WikipediA Probability axioms

The **Kolmogorov axioms** are the foundations of <u>probability theory</u> introduced by <u>Andrey</u> <u>Kolmogorov</u> in 1933.^[1] These axioms remain central and have direct contributions to mathematics, the physical sciences, and real-world probability cases.^[2] An alternative approach to formalising probability, favoured by some Bayesians, is given by Cox's theorem.^[3]

Contents
Axioms
First axiom
Second axiom
Third axiom
Consequences
Monotonicity
Proof of monotonicity ^[5]
The probability of the empty set
Proof of probability of the empty set
The complement rule
Proof of the complement rule
The numeric bound
Proof of the numeric bound
Further consequences
Simple example: coin toss
See also
References
Further reading

Axioms

The assumptions as to setting up the axioms can be summarised as follows: Let (Ω, F, P) be a measure space with P(E) being the probability of some event E, and $P(\Omega) = 1$. Then (Ω, F, P) is a probability space, with sample space Ω , event space F and probability measure P.[1]

First axiom

The probability of an event is a non-negative real number:

 $P(E) \in \mathbb{R}, P(E) \geq 0 \qquad orall E \in F$

where F is the event space. It follows that P(E) is always finite, in contrast with more general measure theory. Theories which assign negative probability relax the first axiom.

Second axiom

This is the assumption of <u>unit measure</u>: that the probability that at least one of the <u>elementary events</u> in the entire sample space will occur is 1

$$P(\Omega) = 1.$$

Third axiom

This is the assumption of σ -additivity:

Any countable sequence of disjoint sets (synonymous with *mutually exclusive* events) E_1, E_2, \ldots satisfies

$$P\left(igcup_{i=1}^{\infty}E_i
ight)=\sum_{i=1}^{\infty}P(E_i).$$

Some authors consider merely finitely additive probability spaces, in which case one just needs an algebra of sets, rather than a σ -algebra.^[4] Quasiprobability distributions in general relax the third axiom.

Consequences

From the Kolmogorov axioms, one can deduce other useful rules for studying probabilities. The proofs $\frac{5[6][7]}{6}$ of these rules are a very insightful procedure that illustrates the power of the third axiom, and its interaction with the remaining two axioms. Four of the immediate corollaries and their proofs are shown below:

Monotonicity

 $\text{if} \quad A\subseteq B \quad \text{then} \quad P(A)\leq P(B).$

If A is a subset of, or equal to B, then the probability of A is less than, or equal to the probability of B.

Proof of monotonicity^[5]

In order to verify the monotonicity property, we set $E_1 = A$ and $E_2 = B \setminus A$, where $A \subseteq B$ and $E_i = \emptyset$ for $i \ge 3$. From the properties of the empty set (\emptyset) , it is easy to see that the sets E_i are pairwise disjoint and $E_1 \cup E_2 \cup \cdots = B$. Hence, we obtain from the third axiom that

$$P(A)+P(B\setminus A)+\sum_{i=3}^{\infty}P(E_i)=P(B).$$

Since, by the first axiom, the left-hand side of this equation is a series of non-negative numbers, and since it converges to P(B) which is finite, we obtain both $P(A) \leq P(B)$ and $P(\emptyset) = 0$.

The probability of the empty set

 $P(\varnothing) = 0.$

In some cases, \emptyset is not the only event with probability 0.

Proof of probability of the empty set

As shown in the previous proof, $P(\emptyset) = 0$. This statement can be proved by contradiction: if $P(\emptyset) = a, a > 0$ then the left hand side $[P(A) + P(B \setminus A) + \sum_{i=3}^{\infty} P(E_i)]$ is infinite; $\sum_{i=3}^{\infty} P(E_i) = \sum_{i=3}^{\infty} P(\emptyset) = \sum_{i=3}^{\infty} a = \begin{cases} 0 & \text{if } a = 0, \\ \infty & \text{if } a > 0. \end{cases}$

If a > 0 we have a contradiction, because the left hand side is infinite while P(B) must be finite (from the first axiom). Thus, a = 0. We have shown as a byproduct of the proof of monotonicity that $P(\emptyset) = 0$.

The complement rule

 $P\left(A^{c}
ight)=P(\Omega\setminus A)=1-P(A)$

Proof of the complement rule

Given A and A^c are mutually exclusive and that $A \cup A^c = \Omega$:

$$P(A \cup A^{c}) = P(A) + P(A^{c}) \dots (by \ axiom \ 3)$$

and,
$$P(A \cup A^{c}) = P(\Omega) = 1 \dots (by \ axiom \ 2)$$
$$\Rightarrow P(A) + P(A^{c}) = 1$$
$$\therefore P(A^{c}) = 1 - P(A)$$

The numeric bound

It immediately follows from the monotonicity property that

 $0 \leq P(E) \leq 1 \qquad orall E \in F.$

Proof of the numeric bound

Given the complement rule $P(E^c) = 1 - P(E)$ and axiom 1 $P(E^c) \ge 0$:

 $egin{aligned} 1-P(E) &\geq 0 \ \Rightarrow 1 &\geq P(E) \ \therefore 0 &\leq P(E) &\leq 1 \end{aligned}$

Further consequences

Another important property is:

 $P(A\cup B)=P(A)+P(B)-P(A\cap B).$

This is called the addition law of probability, or the sum rule. That is, the probability that an event in *A or B* will happen is the sum of the probability of an event in *A* and the probability of an event in *B*, minus the probability of an event that is in both *A* and *B*. The proof of this is as follows:

Firstly,

$$P(A \cup B) = P(A) + P(B \setminus A)$$
 ... (by Axiom 3)

So,

$$P(A\cup B)=P(A)+P(B\setminus (A\cap B))$$
 (by $B\setminus A=B\setminus (A\cap B)$).

