
subprocess — Subprocess management
Source code: Lib/subprocess.py

The subprocess module allows you to spawn new processes, connect to their input/output/error pipes, and
obtain their return codes. This module intends to replace several older modules and functions:

Information about how the subprocess module can be used to replace these modules and functions can be
found in the following sections.

See also: PEP 324 – PEP proposing the subprocess module

Using the subprocess Module

The recommended approach to invoking subprocesses is to use the run() function for all use cases it can
handle. For more advanced use cases, the underlying Popen interface can be used directly.

The run() function was added in Python 3.5; if you need to retain compatibility with older versions, see the Older
high-level API section.

subprocess.run(args, *, stdin=None, input=None, stdout=None, stderr=None,
capture_output=False, shell=False, cwd=None, timeout=None, check=False, encoding=None,
errors=None, text=None, env=None, universal_newlines=None, **other_popen_kwargs)

Run the command described by args. Wait for command to complete, then return a CompletedProcess
instance.

The arguments shown above are merely the most common ones, described below in Frequently Used
Arguments (hence the use of keyword-only notation in the abbreviated signature). The full function signature
is largely the same as that of the Popen constructor - most of the arguments to this function are passed
through to that interface. (timeout, input, check, and capture_output are not.)

If capture_output is true, stdout and stderr will be captured. When used, the internal Popen object is
automatically created with stdout=PIPE and stderr=PIPE. The stdout and stderr arguments may not be
supplied at the same time as capture_output. If you wish to capture and combine both streams into one, use
stdout=PIPE and stderr=STDOUT instead of capture_output.

The timeout argument is passed to Popen.communicate(). If the timeout expires, the child process will be
killed and waited for. The TimeoutExpired exception will be re-raised after the child process has
terminated.

The input argument is passed to Popen.communicate() and thus to the subprocess’s stdin. If used it must
be a byte sequence, or a string if encoding or errors is specified or text is true. When used, the internal
Popen object is automatically created with stdin=PIPE, and the stdin argument may not be used as well.

If check is true, and the process exits with a non-zero exit code, a CalledProcessError exception will be

os.system

os.spawn*

Go3.10.2

https://github.com/python/cpython/tree/3.10/Lib/subprocess.py
https://www.python.org/dev/peps/pep-0324
https://www.python.org/

raised. Attributes of that exception hold the arguments, the exit code, and stdout and stderr if they were
captured.
If encoding or errors are specified, or text is true, file objects for stdin, stdout and stderr are opened in text
mode using the specified encoding and errors or the io.TextIOWrapper default. The universal_newlines
argument is equivalent to text and is provided for backwards compatibility. By default, file objects are opened
in binary mode.

If env is not None, it must be a mapping that defines the environment variables for the new process; these
are used instead of the default behavior of inheriting the current process’ environment. It is passed directly to
Popen.

Examples:

New in version 3.5.

Changed in version 3.6: Added encoding and errors parameters

Changed in version 3.7: Added the text parameter, as a more understandable alias of universal_newlines.
Added the capture_output parameter.

class subprocess.CompletedProcess
The return value from run(), representing a process that has finished.

args

The arguments used to launch the process. This may be a list or a string.

returncode

Exit status of the child process. Typically, an exit status of 0 indicates that it ran successfully.

A negative value -N indicates that the child was terminated by signal N (POSIX only).

stdout

Captured stdout from the child process. A bytes sequence, or a string if run() was called with an
encoding, errors, or text=True. None if stdout was not captured.

If you ran the process with stderr=subprocess.STDOUT, stdout and stderr will be combined in this
attribute, and stderr will be None.

stderr

Captured stderr from the child process. A bytes sequence, or a string if run() was called with an
encoding, errors, or text=True. None if stderr was not captured.

>>> subprocess.run(["ls", "-l"]) # doesn't capture output

CompletedProcess(args=['ls', '-l'], returncode=0)

>>> subprocess.run("exit 1", shell=True, check=True)

Traceback (most recent call last):

 ...

subprocess.CalledProcessError: Command 'exit 1' returned non-zero exit status 1

>>> subprocess.run(["ls", "-l", "/dev/null"], capture_output=True)

CompletedProcess(args=['ls', '-l', '/dev/null'], returncode=0,

stdout=b'crw-rw-rw- 1 root root 1, 3 Jan 23 16:23 /dev/null\n', stderr=b'')

>>>

Go3.10.2

https://docs.python.org/3/library/io.html#io.TextIOWrapper
https://www.python.org/

check_returncode()
If returncode is non-zero, raise a CalledProcessError.

New in version 3.5.

subprocess.DEVNULL

Special value that can be used as the stdin, stdout or stderr argument to Popen and indicates that the special
file os.devnull will be used.

New in version 3.3.

subprocess.PIPE

Special value that can be used as the stdin, stdout or stderr argument to Popen and indicates that a pipe to
the standard stream should be opened. Most useful with Popen.communicate().

subprocess.STDOUT

Special value that can be used as the stderr argument to Popen and indicates that standard error should go
into the same handle as standard output.

exception subprocess.SubprocessError
Base class for all other exceptions from this module.

New in version 3.3.

exception subprocess.TimeoutExpired
Subclass of SubprocessError, raised when a timeout expires while waiting for a child process.

cmd

Command that was used to spawn the child process.

timeout

Timeout in seconds.

output

Output of the child process if it was captured by run() or check_output(). Otherwise, None.

stdout

Alias for output, for symmetry with stderr.

stderr

Stderr output of the child process if it was captured by run(). Otherwise, None.

New in version 3.3.

Changed in version 3.5: stdout and stderr attributes added

exception subprocess.CalledProcessError
Subclass of SubprocessError, raised when a process run by check_call() or check_output() returns
a non-zero exit status.

