version 3.6: Added encoding and errors parameters

Changed in version 3.7: Added the text parameter, as a more understandable alias of universal_newlines.
Added the capture_output parameter.

class subprocess.CompletedProcess
The return value from run(), representing a process that has finished.

args

The arguments used to launch the process. This may be a list or a string.

returncode

Exit status of the child process. Typically, an exit status of 0 indicates
that it ran successfully.

A negative value -N indicates that the child was terminated by signal
N (POSIX only).

stdout

Captured stdout from the child process. A bytes sequence, or a string if
run() was called with an
encoding, errors, or text=True.
None if stdout was not captured.

If you ran the process with stderr=subprocess.STDOUT, stdout and
stderr will be combined in this
attribute, and stderr will be
None.

stderr

Captured stderr from the child process. A bytes sequence, or a string if
run() was called with an
encoding, errors, or text=True.
None if stderr was not captured.

>>> subprocess.run(["ls", "-l"]) # doesn't capture output

CompletedProcess(args=['ls', '-l'], returncode=0)

>>> subprocess.run("exit 1", shell=True, check=True)

Traceback (most recent call last):

 ...

subprocess.CalledProcessError: Command 'exit 1' returned non-zero exit status 1

>>> subprocess.run(["ls", "-l", "/dev/null"], capture_output=True)

CompletedProcess(args=['ls', '-l', '/dev/null'], returncode=0,

stdout=b'crw-rw-rw- 1 root root 1, 3 Jan 23 16:23 /dev/null\n', stderr=b'')

>>>

Go3.10.2

https://docs.python.org/3/library/io.html#io.TextIOWrapper
https://www.python.org/

check_returncode()
If returncode is non-zero, raise a CalledProcessError.

New in version 3.5.

subprocess.DEVNULL

Special value that can be used as the stdin, stdout or stderr argument
to Popen and indicates that the special
file os.devnull
will be used.

New in version 3.3.

subprocess.PIPE

Special value that can be used as the stdin, stdout or stderr argument
to Popen and indicates that a pipe to
the standard stream should be
opened. Most useful with Popen.communicate().

subprocess.STDOUT

Special value that can be used as the stderr argument to Popen and
indicates that standard error should go
into the same handle as standard
output.

exception subprocess.SubprocessError
Base class for all other exceptions from this module.

New in version 3.3.

exception subprocess.TimeoutExpired
Subclass of SubprocessError, raised when a timeout expires
while waiting for a child process.

cmd

Command that was used to spawn the child process.

timeout

Timeout in seconds.

output

Output of the child process if it was captured by run() or
check_output(). Otherwise, None.

stdout

Alias for output, for symmetry with stderr.

stderr

Stderr output of the child process if it was captured by run().
Otherwise, None.

New in version 3.3.

Changed in version 3.5: stdout and stderr attributes added

exception subprocess.CalledProcessError
Subclass of SubprocessError, raised when a process run by
check_call() or check_output() returns
a non-zero exit status.

Go3.10.2

https://docs.python.org/3/library/os.html#os.devnull
https://www.python.org/

returncode

Exit status of the child process. If the process exited due to a
signal, this will be the negative signal
number.

cmd

Command that was used to spawn the child process.

output

Output of the child process if it was captured by run() or
check_output(). Otherwise, None.

stdout

Alias for output, for symmetry with stderr.

stderr

Stderr output of the child process if it was captured by run().
Otherwise, None.

Changed in version 3.5: stdout and stderr attributes added

Frequently Used Arguments

To support a wide variety of use cases, the Popen constructor (and
the convenience functions) accept a large
number of optional arguments. For
most typical use cases, many of these arguments can be safely left at their
default values. The arguments that are most commonly needed are:

args is required for all calls and should be a string, or a sequence of
program arguments. Providing a sequence
of arguments is generally
preferred, as it allows the module to take care of any required escaping
and quoting of
arguments (e.g. to permit spaces in file names). If passing
a single string, either shell must be True (see below)
or else
the string must simply name the program to be executed without specifying
any arguments.

stdin, stdout and stderr specify the executed program’s standard input,
standard output and standard error file
handles, respectively. Valid values
are PIPE, DEVNULL, an existing file descriptor (a positive
integer), an
existing file object, and None. PIPE indicates
that a new pipe to the child should be created. DEVNULL indicates
that the special file os.devnull will be used. With the default
settings of None, no redirection will occur; the
child’s file handles
will be inherited from the parent. Additionally, stderr can be
STDOUT, which indicates that the
stderr data from the child
process should be captured into the same file handle as for stdout.

If encoding or errors are specified, or text (also known as
universal_newlines) is true,
the file objects stdin,
stdout and stderr will be opened in text
mode using the encoding and errors specified in the call or the
defaults
for io.TextIOWrapper.

For stdin, line ending characters '\n' in the input will be converted
to the default line separator os.linesep.
For stdout and stderr,
all line endings in the output will be converted to '\n'. For more
information see the
documentation of the io.TextIOWrapper class
when the newline argument to its constructor is None.

If text mode is not used, stdin, stdout and stderr will be opened as
binary streams. No encoding or line ending
conversion is performed.

New in version 3.6: Added encoding and errors parameters.

New in version 3 7: Added the text parameter as an alias for universal newlines

Go3.10.2

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/os.html#os.devnull
https://docs.python.org/3/library/io.html#io.TextIOWrapper
https://docs.python.org/3/library/os.html#os.linesep
https://docs.python.org/3/library/io.html#io.TextIOWrapper
https://www.python.org/

New in version 3.7: Added the text parameter as an alias for universal_newlines.

