
bbenchoff.github.io

Contact
Email

Twitter

Github

LinkedIn

Résumé (PDF)

Weird Stuff

Citicar Restoration
An Instagram shot on a digital camera
from 1994

Electronics / Product Design

The $15 Linux Machine
Portable Dumb Terminal
Mr. Robot Badge
Zip Drive Tower
Full Color Circuit Boards
RGB Gaming Coaster
Serial Fidget Spinner
Baud Box
A Wall of Circuit Boards

Firmware Development

IS31FL3741 LED driver library
NT35510 TFT driver library

http://bbenchoff.github.io/
mailto:benchoff@gmail.com
https://twitter.com/BBenchoff
https://github.com/bbenchoff
https://www.linkedin.com/in/bbenchoff/
https://github.com/bbenchoff/CV/blob/main/Brian%20Benchoff%20-%20Resume.pdf
https://bbenchoff.github.io/pages/Citicar.html
https://www.instagram.com/640by480/
http://bbenchoff.github.io/pages/LinuxDevice.html
http://bbenchoff.github.io/pages/dumb.html
http://bbenchoff.github.io/pages/MrRobot.html
http://bbenchoff.github.io/pages/atapi.html
http://bbenchoff.github.io/pages/colorPCB.html
http://bbenchoff.github.io/pages/RGBgaming.html
http://bbenchoff.github.io/pages/FidgetSpinner.html
http://bbenchoff.github.io/pages/BaudBox.html
http://bbenchoff.github.io/pages/ShittyWall.html
http://bbenchoff.github.io/pages/IS31FL3741.html
http://bbenchoff.github.io/pages/NT35510.html

Terminal Parser library

CAD Design

Silicone Membrane Keyboard
Injection Molded Palmtop
Retro-inspired industrial design
A Modern BeBox
Hardened clamshell computer
Porygon

A Minimum Viable Computer, or Linux for $15

This is a ‘Linux Swiss Army Knife’, offering maximum utility while still being able to fit in
your pocket. Is it fast? No. Can it run a GUI? Also no. But it can run scripts, ping a server,
toggle a few GPIOs, and interact with a USB device. This is a minimum viable computer
that can:

Run Linux. Just command line.
Has a keyboard. No touchscreen display.
Has a USB port. To connect to other things.
Some sort of battery power, I guess.

That’s about it. Could you do all of this with a smartphone? Yeah, kinda, if you root
prepaid Android phone, but even that would cost more than $30. I know I can build
something cheaper.

Given the list of requirements, I know I need some sort of SoC, perferrably as cheap as
possible. I need a keyboard of some sort, preferrably as cheap as possible. I need a

http://bbenchoff.github.io/pages/parser.html
http://bbenchoff.github.io/pages/keyboard.html
http://bbenchoff.github.io/pages/Palmtop.html
http://bbenchoff.github.io/pages/MiniITX.html
https://bbenchoff.github.io/pages/BeBox.html
http://bbenchoff.github.io/pages/clamshell.html
http://bbenchoff.github.io/pages/Porygon.html

p y , p y p p
screen, some sort of battery system, and some sort of storage. All preferrably as cheap as
possible. I think I’ve cracked this problem, and I’ve come up with a computer that runs
Linux and costs about $15 USD.

TL;DR, Gimme the specs:

Allwinner F1C100s SoC
ARM926EJ-S CPU @ 533 MHz
32 MB DDR (64 MB with pin-compatable F1C200s)
Runs Linux! A recent version of Linux!

2.3” IPS TFT

320 by 240 pixel resolution
ILI9342 controller (SPI)

USB 2.0 over USB-A connector
5V to devices

48-key keyboard
Silicone membrane, like a TV remote control
Yes, you can type any character you want

microSD card for storage
How could you possibly fill up 64 GB of storage?

2x AAA NiMH battery
The battery life is long enough
Charge over USB C @ 500mA

Licensed!
There’s a few drivers I had to write for this, I’ll submit a patch eventually.
Everything else is licensed as permissively as possible
Even though Allwinner hates giving their code back.
Yes ‘Open Hardware’ means more than PDFs of schematics

Low Price!
It costs $10,000 USD to build one of these
The ten thousandth one costs $15

Designed for 2021
I can buy all the parts right now, in quantity.