Go3.10.2

https://docs.python.org/3/library/os.html#os.devnull
https://www.python.org/

returncode

Exit status of the child process. If the process exited due to a signal, this will be the negative signal
number.

cmd

Command that was used to spawn the child process.

output

Output of the child process if it was captured by run() or check_output(). Otherwise, None.

stdout

Alias for output, for symmetry with stderr.

stderr

Stderr output of the child process if it was captured by run(). Otherwise, None.

Changed in version 3.5: stdout and stderr attributes added

Frequently Used Arguments

To support a wide variety of use cases, the Popen constructor (and the convenience functions) accept a large
number of optional arguments. For most typical use cases, many of these arguments can be safely left at their
default values. The arguments that are most commonly needed are:

args is required for all calls and should be a string, or a sequence of program arguments. Providing a sequence
of arguments is generally preferred, as it allows the module to take care of any required escaping and quoting of
arguments (e.g. to permit spaces in file names). If passing a single string, either shell must be True (see below)
or else the string must simply name the program to be executed without specifying any arguments.

stdin, stdout and stderr specify the executed program’s standard input, standard output and standard error file
handles, respectively. Valid values are PIPE, DEVNULL, an existing file descriptor (a positive integer), an
existing file object, and None. PIPE indicates that a new pipe to the child should be created. DEVNULL indicates
that the special file os.devnull will be used. With the default settings of None, no redirection will occur; the
child’s file handles will be inherited from the parent. Additionally, stderr can be STDOUT, which indicates that the
stderr data from the child process should be captured into the same file handle as for stdout.

If encoding or errors are specified, or text (also known as universal_newlines) is true, the file objects stdin,
stdout and stderr will be opened in text mode using the encoding and errors specified in the call or the defaults
for io.TextIOWrapper.

For stdin, line ending characters '\n' in the input will be converted to the default line separator os.linesep.
For stdout and stderr, all line endings in the output will be converted to '\n'. For more information see the
documentation of the io.TextIOWrapper class when the newline argument to its constructor is None.

If text mode is not used, stdin, stdout and stderr will be opened as binary streams. No encoding or line ending
conversion is performed.

New in version 3.6: Added encoding and errors parameters.

New in version 3 7: Added the text parameter as an alias for universal newlines

Go3.10.2

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/os.html#os.devnull
https://docs.python.org/3/library/io.html#io.TextIOWrapper
https://docs.python.org/3/library/os.html#os.linesep
https://docs.python.org/3/library/io.html#io.TextIOWrapper
https://www.python.org/

New in version 3.7: Added the text parameter as an alias for universal_newlines.

Note: The newlines attribute of the file objects Popen.stdin, Popen.stdout and Popen.stderr are not
updated by the Popen.communicate() method.

If shell is True, the specified command will be executed through the shell. This can be useful if you are using
Python primarily for the enhanced control flow it offers over most system shells and still want convenient access
to other shell features such as shell pipes, filename wildcards, environment variable expansion, and expansion
of ~ to a user’s home directory. However, note that Python itself offers implementations of many shell-like
features (in particular, glob, fnmatch, os.walk(), os.path.expandvars(), os.path.expanduser(),
and shutil).

Changed in version 3.3: When universal_newlines is True, the class uses the encoding
locale.getpreferredencoding(False) instead of locale.getpreferredencoding(). See the
io.TextIOWrapper class for more information on this change.

Note: Read the Security Considerations section before using shell=True.

These options, along with all of the other options, are described in more detail in the Popen constructor
documentation.

Popen Constructor

The underlying process creation and management in this module is handled by the Popen class. It offers a lot of
flexibility so that developers are able to handle the less common cases not covered by the convenience functions.

class subprocess.Popen(args, bufsize=- 1, executable=None, stdin=None, stdout=None,
stderr=None, preexec_fn=None, close_fds=True, shell=False, cwd=None, env=None,
universal_newlines=None, startupinfo=None, creationflags=0, restore_signals=True,
start_new_session=False, pass_fds=(), *, group=None, extra_groups=None, user=None, umask=-
1, encoding=None, errors=None, text=None, pipesize=- 1)

Execute a child program in a new process. On POSIX, the class uses os.execvpe()-like behavior to
execute the child program. On Windows, the class uses the Windows CreateProcess() function. The
arguments to Popen are as follows.

args should be a sequence of program arguments or else a single string or path-like object. By default, the
program to execute is the first item in args if args is a sequence. If args is a string, the interpretation is
platform-dependent and described below. See the shell and executable arguments for additional differences
from the default behavior. Unless otherwise stated, it is recommended to pass args as a sequence.

Warning: For maximum reliability, use a fully-qualified path for the executable. To search for an
unqualified name on PATH, use shutil.which(). On all platforms, passing sys.executable is the
recommended way to launch the current Python interpreter again, and use the -m command-line format to
launch an installed module.

Resolving the path of executable (or the first item of args) is platform dependent. For POSIX, see
os.execvpe(), and note that when resolving or searching for the executable path, cwd overrides the
current working directory and env can override the PATH environment variable. For Windows, see the
documentation of the lpApplicationName and lpCommandLine parameters of WinAPI
CreateProcess, and note that when resolving or searching for the executable path with shell=False,
cwd does not override the current working directory and env cannot override the PATH environment

Go3.10.2

https://docs.python.org/3/library/glob.html#module-glob
https://docs.python.org/3/library/fnmatch.html#module-fnmatch
https://docs.python.org/3/library/os.html#os.walk
https://docs.python.org/3/library/os.path.html#os.path.expandvars
https://docs.python.org/3/library/os.path.html#os.path.expanduser
https://docs.python.org/3/library/shutil.html#module-shutil
https://docs.python.org/3/library/locale.html#locale.getpreferredencoding
https://docs.python.org/3/library/io.html#io.TextIOWrapper
https://docs.python.org/3/library/os.html#os.execvpe
https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/library/shutil.html#shutil.which
https://docs.python.org/3/library/sys.html#sys.executable
https://docs.python.org/3/library/os.html#os.execvpe
https://www.python.org/

c d does ot o e de t e cu e t o g d ecto y a d e ca ot o e de t e e o e t
variable. Using a full path avoids all of these variations.