Note:
The newlines attribute of the file objects Popen.stdin,
Popen.stdout and Popen.stderr are not
updated by
the Popen.communicate() method.

If shell is True, the specified command will be executed through
the shell. This can be useful if you are using
Python primarily for the
enhanced control flow it offers over most system shells and still want
convenient access
to other shell features such as shell pipes, filename
wildcards, environment variable expansion, and expansion
of ~ to a
user’s home directory. However, note that Python itself offers
implementations of many shell-like
features (in particular, glob,
fnmatch, os.walk(), os.path.expandvars(),
os.path.expanduser(),
and shutil).

Changed in version 3.3: When universal_newlines is True, the class uses the encoding
locale.getpreferredencoding(False)
instead of locale.getpreferredencoding(). See the
io.TextIOWrapper class for more information on this change.

Note:
Read the Security Considerations section before using shell=True.

These options, along with all of the other options, are described in more
detail in the Popen constructor
documentation.

Popen Constructor

The underlying process creation and management in this module is handled by
the Popen class. It offers a lot of
flexibility so that developers
are able to handle the less common cases not covered by the convenience
functions.

class subprocess.Popen(args, bufsize=- 1, executable=None, stdin=None, stdout=None,
stderr=None, preexec_fn=None, close_fds=True, shell=False, cwd=None, env=None,
universal_newlines=None, startupinfo=None, creationflags=0, restore_signals=True,
start_new_session=False, pass_fds=(), *, group=None, extra_groups=None, user=None, umask=-
1, encoding=None, errors=None, text=None, pipesize=- 1)

Execute a child program in a new process. On POSIX, the class uses
os.execvpe()-like behavior to
execute the child program. On Windows,
the class uses the Windows CreateProcess() function. The
arguments to
Popen are as follows.

args should be a sequence of program arguments or else a single string
or path-like object.
By default, the
program to execute is the first item in args if args is
a sequence. If args is a string, the interpretation is
platform-dependent and described below. See the shell and executable
arguments for additional differences
from the default behavior. Unless
otherwise stated, it is recommended to pass args as a sequence.

Warning:
For maximum reliability, use a fully-qualified path for the executable.
To search for an
unqualified name on PATH, use
shutil.which(). On all platforms, passing sys.executable
is the
recommended way to launch the current Python interpreter again,
and use the -m command-line format to
launch an installed module.

Resolving the path of executable (or the first item of args) is
platform dependent. For POSIX, see
os.execvpe(), and note that
when resolving or searching for the executable path, cwd overrides the
current working directory and env can override the PATH
environment variable. For Windows, see the
documentation of the
lpApplicationName and lpCommandLine parameters of WinAPI
CreateProcess, and note that when resolving or searching for the
executable path with shell=False,
cwd does not override the
current working directory and env cannot override the PATH
environment

Go3.10.2

https://docs.python.org/3/library/glob.html#module-glob
https://docs.python.org/3/library/fnmatch.html#module-fnmatch
https://docs.python.org/3/library/os.html#os.walk
https://docs.python.org/3/library/os.path.html#os.path.expandvars
https://docs.python.org/3/library/os.path.html#os.path.expanduser
https://docs.python.org/3/library/shutil.html#module-shutil
https://docs.python.org/3/library/locale.html#locale.getpreferredencoding
https://docs.python.org/3/library/io.html#io.TextIOWrapper
https://docs.python.org/3/library/os.html#os.execvpe
https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/library/shutil.html#shutil.which
https://docs.python.org/3/library/sys.html#sys.executable
https://docs.python.org/3/library/os.html#os.execvpe
https://www.python.org/

c d does ot o e de t e
cu e t o g d ecto y a d e ca ot o e de t e
e o e t
variable. Using a full path avoids all of these variations.

An example of passing some arguments to an external program
as a sequence is:

On POSIX, if args is a string, the string is interpreted as the name or
path of the program to execute.
However, this can only be done if not
passing arguments to the program.

Note:
It may not be obvious how to break a shell command into a sequence of arguments,
especially in
complex cases. shlex.split() can illustrate how to
determine the correct tokenization for args:

Note in particular that options (such as -input) and arguments (such
as eggs.txt) that are separated by
whitespace in the shell go in separate
list elements, while arguments that need quoting or backslash
escaping when
used in the shell (such as filenames containing spaces or the echo command
shown
above) are single list elements.

On Windows, if args is a sequence, it will be converted to a string in a
manner described in Converting an
argument sequence to a string on Windows. This is because
the underlying CreateProcess() operates on
strings.

Changed in version 3.6: args parameter accepts a path-like object if shell is
False and a sequence
containing path-like objects on POSIX.

Changed in version 3.8: args parameter accepts a path-like object if shell is
False and a sequence
containing bytes and path-like objects
on Windows.

The shell argument (which defaults to False) specifies whether to use
the shell as the program to execute. If
shell is True, it is
recommended to pass args as a string rather than as a sequence.

On POSIX with shell=True, the shell defaults to /bin/sh. If
args is a string, the string specifies the
command
to execute through the shell. This means that the string must be
formatted exactly as it would be
when typed at the shell prompt. This
includes, for example, quoting or backslash escaping filenames with
spaces in
them. If args is a sequence, the first item specifies the command string, and
any additional items
will be treated as additional arguments to the shell
itself. That is to say, Popen does the equivalent of:

On Windows with shell=True, the COMSPEC environment variable
specifies the default shell. The only time
you need to specify
shell=True on Windows is when the command you wish to execute is built
into the
shell (e.g. dir or copy). You do not need
shell=True to run a batch file or console-based executable.