Design considerations

Design considerations

The most consequential design decision is the Linux SoC. For this I chose the Allwinner
F1C100s, an ARM9 core running at 533MHz with an integrated 32MB of DDR (the F1C200s
bumps the memory up to 64MB and is drop-in pin compatible).

The schematic is based on a now-discontinued dev board, the LicheePi Nano and a board
from Jay Carlson’s Embedded Linux series, with a few changes. Basic system bring-up is
simple – just get three power rails (3.3V, 2.5V, 1.1V), add a clock and sprinkle some caps
and resistors on the board. After that, you have a Linux console over serial. Alterations to
the reference designs include changing the display connection from 16-bit RGB to SPI,
deleting the SPI flash, and adding a microSD card. These changes were made to add
additional GPIOs (for the keyboard) and to aid in programming and assembly (now
everything runs off the SD card, flashing a ROM no longer required).

I have Buildroot running on this chip thanks to the efforts of others. It boots from an SD
card and puts a terminal on a SPI display. Everything kinda just works thanks to some

l l ki th i t ff f Li

https://linux-sunxi.org/F1C100s
https://linux-sunxi.org/LicheePi_Nano
https://jaycarlson.net/embedded-linux/#f1c200s
https://github.com/bbenchoff/NixDevice
https://linux-sunxi.org/F1C100s

very cool people working on the sunxi stuff for Linux.

The design of the keyboard is unconventional, as a suite of tact switches would be
expensive both in component cost and assembly cost. Instead, I’m using a silicone
membrane keyboard, much like what you would find on a TV remote control. Because the
electrical connections for the keyboard is printed on the circuit board, this type of
keyboard is essentially free.

The silicone membrane keyboard does come with a drawback – it requires a plastic
enclosure. That’s acceptable, as any ‘pocket computer’ device needs an enclosure
anyway. My enclosure is a two-piece clamshell snap-fit design requiring no tools to

assemble or disassemble. The cost is about $1 in quantity, and will be screen printed with
alt keyboard combinations above each key.

Powering the device is challenging, as using lithium cells would mean more stringent
requirements in regards to shipping and transport. Instead of lithium cells, this device
uses AAA NiMH cells. While providing less overall power per unit mass of lithium, it’s
significantly less expensive than lithium. This design can also be modified for AA NiMH
cells for more than twice the runtime at the expense of a slightly thicker enclosure.

The ‘back’ or ‘top’ of the device contains all the ports. These include a USB Type-A port,
where you can easily attach a WiFi or Bluetooth adapter, USB keyboard, webcam, or really
any other device. lsusb works, so have fun with that.

The storage on this device is through a SD card – I’ve sourced a few 8GB cards and they
work fine, but at scale 32GB or 64GB are more readily available. This is the second most
expensive line item in the BOM, coming in at about $2/each at quantity 10,000.

https://linux-sunxi.org/F1C100s
https://bbenchoff.github.io/pages/keyboard.html

The PCB is a simple 2-layer board. There’s really nothing novel here except the contact
pads for the silicone membrane keyboard.

Earlier renderings of the device

Does it really cost $15?
The answer to the big question, “How much does it cost?” is, “What the market will bear”.
In short, yes, if you’re counting the BOM cost in quantities greater than 10,000. That said,

let’s go into the cost breakdown. This is an abridged but still accurate BOM, with costs for
each row in the last column.