An example of passing some arguments to an external program as a sequence is:

On POSIX, if args is a string, the string is interpreted as the name or path of the program to execute.
However, this can only be done if not passing arguments to the program.

Note: It may not be obvious how to break a shell command into a sequence of arguments, especially in
complex cases. shlex.split() can illustrate how to determine the correct tokenization for args:

Note in particular that options (such as -input) and arguments (such as eggs.txt) that are separated by
whitespace in the shell go in separate list elements, while arguments that need quoting or backslash
escaping when used in the shell (such as filenames containing spaces or the echo command shown
above) are single list elements.

On Windows, if args is a sequence, it will be converted to a string in a manner described in Converting an
argument sequence to a string on Windows. This is because the underlying CreateProcess() operates on
strings.

Changed in version 3.6: args parameter accepts a path-like object if shell is False and a sequence
containing path-like objects on POSIX.

Changed in version 3.8: args parameter accepts a path-like object if shell is False and a sequence
containing bytes and path-like objects on Windows.

The shell argument (which defaults to False) specifies whether to use the shell as the program to execute. If
shell is True, it is recommended to pass args as a string rather than as a sequence.

On POSIX with shell=True, the shell defaults to /bin/sh. If args is a string, the string specifies the
command to execute through the shell. This means that the string must be formatted exactly as it would be
when typed at the shell prompt. This includes, for example, quoting or backslash escaping filenames with
spaces in them. If args is a sequence, the first item specifies the command string, and any additional items
will be treated as additional arguments to the shell itself. That is to say, Popen does the equivalent of:

On Windows with shell=True, the COMSPEC environment variable specifies the default shell. The only time
you need to specify shell=True on Windows is when the command you wish to execute is built into the
shell (e.g. dir or copy). You do not need shell=True to run a batch file or console-based executable.

Note: Read the Security Considerations section before using shell=True.

Popen(["/usr/bin/git", "commit", "-m", "Fixes a bug."])

>>> import shlex, subprocess

>>> command_line = input()

/bin/vikings -input eggs.txt -output "spam spam.txt" -cmd "echo '$MONEY'"

>>> args = shlex.split(command_line)

>>> print(args)

['/bin/vikings', '-input', 'eggs.txt', '-output', 'spam spam.txt', '-cmd', "echo

>>> p = subprocess.Popen(args) # Success!

>>>

Popen(['/bin/sh', '-c', args[0], args[1], ...])

Go3.10.2

https://docs.python.org/3/library/shlex.html#shlex.split
https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/glossary.html#term-path-like-object
https://www.python.org/

bufsize will be supplied as the corresponding argument to the open() function when creating the
stdin/stdout/stderr pipe file objects:

0 means unbuffered (read and write are one system call and can return short)
1 means line buffered (only usable if universal_newlines=True i.e., in a text mode)
any other positive value means use a buffer of approximately that size
negative bufsize (the default) means the system default of io.DEFAULT_BUFFER_SIZE will be used.

Changed in version 3.3.1: bufsize now defaults to -1 to enable buffering by default to match the behavior that
most code expects. In versions prior to Python 3.2.4 and 3.3.1 it incorrectly defaulted to 0 which was
unbuffered and allowed short reads. This was unintentional and did not match the behavior of Python 2 as
most code expected.

The executable argument specifies a replacement program to execute. It is very seldom needed. When
shell=False, executable replaces the program to execute specified by args. However, the original args is
still passed to the program. Most programs treat the program specified by args as the command name, which
can then be different from the program actually executed. On POSIX, the args name becomes the display
name for the executable in utilities such as ps. If shell=True, on POSIX the executable argument specifies
a replacement shell for the default /bin/sh.

Changed in version 3.6: executable parameter accepts a path-like object on POSIX.

Changed in version 3.8: executable parameter accepts a bytes and path-like object on Windows.

stdin, stdout and stderr specify the executed program’s standard input, standard output and standard error file
handles, respectively. Valid values are PIPE, DEVNULL, an existing file descriptor (a positive integer), an
existing file object, and None. PIPE indicates that a new pipe to the child should be created. DEVNULL
indicates that the special file os.devnull will be used. With the default settings of None, no redirection will
occur; the child’s file handles will be inherited from the parent. Additionally, stderr can be STDOUT, which
indicates that the stderr data from the applications should be captured into the same file handle as for stdout.

If preexec_fn is set to a callable object, this object will be called in the child process just before the child is
executed. (POSIX only)

Warning: The preexec_fn parameter is not safe to use in the presence of threads in your application. The
child process could deadlock before exec is called. If you must use it, keep it trivial! Minimize the number of
libraries you call into.

Note: If you need to modify the environment for the child use the env parameter rather than doing it in a
preexec_fn. The start_new_session parameter can take the place of a previously common use of
preexec_fn to call os.setsid() in the child.

Changed in version 3.8: The preexec_fn parameter is no longer supported in subinterpreters. The use of the
parameter in a subinterpreter raises RuntimeError. The new restriction may affect applications that are
deployed in mod_wsgi, uWSGI, and other embedded environments.

If close_fds is true, all file descriptors except 0, 1 and 2 will be closed before the child process is executed.
Otherwise when close_fds is false, file descriptors obey their inheritable flag as described in Inheritance of
File Descriptors.

Go3.10.2

https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/glossary.html#term-file-object
https://docs.python.org/3/library/os.html#os.devnull
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/os.html#fd-inheritance
https://www.python.org/

On Windows, if close_fds is true then no handles will be inherited by the child process unless explicitly
passed in the handle_list element of STARTUPINFO.lpAttributeList, or by standard handle
redirection.

