
Law of total probability

In probability theory, the law (or formula) of total probability is a fundamental rule relating

marginal probabilities to conditional probabilities. It expresses the total probability of an outcome

which can be realized via several distinct events—hence the name.

Statement
Informal formulation
Continuous case
Example
Other names
See also
Notes
References

The law of total probability is
[1]

 a theorem that, in its discrete case, states if  is

a finite or countably infinite partition of a sample space (in other words, a set of pairwise disjoint

events whose union is the entire sample space) and each event  is measurable, then for any event 

of the same probability space:

or, alternatively,
[1]

where, for any  for which  these terms are simply omitted from the summation, because 

 is finite.

The summation can be interpreted as a weighted average, and consequently the marginal probability, 

, is sometimes called "average probability";
[2]

 "overall probability" is sometimes used in less

formal writings.
[3]

The law of total probability, can also be stated for conditional probabilities.
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Taking the  as above, and assuming  is an event independent of any of the :

The above mathematical statement might be interpreted as follows: given an event , with known

conditional probabilities given any of the  events, each with a known probability itself, what is

the total probability that  will happen? The answer to this question is given by .

The law of total probability extends to the case of conditioning on events generated by continuous

random variables. Let  be a probability space. Suppose  is a random variable with

distribution function , and  an event on . Then the law of total probability states

If  admits a density function , then the result is

Moreover, for the specific case where , where  is a borel set, then this yields

Suppose that two factories supply light bulbs to the market. Factory X's bulbs work for over 5000

hours in 99% of cases, whereas factory Y's bulbs work for over 5000 hours in 95% of cases. It is known

that factory X supplies 60% of the total bulbs available and Y supplies 40% of the total bulbs available.

What is the chance that a purchased bulb will work for longer than 5000 hours?

Applying the law of total probability, we have:
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where

 is the probability that the purchased bulb was manufactured by factory X;

 is the probability that the purchased bulb was manufactured by factory Y;

 is the probability that a bulb manufactured by X will work for over 5000 hours;

 is the probability that a bulb manufactured by Y will work for over 5000 hours.

Thus each purchased light bulb has a 97.4% chance to work for more than 5000 hours.

The term law of total probability is sometimes taken to mean the law of alternatives, which is

a special case of the law of total probability applying to discrete random variables. One author uses the

terminology of the "Rule of Average Conditional Probabilities",
[4]

 while another refers to it as the

"continuous law of alternatives" in the continuous case.
[5]

 This result is given by Grimmett and

Welsh
[6]

 as the partition theorem, a name that they also give to the related law of total expectation.
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