Note:
Read the Security Considerations section before using shell=True.

Popen(["/usr/bin/git", "commit", "-m", "Fixes a bug."])

>>> import shlex, subprocess

>>> command_line = input()

/bin/vikings -input eggs.txt -output "spam spam.txt" -cmd "echo '$MONEY'"

>>> args = shlex.split(command_line)

>>> print(args)

['/bin/vikings', '-input', 'eggs.txt', '-output', 'spam spam.txt', '-cmd', "echo

>>> p = subprocess.Popen(args) # Success!

>>>

Popen(['/bin/sh', '-c', args[0], args[1], ...])

Go3.10.2

https://docs.python.org/3/library/shlex.html#shlex.split
https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/glossary.html#term-path-like-object
https://www.python.org/

bufsize will be supplied as the corresponding argument to the
open() function when creating the
stdin/stdout/stderr pipe
file objects:

0 means unbuffered (read and write are one
system call and can return short)
1 means line buffered
(only usable if universal_newlines=True i.e., in a text mode)
any other positive value means use a buffer of approximately that
size
negative bufsize (the default) means the system default of
io.DEFAULT_BUFFER_SIZE will be used.

Changed in version 3.3.1: bufsize now defaults to -1 to enable buffering by default to match the
behavior that
most code expects. In versions prior to Python 3.2.4 and
3.3.1 it incorrectly defaulted to 0 which was
unbuffered
and allowed short reads. This was unintentional and did not match the
behavior of Python 2 as
most code expected.

The executable argument specifies a replacement program to execute. It
is very seldom needed. When
shell=False, executable replaces the
program to execute specified by args. However, the original args is
still passed to the program. Most programs treat the program specified
by args as the command name, which
can then be different from the program
actually executed. On POSIX, the args name
becomes the display
name for the executable in utilities such as
ps. If shell=True, on POSIX the executable argument
specifies
a replacement shell for the default /bin/sh.

Changed in version 3.6: executable parameter accepts a path-like object on POSIX.

Changed in version 3.8: executable parameter accepts a bytes and path-like object
on Windows.

stdin, stdout and stderr specify the executed program’s standard input,
standard output and standard error file
handles, respectively. Valid values
are PIPE, DEVNULL, an existing file descriptor (a positive
integer), an
existing file object, and None. PIPE
indicates that a new pipe to the child should be created. DEVNULL
indicates that the special file os.devnull will be used. With the
default settings of None, no redirection will
occur; the child’s file
handles will be inherited from the parent. Additionally, stderr can be
STDOUT, which
indicates that the stderr data from the applications
should be captured into the same file handle as for stdout.

If preexec_fn is set to a callable object, this object will be called in the
child process just before the child is
executed.
(POSIX only)

Warning:
The preexec_fn parameter is not safe to use in the presence of threads
in your application. The
child process could deadlock before exec is
called.
If you must use it, keep it trivial! Minimize the number of
libraries
you call into.

Note:
If you need to modify the environment for the child use the env
parameter rather than doing it in a
preexec_fn.
The start_new_session parameter can take the place of a previously
common use of
preexec_fn to call os.setsid() in the child.

Changed in version 3.8: The preexec_fn parameter is no longer supported in subinterpreters.
The use of the
parameter in a subinterpreter raises
RuntimeError. The new restriction may affect applications that
are
deployed in mod_wsgi, uWSGI, and other embedded environments.

If close_fds is true, all file descriptors except 0, 1 and
2 will be closed before the child process is executed.
Otherwise
when close_fds is false, file descriptors obey their inheritable flag
as described in Inheritance of
File Descriptors.

Go3.10.2

https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/glossary.html#term-file-object
https://docs.python.org/3/library/os.html#os.devnull
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/os.html#fd-inheritance
https://www.python.org/

On Windows, if close_fds is true then no handles will be inherited by the
child process unless explicitly
passed in the handle_list element of
STARTUPINFO.lpAttributeList, or by standard handle
redirection.

Changed in version 3.2: The default for close_fds was changed from False to
what is described above.

Changed in version 3.7: On Windows the default for close_fds was changed from False to
True when
redirecting the standard handles. It’s now possible to
set close_fds to True when redirecting the standard
handles.

pass_fds is an optional sequence of file descriptors to keep open
between the parent and child. Providing any
pass_fds forces
close_fds to be True. (POSIX only)

Changed in version 3.2: The pass_fds parameter was added.

If cwd is not None, the function changes the working directory to
cwd before executing the child. cwd can be
a string, bytes or
path-like object. On POSIX, the function
looks for executable (or for the first item in args)
relative to cwd
if the executable path is a relative path.

Changed in version 3.6: cwd parameter accepts a path-like object on POSIX.

Changed in version 3.7: cwd parameter accepts a path-like object on Windows.

Changed in version 3.8: cwd parameter accepts a bytes object on Windows.

If restore_signals is true (the default) all signals that Python has set to
SIG_IGN are restored to SIG_DFL in
the child process before the exec.
Currently this includes the SIGPIPE, SIGXFZ and SIGXFSZ signals.
(POSIX only)

Changed in version 3.2: restore_signals was added.

If start_new_session is true the setsid() system call will be made in the
child process prior to the execution of
the subprocess. (POSIX only)

Changed in version 3.2: start_new_session was added.

If group is not None, the setregid() system call will be made in the
child process prior to the execution of the
subprocess. If the provided
value is a string, it will be looked up via grp.getgrnam() and
the value in
gr_gid will be used. If the value is an integer, it
will be passed verbatim. (POSIX only)

Availability: POSIX

New in version 3.9.