Changed in version 3.2: The default for close_fds was changed from False to what is described above.

Changed in version 3.7: On Windows the default for close_fds was changed from False to True when
redirecting the standard handles. It’s now possible to set close_fds to True when redirecting the standard
handles.

pass_fds is an optional sequence of file descriptors to keep open between the parent and child. Providing any
pass_fds forces close_fds to be True. (POSIX only)

Changed in version 3.2: The pass_fds parameter was added.

If cwd is not None, the function changes the working directory to cwd before executing the child. cwd can be
a string, bytes or path-like object. On POSIX, the function looks for executable (or for the first item in args)
relative to cwd if the executable path is a relative path.

Changed in version 3.6: cwd parameter accepts a path-like object on POSIX.

Changed in version 3.7: cwd parameter accepts a path-like object on Windows.

Changed in version 3.8: cwd parameter accepts a bytes object on Windows.

If restore_signals is true (the default) all signals that Python has set to SIG_IGN are restored to SIG_DFL in
the child process before the exec. Currently this includes the SIGPIPE, SIGXFZ and SIGXFSZ signals.
(POSIX only)

Changed in version 3.2: restore_signals was added.

If start_new_session is true the setsid() system call will be made in the child process prior to the execution of
the subprocess. (POSIX only)

Changed in version 3.2: start_new_session was added.

If group is not None, the setregid() system call will be made in the child process prior to the execution of the
subprocess. If the provided value is a string, it will be looked up via grp.getgrnam() and the value in
gr_gid will be used. If the value is an integer, it will be passed verbatim. (POSIX only)

Availability: POSIX

New in version 3.9.

If extra_groups is not None, the setgroups() system call will be made in the child process prior to the
execution of the subprocess. Strings provided in extra_groups will be looked up via grp.getgrnam() and
the values in gr_gid will be used. Integer values will be passed verbatim. (POSIX only)

Availability: POSIX

New in version 3.9.

If user is not None, the setreuid() system call will be made in the child process prior to the execution of the
subprocess. If the provided value is a string, it will be looked up via pwd.getpwnam() and the value in
pw_uid will be used. If the value is an integer, it will be passed verbatim. (POSIX only)

Go3.10.2

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/library/grp.html#grp.getgrnam
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/grp.html#grp.getgrnam
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/pwd.html#pwd.getpwnam
https://www.python.org/

Availability: POSIX

New in version 3.9.

If umask is not negative, the umask() system call will be made in the child process prior to the execution of
the subprocess.

Availability: POSIX

New in version 3.9.

If env is not None, it must be a mapping that defines the environment variables for the new process; these
are used instead of the default behavior of inheriting the current process’ environment.

Note: If specified, env must provide any variables required for the program to execute. On Windows, in
order to run a side-by-side assembly the specified env must include a valid SystemRoot.

If encoding or errors are specified, or text is true, the file objects stdin, stdout and stderr are opened in text
mode with the specified encoding and errors, as described above in Frequently Used Arguments. The
universal_newlines argument is equivalent to text and is provided for backwards compatibility. By default, file
objects are opened in binary mode.

New in version 3.6: encoding and errors were added.

New in version 3.7: text was added as a more readable alias for universal_newlines.

If given, startupinfo will be a STARTUPINFO object, which is passed to the underlying CreateProcess
function. creationflags, if given, can be one or more of the following flags:

CREATE_NEW_CONSOLE

CREATE_NEW_PROCESS_GROUP

ABOVE_NORMAL_PRIORITY_CLASS

BELOW_NORMAL_PRIORITY_CLASS

HIGH_PRIORITY_CLASS

IDLE_PRIORITY_CLASS

NORMAL_PRIORITY_CLASS

REALTIME_PRIORITY_CLASS

CREATE_NO_WINDOW

DETACHED_PROCESS

CREATE_DEFAULT_ERROR_MODE

CREATE_BREAKAWAY_FROM_JOB

pipesize can be used to change the size of the pipe when PIPE is used for stdin, stdout or stderr. The size of
the pipe is only changed on platforms that support this (only Linux at this time of writing). Other platforms will
ignore this parameter.

New in version 3.10: The pipesize parameter was added.

Popen objects are supported as context managers via the with statement: on exit, standard file descriptors
are closed, and the process is waited for.

with Popen(["ifconfig"], stdout=PIPE) as proc:

 log.write(proc.stdout.read())

Go3.10.2

https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://en.wikipedia.org/wiki/Side-by-Side_Assembly
https://docs.python.org/3/reference/compound_stmts.html#with
https://www.python.org/

Popen and the other functions in this module that use it raise an auditing event subprocess.Popen with
arguments executable, args, cwd, and env. The value for args may be a single string or a list of strings,
depending on platform.

Changed in version 3.2: Added context manager support.

Changed in version 3.6: Popen destructor now emits a ResourceWarning warning if the child process is still
running.

Changed in version 3.8: Popen can use os.posix_spawn() in some cases for better performance. On
Windows Subsystem for Linux and QEMU User Emulation, Popen constructor using os.posix_spawn() no
longer raise an exception on errors like missing program, but the child process fails with a non-zero
returncode.

Exceptions

Exceptions raised in the child process, before the new program has started to execute, will be re-raised in the
parent.

The most common exception raised is OSError. This occurs, for example, when trying to execute a non-existent
file. Applications should prepare for OSError exceptions. Note that, when shell=True, OSError will be raised
by the child only if the selected shell itself was not found. To determine if the shell failed to find the requested
application, it is necessary to check the return code or output from the subprocess.

A ValueError will be raised if Popen is called with invalid arguments.

check_call() and check_output() will raise CalledProcessError if the called process returns a non-zero
return code.

