
Probability axioms

The Kolmogorov axioms are the foundations of probability theory introduced by Andrey

Kolmogorov in 1933.
[1]

 These axioms remain central and have direct contributions to mathematics,

the physical sciences, and real-world probability cases.
[2]

 An alternative approach to formalising

probability, favoured by some Bayesians, is given by Cox's theorem.
[3]
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The assumptions as to setting up the axioms can be summarised as follows: Let (Ω, F, P) be a measure

space with  being the probability of some event E, and . Then (Ω, F, P) is a probability

space, with sample space Ω, event space F and probability measure  P.
[1]

The probability of an event is a non-negative real number:
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where  is the event space. It follows that  is always finite, in contrast with more general

measure theory. Theories which assign negative probability relax the first axiom.

This is the assumption of unit measure: that the probability that at least one of the elementary events

in the entire sample space will occur is 1

This is the assumption of σ-additivity:

Any countable sequence of disjoint sets (synonymous with mutually exclusive events) 
 satisfies

Some authors consider merely finitely additive probability spaces, in which case one just needs an

algebra of sets, rather than a σ-algebra.
[4]

 Quasiprobability distributions in general relax the third

axiom.

From the Kolmogorov axioms, one can deduce other useful rules for studying probabilities. The

proofs
[5][6][7]

 of these rules are a very insightful procedure that illustrates the power of the third

axiom, and its interaction with the remaining two axioms. Four of the immediate corollaries and their

proofs are shown below:

If A is a subset of, or equal to B, then the probability of A is less than, or equal to the probability of B.

In order to verify the monotonicity property, we set  and , where  and 

 for . From the properties of the empty set ( ), it is easy to see that the sets  are

pairwise disjoint and . Hence, we obtain from the third axiom that
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Since, by the first axiom, the left-hand side of this equation is a series of non-negative numbers, and

since it converges to  which is finite, we obtain both  and .

In some cases,  is not the only event with probability 0.

As shown in the previous proof, . This statement can be proved by contradiction: if 

 then the left hand side  is infinite; 

If  we have a contradiction, because the left hand side is infinite while  must be finite

(from the first axiom). Thus, . We have shown as a byproduct of the proof of monotonicity that 

.

Given  and  are mutually exclusive and that :

 ... (by axiom 3)

and,  ... (by axiom 2)

It immediately follows from the monotonicity property that
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Given the complement rule  and axiom 1 :

Another important property is:

This is called the addition law of probability, or the sum rule. That is, the probability that an event in A

or B will happen is the sum of the probability of an event in A and the probability of an event in B,

minus the probability of an event that is in both A and B. The proof of this is as follows:

Firstly,

 ... (by Axiom 3)

So,

 (by ).

Also,

and eliminating  from both equations gives us the desired result.

An extension of the addition law to any number of sets is the inclusion–exclusion principle.

Setting B to the complement A
c
 of A in the addition law gives

That is, the probability that any event will not happen (or the event's complement) is 1 minus the

probability that it will.

Consider a single coin-toss, and assume that the coin will either land heads (H) or tails (T) (but not

both). No assumption is made as to whether the coin is fair.

We may define:
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Kolmogorov's axioms imply that:

The probability of neither heads nor tails, is 0.

The probability of either heads or tails, is 1.

The sum of the probability of heads and the probability of tails, is 1.

Borel algebra
Conditional probability – Probability of an event occurring, given that another event has already
occurred
Fully probabilistic design
Intuitive statistics
Quasiprobability
Set theory – Branch of mathematics that studies sets
σ-algebra
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