If extra_groups is not None, the setgroups() system call will be
made in the child process prior to the
execution of the subprocess.
Strings provided in extra_groups will be looked up via
grp.getgrnam() and
the values in gr_gid will be used.
Integer values will be passed verbatim. (POSIX only)

Availability: POSIX

New in version 3.9.

If user is not None, the setreuid() system call will be made in the
child process prior to the execution of the
subprocess. If the provided
value is a string, it will be looked up via pwd.getpwnam() and
the value in
pw_uid will be used. If the value is an integer, it will
be passed verbatim. (POSIX only)

Go3.10.2

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/library/grp.html#grp.getgrnam
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/grp.html#grp.getgrnam
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/pwd.html#pwd.getpwnam
https://www.python.org/

Availability: POSIX

New in version 3.9.

If umask is not negative, the umask() system call will be made in the
child process prior to the execution of
the subprocess.

Availability: POSIX

New in version 3.9.

If env is not None, it must be a mapping that defines the environment
variables for the new process; these
are used instead of the default
behavior of inheriting the current process’ environment.

Note:
If specified, env must provide any variables required for the program to
execute. On Windows, in
order to run a side-by-side assembly the
specified env must include a valid SystemRoot.

If encoding or errors are specified, or text is true, the file objects
stdin, stdout and stderr are opened in text
mode with the specified
encoding and errors, as described above in Frequently Used Arguments.
The
universal_newlines argument is equivalent to text and is provided
for backwards compatibility. By default, file
objects are opened in binary mode.

New in version 3.6: encoding and errors were added.

New in version 3.7: text was added as a more readable alias for universal_newlines.

If given, startupinfo will be a STARTUPINFO object, which is
passed to the underlying CreateProcess
function.
creationflags, if given, can be one or more of the following flags:

CREATE_NEW_CONSOLE

CREATE_NEW_PROCESS_GROUP

ABOVE_NORMAL_PRIORITY_CLASS

BELOW_NORMAL_PRIORITY_CLASS

HIGH_PRIORITY_CLASS

IDLE_PRIORITY_CLASS

NORMAL_PRIORITY_CLASS

REALTIME_PRIORITY_CLASS

CREATE_NO_WINDOW

DETACHED_PROCESS

CREATE_DEFAULT_ERROR_MODE

CREATE_BREAKAWAY_FROM_JOB

pipesize can be used to change the size of the pipe when
PIPE is used for stdin, stdout or stderr. The size of
the pipe
is only changed on platforms that support this (only Linux at this time of
writing). Other platforms will
ignore this parameter.

New in version 3.10: The pipesize parameter was added.

Popen objects are supported as context managers via the with statement:
on exit, standard file descriptors
are closed, and the process is waited for.

with Popen(["ifconfig"], stdout=PIPE) as proc:

 log.write(proc.stdout.read())

Go3.10.2

https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://en.wikipedia.org/wiki/Side-by-Side_Assembly
https://docs.python.org/3/reference/compound_stmts.html#with
https://www.python.org/

Popen and the other functions in this module that use it raise an
auditing event subprocess.Popen with
arguments
executable, args, cwd, and env. The value for args
may be a single string or a list of strings,
depending on platform.

Changed in version 3.2: Added context manager support.

Changed in version 3.6: Popen destructor now emits a ResourceWarning warning if the child
process is still
running.

Changed in version 3.8: Popen can use os.posix_spawn() in some cases for better
performance. On
Windows Subsystem for Linux and QEMU User Emulation,
Popen constructor using os.posix_spawn() no
longer raise an
exception on errors like missing program, but the child process fails
with a non-zero
returncode.

Exceptions

Exceptions raised in the child process, before the new program has started to
execute, will be re-raised in the
parent.

The most common exception raised is OSError. This occurs, for example,
when trying to execute a non-existent
file. Applications should prepare for
OSError exceptions. Note that, when shell=True, OSError
will be raised
by the child only if the selected shell itself was not found.
To determine if the shell failed to find the requested
application, it is
necessary to check the return code or output from the subprocess.

A ValueError will be raised if Popen is called with invalid
arguments.

check_call() and check_output() will raise
CalledProcessError if the called process returns a non-zero
return
code.

All of the functions and methods that accept a timeout parameter, such as
call() and Popen.communicate()
will raise TimeoutExpired if
the timeout expires before the process exits.

Exceptions defined in this module all inherit from SubprocessError.

New in version 3.3: The SubprocessError base class was added.

Security Considerations

Unlike some other popen functions, this implementation will never
implicitly call a system shell. This means that all
characters,
including shell metacharacters, can safely be passed to child processes.
If the shell is invoked
explicitly, via shell=True, it is the application’s
responsibility to ensure that all whitespace and metacharacters
are
quoted appropriately to avoid
shell injection
vulnerabilities. On some platforms, it is possible
to use
shlex.quote() for this escaping.

Popen Objects

Instances of the Popen class have the following methods:

Popen.poll()
Check if child process has terminated. Set and return
returncode attribute. Otherwise, returns None.

Go3.10.2

https://docs.python.org/3/library/sys.html#auditing
https://docs.python.org/3/library/exceptions.html#ResourceWarning
https://docs.python.org/3/library/os.html#os.posix_spawn
https://docs.python.org/3/library/os.html#os.posix_spawn
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#ValueError
https://en.wikipedia.org/wiki/Shell_injection#Shell_injection
https://docs.python.org/3/library/shlex.html#shlex-quote-warning
https://docs.python.org/3/library/shlex.html#shlex.quote
https://www.python.org/

Popen.wait(timeout=None)

Wait for child process to terminate. Set and return
returncode attribute.