All of the functions and methods that accept a timeout parameter, such as call() and Popen.communicate()
will raise TimeoutExpired if the timeout expires before the process exits.

Exceptions defined in this module all inherit from SubprocessError.

New in version 3.3: The SubprocessError base class was added.

Security Considerations

Unlike some other popen functions, this implementation will never implicitly call a system shell. This means that all
characters, including shell metacharacters, can safely be passed to child processes. If the shell is invoked
explicitly, via shell=True, it is the application’s responsibility to ensure that all whitespace and metacharacters
are quoted appropriately to avoid shell injection vulnerabilities. On some platforms, it is possible to use
shlex.quote() for this escaping.

Popen Objects

Instances of the Popen class have the following methods:

Popen.poll()
Check if child process has terminated. Set and return returncode attribute. Otherwise, returns None.

Go3.10.2

https://docs.python.org/3/library/sys.html#auditing
https://docs.python.org/3/library/exceptions.html#ResourceWarning
https://docs.python.org/3/library/os.html#os.posix_spawn
https://docs.python.org/3/library/os.html#os.posix_spawn
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#ValueError
https://en.wikipedia.org/wiki/Shell_injection#Shell_injection
https://docs.python.org/3/library/shlex.html#shlex-quote-warning
https://docs.python.org/3/library/shlex.html#shlex.quote
https://www.python.org/

Popen.wait(timeout=None)

Wait for child process to terminate. Set and return returncode attribute.

If the process does not terminate after timeout seconds, raise a TimeoutExpired exception. It is safe to
catch this exception and retry the wait.

Note: This will deadlock when using stdout=PIPE or stderr=PIPE and the child process generates
enough output to a pipe such that it blocks waiting for the OS pipe buffer to accept more data. Use
Popen.communicate() when using pipes to avoid that.

Note: The function is implemented using a busy loop (non-blocking call and short sleeps). Use the
asyncio module for an asynchronous wait: see asyncio.create_subprocess_exec.

Changed in version 3.3: timeout was added.

Popen.communicate(input=None, timeout=None)
Interact with process: Send data to stdin. Read data from stdout and stderr, until end-of-file is reached. Wait
for process to terminate and set the returncode attribute. The optional input argument should be data to be
sent to the child process, or None, if no data should be sent to the child. If streams were opened in text mode,
input must be a string. Otherwise, it must be bytes.

communicate() returns a tuple (stdout_data, stderr_data). The data will be strings if streams were
opened in text mode; otherwise, bytes.

Note that if you want to send data to the process’s stdin, you need to create the Popen object with
stdin=PIPE. Similarly, to get anything other than None in the result tuple, you need to give stdout=PIPE
and/or stderr=PIPE too.

If the process does not terminate after timeout seconds, a TimeoutExpired exception will be raised.
Catching this exception and retrying communication will not lose any output.

The child process is not killed if the timeout expires, so in order to cleanup properly a well-behaved
application should kill the child process and finish communication:

Note: The data read is buffered in memory, so do not use this method if the data size is large or
unlimited.

Changed in version 3.3: timeout was added.

Popen.send_signal(signal)
Sends the signal signal to the child.

Do nothing if the process completed.

proc = subprocess.Popen(...)

try:

 outs, errs = proc.communicate(timeout=15)

except TimeoutExpired:

 proc.kill()

 outs, errs = proc.communicate()

Go3.10.2

https://docs.python.org/3/library/asyncio.html#module-asyncio
https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.create_subprocess_exec
https://www.python.org/

Note: On Windows, SIGTERM is an alias for terminate(). CTRL_C_EVENT and
CTRL_BREAK_EVENT can be sent to processes started with a creationflags parameter which includes
CREATE_NEW_PROCESS_GROUP.

Popen.terminate()
Stop the child. On POSIX OSs the method sends SIGTERM to the child. On Windows the Win32 API function
TerminateProcess() is called to stop the child.

Popen.kill()
Kills the child. On POSIX OSs the function sends SIGKILL to the child. On Windows kill() is an alias for
terminate().

The following attributes are also available:

Popen.args

The args argument as it was passed to Popen – a sequence of program arguments or else a single string.

New in version 3.3.

Popen.stdin

If the stdin argument was PIPE, this attribute is a writeable stream object as returned by open(). If the
encoding or errors arguments were specified or the universal_newlines argument was True, the stream is a
text stream, otherwise it is a byte stream. If the stdin argument was not PIPE, this attribute is None.

Popen.stdout

If the stdout argument was PIPE, this attribute is a readable stream object as returned by open(). Reading
from the stream provides output from the child process. If the encoding or errors arguments were specified or
the universal_newlines argument was True, the stream is a text stream, otherwise it is a byte stream. If the
stdout argument was not PIPE, this attribute is None.

Popen.stderr

If the stderr argument was PIPE, this attribute is a readable stream object as returned by open(). Reading
from the stream provides error output from the child process. If the encoding or errors arguments were
specified or the universal_newlines argument was True, the stream is a text stream, otherwise it is a byte
stream. If the stderr argument was not PIPE, this attribute is None.

Warning: Use communicate() rather than .stdin.write, .stdout.read or .stderr.read to avoid
deadlocks due to any of the other OS pipe buffers filling up and blocking the child process.

Popen.pid

The process ID of the child process.

Note that if you set the shell argument to True, this is the process ID of the spawned shell.

Popen.returncode

The child return code, set by poll() and wait() (and indirectly by communicate()). A None value
indicates that the process hasn’t terminated yet.

A i l i di h h hild i d b i l (POSIX l)

Go3.10.2

https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/functions.html#open
https://www.python.org/

A negative value -N indicates that the child was terminated by signal N (POSIX only).

Windows Popen Helpers

The STARTUPINFO class and following constants are only available on Windows.

class subprocess.STARTUPINFO(*, dwFlags=0, hStdInput=None, hStdOutput=None,
hStdError=None, wShowWindow=0, lpAttributeList=None)

Partial support of the Windows STARTUPINFO structure is used for Popen creation. The following attributes
can be set by passing them as keyword-only arguments.