Also,

$$P(B)=P(B\setminus (A\cap B))+P(A\cap B)$$

and eliminating $P(B \setminus (A \cap B))$ from both equations gives us the desired result.

An extension of the addition law to any number of sets is the inclusion-exclusion principle.

Setting B to the complement A^c of A in the addition law gives

$$P\left(A^{c}
ight)=P(\Omega\setminus A)=1-P(A)$$

That is, the probability that any event will *not* happen (or the event's <u>complement</u>) is 1 minus the probability that it will.

Simple example: coin toss

Consider a single coin-toss, and assume that the coin will either land heads (H) or tails (T) (but not both). No assumption is made as to whether the coin is fair.

We may define:

$$egin{aligned} \Omega &= \{H,T\}\ F &= \{ arnothing, \{H\}, \{T\}, \{H,T\} \} \end{aligned}$$

Kolmogorov's axioms imply that:

 $P(\varnothing) = 0$

The probability of *neither* heads *nor* tails, is **0**.

 $P(\{H,T\}^c)=0$

The probability of *either* heads *or* tails, is 1.

 $P(\{H\}) + P(\{T\}) = 1$

The sum of the probability of heads and the probability of tails, is 1.

See also

- Borel algebra
- <u>Conditional probability</u> Probability of an event occurring, given that another event has already occurred
- Fully probabilistic design
- Intuitive statistics
- Quasiprobability
- <u>Set theory</u> Branch of mathematics that studies sets
- σ-algebra

References

- 1. Kolmogorov, Andrey (1950) [1933]. *Foundations of the theory of probability* (https://archive.org/det <u>ails/foundationsofthe00kolm</u>). New York, USA: Chelsea Publishing Company.
- 2. Aldous, David. "What is the significance of the Kolmogorov axioms?" (https://www.stat.berkeley.ed u/~aldous/Real_World/kolmogorov.html). David Aldous. Retrieved November 19, 2019.
- 3. Terenin Alexander; David Draper (2015). <u>"Cox's Theorem and the Jaynesian Interpretation of</u> Probability" (https://archive.org/details/arxiv-1507.06597). arXiv.org. arXiv:1507.06597 (https://arxi v.org/abs/1507.06597). <u>Bibcode:2015arXiv150706597T (https://ui.adsabs.harvard.edu/abs/2015ar</u> Xiv150706597T).
- Hájek, Alan (August 28, 2019). "Interpretations of Probability" (https://plato.stanford.edu/entries/pr obability-interpret/#KolProCal). Stanford Encyclopedia of Philosophy. Retrieved November 17, 2019.
- 5. Ross, Sheldon M. (2014). A first course in probability (Ninth ed.). Upper Saddle River, New Jersey. pp. 27, 28. ISBN 978-0-321-79477-2. OCLC 827003384 (https://www.worldcat.org/oclc/82700338 4).
- Gerard, David (December 9, 2017). "Proofs from axioms" (https://dcgerard.github.io/stat234/11_pr oofs_from_axioms.pdf) (PDF). Retrieved November 20, 2019.
- Jackson, Bill (2010). "Probability (Lecture Notes Week 3)" (http://www.maths.qmul.ac.uk/~bill/MT H4107/notesweek3_10.pdf) (PDF). School of Mathematics, Queen Mary University of London. Retrieved November 20, 2019.

Further reading

- DeGroot, Morris H. (1975). Probability and Statistics (https://archive.org/details/probabilitystati000 0degr/page/12). Reading: Addison-Wesley. pp. <u>12–16 (https://archive.org/details/probabilitystati00</u> 00degr/page/12). ISBN 0-201-01503-X.
- McCord, James R.; Moroney, Richard M. (1964). <u>"Axiomatic Probability" (https://archive.org/detail s/introductiontopr00mcco)</u>. *Introduction to Probability Theory*. New York: Macmillan. pp. <u>13–28 (htt ps://archive.org/details/introductiontopr00mcco/page/13)</u>.
- Formal definition (https://web.archive.org/web/20130923121802/http://mws.cs.ru.nl/mwiki/prob_1. html#M2) of probability in the Mizar system, and the list of theorems (http://mmlquery.mizar.org/cgi -bin/mmlquery/emacs_search?input=(symbol+Probability+%7C+notation+%7C+constructor+%7C +occur+%7C+th)+ordered+by+number+of+ref) formally proved about it.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Probability_axioms&oldid=1059462418"

This page was last edited on 9 December 2021, at 16:18 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.