If the process does not terminate after timeout seconds, raise a
TimeoutExpired exception. It is safe to
catch this exception and
retry the wait.

Note:
This will deadlock when using stdout=PIPE or stderr=PIPE
and the child process generates
enough output to a pipe such that
it blocks waiting for the OS pipe buffer to accept more data.
Use
Popen.communicate() when using pipes to avoid that.

Note:
The function is implemented using a busy loop (non-blocking call and
short sleeps). Use the
asyncio module for an asynchronous wait:
see asyncio.create_subprocess_exec.

Changed in version 3.3: timeout was added.

Popen.communicate(input=None, timeout=None)
Interact with process: Send data to stdin. Read data from stdout and stderr,
until end-of-file is reached. Wait
for process to terminate and set the
returncode attribute. The optional input argument should be
data to be
sent to the child process, or None, if no data should be sent
to the child. If streams were opened in text mode,
input must be a string.
Otherwise, it must be bytes.

communicate() returns a tuple (stdout_data, stderr_data).
The data will be strings if streams were
opened in text mode; otherwise,
bytes.

Note that if you want to send data to the process’s stdin, you need to create
the Popen object with
stdin=PIPE. Similarly, to get anything other than
None in the result tuple, you need to give stdout=PIPE
and/or
stderr=PIPE too.

If the process does not terminate after timeout seconds, a
TimeoutExpired exception will be raised.
Catching this exception and
retrying communication will not lose any output.

The child process is not killed if the timeout expires, so in order to
cleanup properly a well-behaved
application should kill the child process and
finish communication:

Note:
The data read is buffered in memory, so do not use this method if the data
size is large or
unlimited.

Changed in version 3.3: timeout was added.

Popen.send_signal(signal)
Sends the signal signal to the child.

Do nothing if the process completed.

proc = subprocess.Popen(...)

try:

 outs, errs = proc.communicate(timeout=15)

except TimeoutExpired:

 proc.kill()

 outs, errs = proc.communicate()

Go3.10.2

https://docs.python.org/3/library/asyncio.html#module-asyncio
https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.create_subprocess_exec
https://www.python.org/

Note:
On Windows, SIGTERM is an alias for terminate(). CTRL_C_EVENT and
CTRL_BREAK_EVENT can be sent to processes started with a creationflags
parameter which includes
CREATE_NEW_PROCESS_GROUP.

Popen.terminate()
Stop the child. On POSIX OSs the method sends SIGTERM to the
child. On Windows the Win32 API function
TerminateProcess() is called
to stop the child.

Popen.kill()
Kills the child. On POSIX OSs the function sends SIGKILL to the child.
On Windows kill() is an alias for
terminate().

The following attributes are also available:

Popen.args

The args argument as it was passed to Popen – a
sequence of program arguments or else a single string.

New in version 3.3.

Popen.stdin

If the stdin argument was PIPE, this attribute is a writeable
stream object as returned by open(). If the
encoding or errors
arguments were specified or the universal_newlines argument was True,
the stream is a
text stream, otherwise it is a byte stream. If the stdin
argument was not PIPE, this attribute is None.

Popen.stdout

If the stdout argument was PIPE, this attribute is a readable
stream object as returned by open(). Reading
from the stream provides
output from the child process. If the encoding or errors arguments were
specified or
the universal_newlines argument was True, the stream is a
text stream, otherwise it is a byte stream. If the
stdout argument was not
PIPE, this attribute is None.

Popen.stderr

If the stderr argument was PIPE, this attribute is a readable
stream object as returned by open(). Reading
from the stream provides
error output from the child process. If the encoding or errors arguments
were
specified or the universal_newlines argument was True, the stream
is a text stream, otherwise it is a byte
stream. If the stderr argument was
not PIPE, this attribute is None.

Warning:
Use communicate() rather than .stdin.write,
.stdout.read or .stderr.read to avoid
deadlocks due to any of the other OS pipe buffers filling up and blocking the
child process.

Popen.pid

The process ID of the child process.

Note that if you set the shell argument to True, this is the process ID
of the spawned shell.

Popen.returncode

The child return code, set by poll() and wait() (and indirectly
by communicate()). A None value
indicates that the process
hasn’t terminated yet.

A i l i di h h hild i d b i l (POSIX l)

Go3.10.2

https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/functions.html#open
https://www.python.org/

A negative value -N indicates that the child was terminated by signal
N (POSIX only).

Windows Popen Helpers

The STARTUPINFO class and following constants are only available
on Windows.

class subprocess.STARTUPINFO(*, dwFlags=0, hStdInput=None, hStdOutput=None,
hStdError=None, wShowWindow=0, lpAttributeList=None)

Partial support of the Windows
STARTUPINFO
structure is used for Popen creation. The following attributes
can
be set by passing them as keyword-only arguments.

Changed in version 3.7: Keyword-only argument support was added.

dwFlags

A bit field that determines whether certain STARTUPINFO
attributes are used when the process creates a
window.

hStdInput

If dwFlags specifies STARTF_USESTDHANDLES, this attribute
is the standard input handle for the
process. If
STARTF_USESTDHANDLES is not specified, the default for standard
input is the keyboard
buffer.

hStdOutput

If dwFlags specifies STARTF_USESTDHANDLES, this attribute
is the standard output handle for the
process. Otherwise, this attribute
is ignored and the default for standard output is the console window’s
buffer.

hStdError

If dwFlags specifies STARTF_USESTDHANDLES, this attribute
is the standard error handle for the
process. Otherwise, this attribute is
ignored and the default for standard error is the console window’s
buffer.

wShowWindow

If dwFlags specifies STARTF_USESHOWWINDOW, this attribute
can be any of the values that can be
specified in the nCmdShow
parameter for the
ShowWindow
function, except for SW_SHOWDEFAULT.
Otherwise, this attribute is
ignored.