Changed in version 3.7: Keyword-only argument support was added.

dwFlags

A bit field that determines whether certain STARTUPINFO attributes are used when the process creates a
window.

hStdInput

If dwFlags specifies STARTF_USESTDHANDLES, this attribute is the standard input handle for the
process. If STARTF_USESTDHANDLES is not specified, the default for standard input is the keyboard
buffer.

hStdOutput

If dwFlags specifies STARTF_USESTDHANDLES, this attribute is the standard output handle for the
process. Otherwise, this attribute is ignored and the default for standard output is the console window’s
buffer.

hStdError

If dwFlags specifies STARTF_USESTDHANDLES, this attribute is the standard error handle for the
process. Otherwise, this attribute is ignored and the default for standard error is the console window’s
buffer.

wShowWindow

If dwFlags specifies STARTF_USESHOWWINDOW, this attribute can be any of the values that can be
specified in the nCmdShow parameter for the ShowWindow function, except for SW_SHOWDEFAULT.
Otherwise, this attribute is ignored.

SW_HIDE is provided for this attribute. It is used when Popen is called with shell=True.

lpAttributeList

A dictionary of additional attributes for process creation as given in STARTUPINFOEX, see
UpdateProcThreadAttribute.

Supported attributes:

handle_list
Sequence of handles that will be inherited. close_fds must be true if non-empty.

si = subprocess.STARTUPINFO()

si.dwFlags = subprocess.STARTF_USESTDHANDLES | subprocess.STARTF_USESHOWWINDOW

Go3.10.2

https://msdn.microsoft.com/en-us/library/ms686331(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms633548(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686880(v=vs.85).aspx
https://www.python.org/

q _ p y

The handles must be temporarily made inheritable by os.set_handle_inheritable() when
passed to the Popen constructor, else OSError will be raised with Windows error
ERROR_INVALID_PARAMETER (87).

Warning: In a multithreaded process, use caution to avoid leaking handles that are marked
inheritable when combining this feature with concurrent calls to other process creation functions
that inherit all handles such as os.system(). This also applies to standard handle redirection,
which temporarily creates inheritable handles.

New in version 3.7.

Windows Constants

The subprocess module exposes the following constants.

subprocess.STD_INPUT_HANDLE

The standard input device. Initially, this is the console input buffer, CONIN$.

subprocess.STD_OUTPUT_HANDLE

The standard output device. Initially, this is the active console screen buffer, CONOUT$.

subprocess.STD_ERROR_HANDLE

The standard error device. Initially, this is the active console screen buffer, CONOUT$.

subprocess.SW_HIDE

Hides the window. Another window will be activated.

subprocess.STARTF_USESTDHANDLES

Specifies that the STARTUPINFO.hStdInput, STARTUPINFO.hStdOutput, and
STARTUPINFO.hStdError attributes contain additional information.

subprocess.STARTF_USESHOWWINDOW

Specifies that the STARTUPINFO.wShowWindow attribute contains additional information.

subprocess.CREATE_NEW_CONSOLE

The new process has a new console, instead of inheriting its parent’s console (the default).

subprocess.CREATE_NEW_PROCESS_GROUP

A Popen creationflags parameter to specify that a new process group will be created. This flag is
necessary for using os.kill() on the subprocess.

This flag is ignored if CREATE_NEW_CONSOLE is specified.

subprocess.ABOVE_NORMAL_PRIORITY_CLASS

A Popen creationflags parameter to specify that a new process will have an above average priority.

New in version 3.7.

subprocess.BELOW_NORMAL_PRIORITY_CLASS

Go3.10.2

https://docs.python.org/3/library/os.html#os.set_handle_inheritable
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/os.html#os.system
https://docs.python.org/3/library/os.html#os.kill
https://www.python.org/

A Popen creationflags parameter to specify that a new process will have a below average priority.

New in version 3.7.

subprocess.HIGH_PRIORITY_CLASS

A Popen creationflags parameter to specify that a new process will have a high priority.

New in version 3.7.

subprocess.IDLE_PRIORITY_CLASS

A Popen creationflags parameter to specify that a new process will have an idle (lowest) priority.

New in version 3.7.

subprocess.NORMAL_PRIORITY_CLASS

A Popen creationflags parameter to specify that a new process will have an normal priority. (default)

New in version 3.7.

subprocess.REALTIME_PRIORITY_CLASS

A Popen creationflags parameter to specify that a new process will have realtime priority. You should
almost never use REALTIME_PRIORITY_CLASS, because this interrupts system threads that manage
mouse input, keyboard input, and background disk flushing. This class can be appropriate for applications
that “talk” directly to hardware or that perform brief tasks that should have limited interruptions.

New in version 3.7.

subprocess.CREATE_NO_WINDOW

A Popen creationflags parameter to specify that a new process will not create a window.

New in version 3.7.

subprocess.DETACHED_PROCESS

A Popen creationflags parameter to specify that a new process will not inherit its parent’s console. This
value cannot be used with CREATE_NEW_CONSOLE.

New in version 3.7.

subprocess.CREATE_DEFAULT_ERROR_MODE

A Popen creationflags parameter to specify that a new process does not inherit the error mode of the
calling process. Instead, the new process gets the default error mode. This feature is particularly useful for
multithreaded shell applications that run with hard errors disabled.

New in version 3.7.

subprocess.CREATE_BREAKAWAY_FROM_JOB

A Popen creationflags parameter to specify that a new process is not associated with the job.

New in version 3.7.