Device Description Cost @ QTY 1000

CPU F1C100s $0.75

Display ILI9342 $2.20

Keyboard custom $1.20

Enclosure custom $1.70

PCB custom $2.00

C1, C6, C8 22uF $0.15

C2, C3 1uF $0.02

C9..C13..C17 100nF $0.0045

C12 2.2uF $0.0011

C18, C19 1uF $0.002

Resistors (20) Jellybean $0.015

IC2 MCP1642B $0.93

J1 Display conn $0.52584

L1 4.7uH $0.31790

L2..L4 2.2uH $0.0126

SW1 Switch $0.10

Q1 Mosfet $0.16

T1 Thermistor $0.10659

Conn1…4 Battery conn. $1.10

Type C Type C conn. $0.1894

Type A Type A conn. $0.0496

U2..U4 MT3420B $0.22

Y1 Crystal 12MHz $0.12

SD card 64GB $2.20

Device Description Cost @ QTY 1000Battery (2) AAA NiMH $1.10

 TOTAL $14.16079

There you go, a full Linux computer for under fifteen bucks parts. Assembly is not
included, and better component selection (caps, another crystal, and a generic version of
the battery clip) would drop a few cents off the build. But I’ll call this a $15 computer for
the clickbait headline. Speaking of clickbait, if you want to build one of these things, It’ll
cost you about ten grand. The first one costs ten grand, the ten thousandth one costs
fifteen bucks.

I can buy all of the components for this device right now at the beginning of 2022, in the
depths of a component shortage. Give me six months and I’ll give you a tens of
thousands of these things.

What can it do?

What can a $15 Linux computer do? First off, yes, it can run Doom. Chocolate Doom is
actually a default package in Buildroot, which is awesome.

Instead of me telling you what this device can do, instead let me ask what you can do with
command line Linux, a keyboard, and a USB port. Do you want software defined radio?
Sure thing, there’s a package for that. Do you want this thing to be a crypto wallet? No
problem, in fact you can display your expensive monkeys on the screen. Want to compile
your own code on this thing? Go ahead. There’s even a few GPIOs left open and broken
out, have fun with that. There’s one SPI and a few I2Cs that aren’t connected to anything.

This is, in short, a device that can do anything. It’s just really small and really, really cheap.

https://www.chocolate-doom.org/wiki/index.php/Chocolate_Doom

y g j y y y p

One thing I’m not even going to attempt is a GUI. You’re stuck with command line unless
someone hacks something else in.

Design considerations and further work
This is not the final design for this device, because I do not believe there is any one design
that can fufill all use cases. There are a few obvious things that could be changed,
depending on what the user wants:

USB Ports

The current device uses USB-C only for power and charging, with a single USB-A port for
peripherals (WiFi adapter, etc). This limits the device somewhat. The F1C100s only has one
USB port but can do OTG, so a simpler one-port design is possible. This would enable the
device to use USB Gadget mode, allowing it to act as a host or device. The pros and cons
of this are debatable, and I chose the ability to plug in a USB WiFi adapter. Still, it could
change.

A bigger display

The display is only 320x240, which is really too small to be used as a terminal. I believe the
minimum resolution for a console is 640x480 or 800x480. I’ve already written a driver for
a 800x480 display, and it could work over SPI. This display is somewhat expensive, with a
bare panel coming in at $12, also necessatiating a larger enclosure with increased cost.
Still, that’s an option.

A bigger keyboard

The current keyboard has 47 keys (space is duplicated on each side), which the
mechanical keyboard mafia tells me is enough to completely replicate the function of an
IBM 104 key keyboard. There are many, many more GPIOs available on the port I’m using
for the keyboard. This device could support 110 keys easily, and even more by stealing
pins from other GPIO ports. I decided against this because 47 keys is enough, and more
keys cost more money.

Break out the GPIOs

There are a host of GPIOs that can be broken out to more devices. These GPIOs support
I2C, SPI, I2S, UART, and even IrDA. While I’m limited by the form factor, I would really like
to break these signals out into a useful header in future iterations. The only question is
what format this header would take. I’m extremely partial to the Shitty Add-On spec I
created but finding the right connector to implement this is difficult If anyone knows of

https://www.kernel.org/doc/html/v4.19/driver-api/usb/gadget.html
https://bbenchoff.github.io/pages/dumb.html
https://hackaday.com/2019/03/20/introducing-the-shitty-add-on-v1-69bis-standard/

created, but finding the right connector to implement this is difficult. If anyone knows of
a right angle, keyed, 2x3, female, SMD IDC connector, please email me. They simply don’t
exist. Of course, since I’m already making the plastic enclosure I could engineer
something…

In Closing…

Do I plan to make this thing available? Yes, eventually. If you want to see this go into
production, ping me on my twitter.

back

https://hackaday.com/2019/03/20/introducing-the-shitty-add-on-v1-69bis-standard/
https://twitter.com/ViolenceWorks
https://bbenchoff.github.io/