SW_HIDE is provided for this attribute. It is used when
Popen is called with shell=True.

lpAttributeList

A dictionary of additional attributes for process creation as given in
STARTUPINFOEX, see
UpdateProcThreadAttribute.

Supported attributes:

handle_list
Sequence of handles that will be inherited. close_fds must be true if
non-empty.

si = subprocess.STARTUPINFO()

si.dwFlags = subprocess.STARTF_USESTDHANDLES | subprocess.STARTF_USESHOWWINDOW

Go3.10.2

https://msdn.microsoft.com/en-us/library/ms686331(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms633548(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686880(v=vs.85).aspx
https://www.python.org/

q _ p y

The handles must be temporarily made inheritable by
os.set_handle_inheritable() when
passed to the Popen
constructor, else OSError will be raised with Windows error
ERROR_INVALID_PARAMETER (87).

Warning:
In a multithreaded process, use caution to avoid leaking handles
that are marked
inheritable when combining this feature with
concurrent calls to other process creation functions
that inherit
all handles such as os.system(). This also applies to
standard handle redirection,
which temporarily creates inheritable
handles.

New in version 3.7.

Windows Constants

The subprocess module exposes the following constants.

subprocess.STD_INPUT_HANDLE

The standard input device. Initially, this is the console input buffer,
CONIN$.

subprocess.STD_OUTPUT_HANDLE

The standard output device. Initially, this is the active console screen
buffer, CONOUT$.

subprocess.STD_ERROR_HANDLE

The standard error device. Initially, this is the active console screen
buffer, CONOUT$.

subprocess.SW_HIDE

Hides the window. Another window will be activated.

subprocess.STARTF_USESTDHANDLES

Specifies that the STARTUPINFO.hStdInput,
STARTUPINFO.hStdOutput, and
STARTUPINFO.hStdError attributes
contain additional information.

subprocess.STARTF_USESHOWWINDOW

Specifies that the STARTUPINFO.wShowWindow attribute contains
additional information.

subprocess.CREATE_NEW_CONSOLE

The new process has a new console, instead of inheriting its parent’s
console (the default).

subprocess.CREATE_NEW_PROCESS_GROUP

A Popen creationflags parameter to specify that a new process
group will be created. This flag is
necessary for using os.kill()
on the subprocess.

This flag is ignored if CREATE_NEW_CONSOLE is specified.

subprocess.ABOVE_NORMAL_PRIORITY_CLASS

A Popen creationflags parameter to specify that a new process
will have an above average priority.

New in version 3.7.

subprocess.BELOW_NORMAL_PRIORITY_CLASS

Go3.10.2

https://docs.python.org/3/library/os.html#os.set_handle_inheritable
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/os.html#os.system
https://docs.python.org/3/library/os.html#os.kill
https://www.python.org/

A Popen creationflags parameter to specify that a new process
will have a below average priority.

New in version 3.7.

subprocess.HIGH_PRIORITY_CLASS

A Popen creationflags parameter to specify that a new process
will have a high priority.

New in version 3.7.

subprocess.IDLE_PRIORITY_CLASS

A Popen creationflags parameter to specify that a new process
will have an idle (lowest) priority.

New in version 3.7.

subprocess.NORMAL_PRIORITY_CLASS

A Popen creationflags parameter to specify that a new process
will have an normal priority. (default)

New in version 3.7.

subprocess.REALTIME_PRIORITY_CLASS

A Popen creationflags parameter to specify that a new process
will have realtime priority.
You should
almost never use REALTIME_PRIORITY_CLASS, because this interrupts
system threads that manage
mouse input, keyboard input, and background disk
flushing. This class can be appropriate for applications
that “talk” directly
to hardware or that perform brief tasks that should have limited interruptions.

New in version 3.7.

subprocess.CREATE_NO_WINDOW

A Popen creationflags parameter to specify that a new process
will not create a window.

New in version 3.7.

subprocess.DETACHED_PROCESS

A Popen creationflags parameter to specify that a new process
will not inherit its parent’s console.
This
value cannot be used with CREATE_NEW_CONSOLE.

New in version 3.7.

subprocess.CREATE_DEFAULT_ERROR_MODE

A Popen creationflags parameter to specify that a new process
does not inherit the error mode of the
calling process. Instead, the new
process gets the default error mode.
This feature is particularly useful for
multithreaded shell applications
that run with hard errors disabled.

New in version 3.7.

subprocess.CREATE_BREAKAWAY_FROM_JOB

A Popen creationflags parameter to specify that a new process
is not associated with the job.

New in version 3.7.

Older high-level API

Prior to Python 3 5 these three functions comprised the high level API to subprocess You can now use run() in

Go3.10.2

https://www.python.org/

Prior to Python 3.5, these three functions comprised the high level API to
subprocess. You can now use run() in
many cases, but lots of existing code
calls these functions.

subprocess.call(args, *, stdin=None, stdout=None, stderr=None, shell=False, cwd=None,
timeout=None, **other_popen_kwargs)

Run the command described by args. Wait for command to complete, then
return the returncode attribute.

Code needing to capture stdout or stderr should use run() instead:

To suppress stdout or stderr, supply a value of DEVNULL.

The arguments shown above are merely some common ones.
The full function signature is the
same as that
of the Popen constructor - this function passes all
supplied arguments other than timeout directly through to
that interface.