Older high-level API

Prior to Python 3 5 these three functions comprised the high level API to subprocess You can now use run() in

Go3.10.2

https://www.python.org/

Prior to Python 3.5, these three functions comprised the high level API to subprocess. You can now use run() in
many cases, but lots of existing code calls these functions.

subprocess.call(args, *, stdin=None, stdout=None, stderr=None, shell=False, cwd=None,
timeout=None, **other_popen_kwargs)

Run the command described by args. Wait for command to complete, then return the returncode attribute.

Code needing to capture stdout or stderr should use run() instead:

To suppress stdout or stderr, supply a value of DEVNULL.

The arguments shown above are merely some common ones. The full function signature is the same as that
of the Popen constructor - this function passes all supplied arguments other than timeout directly through to
that interface.

Note: Do not use stdout=PIPE or stderr=PIPE with this function. The child process will block if it
generates enough output to a pipe to fill up the OS pipe buffer as the pipes are not being read from.

Changed in version 3.3: timeout was added.

subprocess.check_call(args, *, stdin=None, stdout=None, stderr=None, shell=False,
cwd=None, timeout=None, **other_popen_kwargs)

Run command with arguments. Wait for command to complete. If the return code was zero then return,
otherwise raise CalledProcessError. The CalledProcessError object will have the return code in the
returncode attribute. If check_call() was unable to start the process it will propagate the exception that
was raised.

Code needing to capture stdout or stderr should use run() instead:

To suppress stdout or stderr, supply a value of DEVNULL.

The arguments shown above are merely some common ones. The full function signature is the same as that
of the Popen constructor - this function passes all supplied arguments other than timeout directly through to
that interface.

Note: Do not use stdout=PIPE or stderr=PIPE with this function. The child process will block if it
generates enough output to a pipe to fill up the OS pipe buffer as the pipes are not being read from.

Changed in version 3.3: timeout was added.

subprocess.check_output(args, *, stdin=None, stderr=None, shell=False, cwd=None,
encoding=None, errors=None, universal_newlines=None, timeout=None, text=None,
**other_popen_kwargs)

Run command with arguments and return its output.

If the return code was non-zero it raises a CalledProcessError. The CalledProcessError object will
have the return code in the returncode attribute and any output in the output attribute.

This is equivalent to:

run(...).returncode

run(..., check=True)

Go3.10.2

https://www.python.org/

This is equivalent to:

The arguments shown above are merely some common ones. The full function signature is largely the same
as that of run() - most arguments are passed directly through to that interface. One API deviation from
run() behavior exists: passing input=None will behave the same as input=b'' (or input='',
depending on other arguments) rather than using the parent’s standard input file handle.

By default, this function will return the data as encoded bytes. The actual encoding of the output data may
depend on the command being invoked, so the decoding to text will often need to be handled at the
application level.

This behaviour may be overridden by setting text, encoding, errors, or universal_newlines to True as
described in Frequently Used Arguments and run().

To also capture standard error in the result, use stderr=subprocess.STDOUT:

New in version 3.1.

Changed in version 3.3: timeout was added.

Changed in version 3.4: Support for the input keyword argument was added.

Changed in version 3.6: encoding and errors were added. See run() for details.

New in version 3.7: text was added as a more readable alias for universal_newlines.

Replacing Older Functions with the subprocess Module

In this section, “a becomes b” means that b can be used as a replacement for a.

Note: All “a” functions in this section fail (more or less) silently if the executed program cannot be found; the
“b” replacements raise OSError instead.

In addition, the replacements using check_output() will fail with a CalledProcessError if the requested
operation produces a non-zero return code. The output is still available as the output attribute of the raised
exception.

In the following examples, we assume that the relevant functions have already been imported from the
subprocess module.

Replacing /bin/sh shell command substitution

output=$(mycmd myarg)

b

run(..., check=True, stdout=PIPE).stdout

>>> subprocess.check_output(

... "ls non_existent_file; exit 0",

... stderr=subprocess.STDOUT,

... shell=True)

'ls: non_existent_file: No such file or directory\n'

>>>

Go3.10.2

https://docs.python.org/3/library/exceptions.html#OSError
https://www.python.org/

becomes:

Replacing shell pipeline

output=$(dmesg | grep hda)

becomes:

The p1.stdout.close() call after starting the p2 is important in order for p1 to receive a SIGPIPE if p2 exits
before p1.

Alternatively, for trusted input, the shell’s own pipeline support may still be used directly:

output=$(dmesg | grep hda)

becomes:

Replacing os.system()

Notes:

Calling the program through the shell is usually not required.
The call() return value is encoded differently to that of os.system().
The os.system() function ignores SIGINT and SIGQUIT signals while the command is running, but the caller
must do this separately when using the subprocess module.

A more realistic example would look like this:

Replacing the os.spawn family

output = check_output(["mycmd", "myarg"])

p1 = Popen(["dmesg"], stdout=PIPE)

p2 = Popen(["grep", "hda"], stdin=p1.stdout, stdout=PIPE)

p1.stdout.close() # Allow p1 to receive a SIGPIPE if p2 exits.

output = p2.communicate()[0]

output = check_output("dmesg | grep hda", shell=True)

sts = os.system("mycmd" + " myarg")

becomes

retcode = call("mycmd" + " myarg", shell=True)

try:

 retcode = call("mycmd" + " myarg", shell=True)

 if retcode < 0:

 print("Child was terminated by signal", -retcode, file=sys.stderr)

 else:

 print("Child returned", retcode, file=sys.stderr)

except OSError as e:

 print("Execution failed:", e, file=sys.stderr)

Go3.10.2

https://docs.python.org/3/library/os.html#os.system
https://docs.python.org/3/library/os.html#os.system
https://docs.python.org/3/library/os.html#os.system
https://docs.python.org/3/library/os.html#os.spawnl
https://www.python.org/

P_NOWAIT example:

P_WAIT example:

Vector example:

Environment example:

Replacing os.popen(), os.popen2(), os.popen3()