Note:
Do not use stdout=PIPE or stderr=PIPE with this
function. The child process will block if it
generates enough
output to a pipe to fill up the OS pipe buffer as the pipes are
not being read from.

Changed in version 3.3: timeout was added.

subprocess.check_call(args, *, stdin=None, stdout=None, stderr=None, shell=False,
cwd=None, timeout=None, **other_popen_kwargs)

Run command with arguments. Wait for command to complete. If the return
code was zero then return,
otherwise raise CalledProcessError. The
CalledProcessError object will have the return code in the
returncode attribute.
If check_call() was unable to start the process it will propagate the exception
that
was raised.

Code needing to capture stdout or stderr should use run() instead:

To suppress stdout or stderr, supply a value of DEVNULL.

The arguments shown above are merely some common ones.
The full function signature is the
same as that
of the Popen constructor - this function passes all
supplied arguments other than timeout directly through to
that interface.

Note:
Do not use stdout=PIPE or stderr=PIPE with this
function. The child process will block if it
generates enough
output to a pipe to fill up the OS pipe buffer as the pipes are
not being read from.

Changed in version 3.3: timeout was added.

subprocess.check_output(args, *, stdin=None, stderr=None, shell=False, cwd=None,
encoding=None, errors=None, universal_newlines=None, timeout=None, text=None,
**other_popen_kwargs)

Run command with arguments and return its output.

If the return code was non-zero it raises a CalledProcessError. The
CalledProcessError object will
have the return code in the
returncode attribute and any output in the
output attribute.

This is equivalent to:

run(...).returncode

run(..., check=True)

Go3.10.2

https://www.python.org/

This is equivalent to:

The arguments shown above are merely some common ones.
The full function signature is largely the same
as that of run() -
most arguments are passed directly through to that interface.
One API deviation from
run() behavior exists: passing input=None
will behave the same as input=b'' (or input='',
depending on other
arguments) rather than using the parent’s standard input file handle.

By default, this function will return the data as encoded bytes. The actual
encoding of the output data may
depend on the command being invoked, so the
decoding to text will often need to be handled at the
application level.

This behaviour may be overridden by setting text, encoding, errors,
or universal_newlines to True as
described in
Frequently Used Arguments and run().

To also capture standard error in the result, use
stderr=subprocess.STDOUT:

New in version 3.1.

Changed in version 3.3: timeout was added.

Changed in version 3.4: Support for the input keyword argument was added.

Changed in version 3.6: encoding and errors were added. See run() for details.

New in version 3.7: text was added as a more readable alias for universal_newlines.

Replacing Older Functions with the subprocess Module

In this section, “a becomes b” means that b can be used as a replacement for a.

Note:
All “a” functions in this section fail (more or less) silently if the
executed program cannot be found; the
“b” replacements raise OSError
instead.

In addition, the replacements using check_output() will fail with a
CalledProcessError if the requested
operation produces a non-zero
return code. The output is still available as the
output attribute of the raised
exception.

In the following examples, we assume that the relevant functions have already
been imported from the
subprocess module.

Replacing /bin/sh shell command substitution

output=$(mycmd myarg)

b

run(..., check=True, stdout=PIPE).stdout

>>> subprocess.check_output(

... "ls non_existent_file; exit 0",

... stderr=subprocess.STDOUT,

... shell=True)

'ls: non_existent_file: No such file or directory\n'

>>>

Go3.10.2

https://docs.python.org/3/library/exceptions.html#OSError
https://www.python.org/

becomes:

Replacing shell pipeline

output=$(dmesg | grep hda)

becomes:

The p1.stdout.close() call after starting the p2 is important in order for
p1 to receive a SIGPIPE if p2 exits
before p1.

Alternatively, for trusted input, the shell’s own pipeline support may still
be used directly:

output=$(dmesg | grep hda)

becomes:

Replacing os.system()

Notes:

Calling the program through the shell is usually not required.
The call() return value is encoded differently to that of
os.system().
The os.system() function ignores SIGINT and SIGQUIT signals while
the command is running, but the caller
must do this separately when
using the subprocess module.

A more realistic example would look like this:

Replacing the os.spawn family

output = check_output(["mycmd", "myarg"])

p1 = Popen(["dmesg"], stdout=PIPE)

p2 = Popen(["grep", "hda"], stdin=p1.stdout, stdout=PIPE)

p1.stdout.close() # Allow p1 to receive a SIGPIPE if p2 exits.

output = p2.communicate()[0]

output = check_output("dmesg | grep hda", shell=True)

sts = os.system("mycmd" + " myarg")

becomes

retcode = call("mycmd" + " myarg", shell=True)

try:

 retcode = call("mycmd" + " myarg", shell=True)

 if retcode < 0:

 print("Child was terminated by signal", -retcode, file=sys.stderr)

 else:

 print("Child returned", retcode, file=sys.stderr)

except OSError as e:

 print("Execution failed:", e, file=sys.stderr)

Go3.10.2

https://docs.python.org/3/library/os.html#os.system
https://docs.python.org/3/library/os.html#os.system
https://docs.python.org/3/library/os.html#os.system
https://docs.python.org/3/library/os.html#os.spawnl
https://www.python.org/

P_NOWAIT example:

P_WAIT example:

Vector example:

Environment example:

Replacing os.popen(), os.popen2(), os.popen3()

Return code handling translates as follows:

pid = os.spawnlp(os.P_NOWAIT, "/bin/mycmd", "mycmd", "myarg")

==>

pid = Popen(["/bin/mycmd", "myarg"]).pid

retcode = os.spawnlp(os.P_WAIT, "/bin/mycmd", "mycmd", "myarg")

==>

retcode = call(["/bin/mycmd", "myarg"])

os.spawnvp(os.P_NOWAIT, path, args)

==>

Popen([path] + args[1:])

os.spawnlpe(os.P_NOWAIT, "/bin/mycmd", "mycmd", "myarg", env)

==>

Popen(["/bin/mycmd", "myarg"], env={"PATH": "/usr/bin"})

(child_stdin, child_stdout) = os.popen2(cmd, mode, bufsize)

==>

p = Popen(cmd, shell=True, bufsize=bufsize,

 stdin=PIPE, stdout=PIPE, close_fds=True)

(child_stdin, child_stdout) = (p.stdin, p.stdout)

(child_stdin,

 child_stdout,

 child_stderr) = os.popen3(cmd, mode, bufsize)

==>

p = Popen(cmd, shell=True, bufsize=bufsize,

 stdin=PIPE, stdout=PIPE, stderr=PIPE, close_fds=True)

(child_stdin,

 child_stdout,

 child_stderr) = (p.stdin, p.stdout, p.stderr)

(child_stdin, child_stdout_and_stderr) = os.popen4(cmd, mode, bufsize)

==>

p = Popen(cmd, shell=True, bufsize=bufsize,

 stdin=PIPE, stdout=PIPE, stderr=STDOUT, close_fds=True)

(child_stdin, child_stdout_and_stderr) = (p.stdin, p.stdout)

pipe = os.popen(cmd, 'w')

...

rc = pipe.close()

if i d 8

Go3.10.2

https://docs.python.org/3/library/os.html#os.popen
https://www.python.org/

Replacing functions from the popen2 module

Note:
If the cmd argument to popen2 functions is a string, the command is executed
through /bin/sh. If it is a
list, the command is directly executed.

popen2.Popen3 and popen2.Popen4 basically work as
subprocess.Popen, except that:

Popen raises an exception if the execution fails.
The capturestderr argument is replaced with the stderr argument.
stdin=PIPE and stdout=PIPE must be specified.
popen2 closes all file descriptors by default, but you have to specify
close_fds=True with Popen to
guarantee this behavior on
all platforms or past Python versions.

Legacy Shell Invocation Functions

This module also provides the following legacy functions from the 2.x
commands module. These operations
implicitly invoke the system shell and
none of the guarantees described above regarding security and exception
handling consistency are valid for these functions.

subprocess.getstatusoutput(cmd)
Return (exitcode, output) of executing cmd in a shell.

Execute the string cmd in a shell with Popen.check_output() and
return a 2-tuple (exitcode,
output). The locale encoding is used;
see the notes on Frequently Used Arguments for more details.

A trailing newline is stripped from the output.
The exit code for the command can be interpreted as the return
code
of subprocess. Example:

if rc is not None and rc >> 8:

 print("There were some errors")

==>

process = Popen(cmd, stdin=PIPE)

...

process.stdin.close()

if process.wait() != 0:

 print("There were some errors")

(child_stdout, child_stdin) = popen2.popen2("somestring", bufsize, mode)

==>

p = Popen("somestring", shell=True, bufsize=bufsize,

 stdin=PIPE, stdout=PIPE, close_fds=True)

(child_stdout, child_stdin) = (p.stdout, p.stdin)

(child_stdout, child_stdin) = popen2.popen2(["mycmd", "myarg"], bufsize, mode)

==>

p = Popen(["mycmd", "myarg"], bufsize=bufsize,

 stdin=PIPE, stdout=PIPE, close_fds=True)

(child_stdout, child_stdin) = (p.stdout, p.stdin)

>>> subprocess.getstatusoutput('ls /bin/ls')

(0, '/bin/ls')

>>> subprocess.getstatusoutput('cat /bin/junk')

(1 ' t /bi /j k N h fil di t ')

>>>

Go3.10.2

https://www.python.org/

Availability: POSIX & Windows.

Changed in version 3.3.4: Windows support was added.

The function now returns (exitcode, output) instead of (status, output)
as it did in Python 3.3.3 and earlier.
exitcode has the same value as
returncode.

subprocess.getoutput(cmd)
Return output (stdout and stderr) of executing cmd in a shell.

Like getstatusoutput(), except the exit code is ignored and the return
value is a string containing the
command’s output. Example:

Availability: POSIX & Windows.

Changed in version 3.3.4: Windows support added

Notes
Converting an argument sequence to a string on Windows

On Windows, an args sequence is converted to a string that can be parsed
using the following rules (which
correspond to the rules used by the MS C
runtime):

1. Arguments are delimited by white space, which is either a
space or a tab.
2. A string surrounded by double quotation marks is
interpreted as a single argument, regardless of white

space
contained within. A quoted string can be embedded in an
argument.
3. A double quotation mark preceded by a backslash is
interpreted as a literal double quotation mark.
4. Backslashes are interpreted literally, unless they
immediately precede a double quotation mark.
5. If backslashes immediately precede a double quotation mark,
every pair of backslashes is interpreted as a

literal
backslash. If the number of backslashes is odd, the last
backslash escapes the next double quotation
mark as
described in rule 3.

See also:

shlex

Module which provides function to parse and escape command lines.

(1, 'cat: /bin/junk: No such file or directory')

>>> subprocess.getstatusoutput('/bin/junk')

(127, 'sh: /bin/junk: not found')

>>> subprocess.getstatusoutput('/bin/kill $$')

(-15, '')

>>> subprocess.getoutput('ls /bin/ls')

'/bin/ls'

>>>

Go3.10.2

https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/shlex.html#module-shlex
https://www.python.org/