Return code handling translates as follows:

pid = os.spawnlp(os.P_NOWAIT, "/bin/mycmd", "mycmd", "myarg")

==>

pid = Popen(["/bin/mycmd", "myarg"]).pid

retcode = os.spawnlp(os.P_WAIT, "/bin/mycmd", "mycmd", "myarg")

==>

retcode = call(["/bin/mycmd", "myarg"])

os.spawnvp(os.P_NOWAIT, path, args)

==>

Popen([path] + args[1:])

os.spawnlpe(os.P_NOWAIT, "/bin/mycmd", "mycmd", "myarg", env)

==>

Popen(["/bin/mycmd", "myarg"], env={"PATH": "/usr/bin"})

(child_stdin, child_stdout) = os.popen2(cmd, mode, bufsize)

==>

p = Popen(cmd, shell=True, bufsize=bufsize,

 stdin=PIPE, stdout=PIPE, close_fds=True)

(child_stdin, child_stdout) = (p.stdin, p.stdout)

(child_stdin,

 child_stdout,

 child_stderr) = os.popen3(cmd, mode, bufsize)

==>

p = Popen(cmd, shell=True, bufsize=bufsize,

 stdin=PIPE, stdout=PIPE, stderr=PIPE, close_fds=True)

(child_stdin,

 child_stdout,

 child_stderr) = (p.stdin, p.stdout, p.stderr)

(child_stdin, child_stdout_and_stderr) = os.popen4(cmd, mode, bufsize)

==>

p = Popen(cmd, shell=True, bufsize=bufsize,

 stdin=PIPE, stdout=PIPE, stderr=STDOUT, close_fds=True)

(child_stdin, child_stdout_and_stderr) = (p.stdin, p.stdout)

pipe = os.popen(cmd, 'w')

...

rc = pipe.close()

if i d 8

Go3.10.2

https://docs.python.org/3/library/os.html#os.popen
https://www.python.org/

Replacing functions from the popen2 module

Note: If the cmd argument to popen2 functions is a string, the command is executed through /bin/sh. If it is a
list, the command is directly executed.

popen2.Popen3 and popen2.Popen4 basically work as subprocess.Popen, except that:

Popen raises an exception if the execution fails.
The capturestderr argument is replaced with the stderr argument.
stdin=PIPE and stdout=PIPE must be specified.
popen2 closes all file descriptors by default, but you have to specify close_fds=True with Popen to
guarantee this behavior on all platforms or past Python versions.

Legacy Shell Invocation Functions

This module also provides the following legacy functions from the 2.x commands module. These operations
implicitly invoke the system shell and none of the guarantees described above regarding security and exception
handling consistency are valid for these functions.

subprocess.getstatusoutput(cmd)
Return (exitcode, output) of executing cmd in a shell.

Execute the string cmd in a shell with Popen.check_output() and return a 2-tuple (exitcode,
output). The locale encoding is used; see the notes on Frequently Used Arguments for more details.

A trailing newline is stripped from the output. The exit code for the command can be interpreted as the return
code of subprocess. Example:

if rc is not None and rc >> 8:

 print("There were some errors")

==>

process = Popen(cmd, stdin=PIPE)

...

process.stdin.close()

if process.wait() != 0:

 print("There were some errors")

(child_stdout, child_stdin) = popen2.popen2("somestring", bufsize, mode)

==>

p = Popen("somestring", shell=True, bufsize=bufsize,

 stdin=PIPE, stdout=PIPE, close_fds=True)

(child_stdout, child_stdin) = (p.stdout, p.stdin)

(child_stdout, child_stdin) = popen2.popen2(["mycmd", "myarg"], bufsize, mode)

==>

p = Popen(["mycmd", "myarg"], bufsize=bufsize,

 stdin=PIPE, stdout=PIPE, close_fds=True)

(child_stdout, child_stdin) = (p.stdout, p.stdin)

>>> subprocess.getstatusoutput('ls /bin/ls')

(0, '/bin/ls')

>>> subprocess.getstatusoutput('cat /bin/junk')

(1 ' t /bi /j k N h fil di t ')

>>>

Go3.10.2

https://www.python.org/

Availability: POSIX & Windows.

Changed in version 3.3.4: Windows support was added.

The function now returns (exitcode, output) instead of (status, output) as it did in Python 3.3.3 and earlier.
exitcode has the same value as returncode.

subprocess.getoutput(cmd)
Return output (stdout and stderr) of executing cmd in a shell.

Like getstatusoutput(), except the exit code is ignored and the return value is a string containing the
command’s output. Example:

Availability: POSIX & Windows.

Changed in version 3.3.4: Windows support added

Notes
Converting an argument sequence to a string on Windows

On Windows, an args sequence is converted to a string that can be parsed using the following rules (which
correspond to the rules used by the MS C runtime):

1. Arguments are delimited by white space, which is either a space or a tab.
2. A string surrounded by double quotation marks is interpreted as a single argument, regardless of white

space contained within. A quoted string can be embedded in an argument.
3. A double quotation mark preceded by a backslash is interpreted as a literal double quotation mark.
4. Backslashes are interpreted literally, unless they immediately precede a double quotation mark.
5. If backslashes immediately precede a double quotation mark, every pair of backslashes is interpreted as a

literal backslash. If the number of backslashes is odd, the last backslash escapes the next double quotation
mark as described in rule 3.

See also:

shlex

Module which provides function to parse and escape command lines.

(1, 'cat: /bin/junk: No such file or directory')

>>> subprocess.getstatusoutput('/bin/junk')

(127, 'sh: /bin/junk: not found')

>>> subprocess.getstatusoutput('/bin/kill $$')

(-15, '')

>>> subprocess.getoutput('ls /bin/ls')

'/bin/ls'

>>>

Go3.10.2

https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/shlex.html#module-shlex
https://www.python.org/

