
228	Comments

«	Previous	post

On	how	Diablo	III	fails	to	live	up	to	the	Diablo	legacy
Next	post	»

Math	for	Game	Programmers	05	–	Vector	Cheat	Sheet

Leave	one	→

«	Previous

«	Previous

The	guide	to	implementing	2D
platformers
Having	previously	been	disappointed	by	the	information	available	on	the	topic,	this	is	my	attempt
at	categorizing	different	ways	to	implement	2D	platform	games,	list	their	strengths	and
weaknesses,	and	discuss	some	implementation	details.

The	long-term	goal	is	to	make	this	an	exhaustive	and	comprehensible	guide	to	the	implementation
of	2D	platform	games.	If	you	have	any	sort	of	feedback,	correction,	request,	or	addition	–	please
leave	it	in	the	comments!

Disclaimer:	some	of	the	information	presented	here	comes	from	reverse	engineering	the
behavior	of	the	game,	not	from	its	code	or	programmers.	It’s	possible	that	they	are	not	ACTUALLY
implemented	in	this	way,	and	merely	behave	in	an	equivalent	way.	Also	note	that	tile	sizes	are	for
the	game	logic,	graphical	tiles	might	be	of	a	different	size.

Four	Ways	of	Implementing
I	can	think	of	four	major	ways	in	which	a	platform	game	can	be	implemented.	From	simplest	to
most	complicated,	they	are:

Type	#1:	Tile-based	(pure)

Character	movement	is	limited	to	tiles,	so	you	can	never	stand	halfway	between	two	tiles.
Animations	may	be	used	to	create	the	illusion	of	smooth	movement,	but	as	far	as	the	game	logic
is	concerned,	the	player	is	always	right	on	top	of	a	specific	tile.	This	is	the	easiest	way	to
implement	a	platform	game,	but	it	imposes	heavy	restrictions	on	the	control	of	character,	making
it	unsuitable	for	traditional	action-based	platformers.	It	is,	however,	popular	with	puzzle	and
“cinematographic”	platformers.

Flashback,	shown	with	tile	boundaries

Examples:	Prince	of	Persia,	Toki	Tori,	Lode	Runner,	Flashback

How	it	works

The	map	is	a	grid	of	tiles,	each	one	storing	information	such	as	whether	it’s	an	obstacle	or	not,
what	image	to	use,	what	kind	of	footstep	sound	to	use,	and	so	on.	The	player	and	other	characters
are	represented	by	a	set	of	one	or	more	tiles	that	move	together.	In	Lode	Runner,	for	example,	the
player	is	a	single	tile.	In	Toki	Tori,	the	player	is	2×2	tiles.	In	Flashback,	which	is	unusual	due	to	the
smaller	size	of	its	tiles,	the	player	is	two	tiles	wide	and	five	tiles	tall	(see	image	above)	when
standing,	but	only	three	tiles	tall	when	crouching.

In	this	kind	of	game,	the	player	will	rarely	–	if	ever	–	be	moving	diagonally,	but,	if	he	is,	the
movement	can	be	decomposed	in	two	separate	steps.	Likewise,	he	will	likely	only	move	one	tile	at
once,	but	multi-tile	movement	can	be	done	as	multiple	steps	of	one	tile,	if	needed	(in	Flashback,
you	always	move	two	tiles	at	once).	The	algorithm	is	then	as	follows:

1.	 Create	a	copy	of	the	character	where	he’d	like	to	move	to	(e.g.,	if	moving	one	tile	to	the	right,
make	a	copy	where	every	tile	of	the	character	is	shifted	1	tile	to	the	right)

2.	 Check	that	copy	for	intersection	with	the	background	and	other	characters.
3.	 If	an	intersection	is	found,	the	character’s	movement	is	blocked.	React	accordingly.
4.	 Otherwise,	the	path	is	clear.	Move	character	there,	optionally	playing	an	animation	so	the

transition	looks	smooth.

This	kind	of	movement	is	very	ill-suited	for	traditional	arc-shaped	jumps	–	so	games	in	this	genre
often	have	no	jump	at	all	(Toki	Tori,	Lode	Runner),	or	only	allow	vertical	or	horizontal	jumps
(Prince	of	Persia,	Flashback),	which	are	nothing	but	special	cases	of	linear	movement.

Advantages	of	this	system	include	simplicity	and	precision.	Since	the	games	are	more
deterministic,	glitches	are	much	less	likely,	and	the	gameplay	experience	is	more	controlled,	with
less	of	a	need	to	tweak	values	depending	on	circumstances.	Implementing	certain	mechanics
(such	as	grabbing	ledges	and	one-way	platforms)	becomes	a	breeze,	compared	to	more	complex
movement	styles	–	all	you	have	to	do	is	check	whether	the	player	tiles	and	the	background	tiles
are	aligned	in	the	one	specific	way	that	allows	for	a	given	action.

In	principle,	this	system	doesn’t	allow	steps	of	less	than	one	tile,	but	that	can	be	mitigated	in	a
few	different	ways.	For	example,	the	tiles	can	be	a	bit	smaller	than	the	player	(say,	a	player	is	2×6
tiles),	or	you	can	allow	a	visual-only	movement	to	take	place	inside	a	given	tile,	without	affecting
the	logic	(which	is	the	solution	that	I	believe	that	“Lode	Runner	–	The	Legend	Returns”	takes).

Type	#2:	Tile	Based	(Smooth)

Collision	is	still	determined	by	a	tilemap,	but	characters	can	move	freely	around	the	world
(typically	with	1px	resolution,	aligned	to	integers,	but	see	the	note	at	the	end	of	article	regarding
smoothing	of	movement).	This	is	the	most	common	form	of	implementing	platformers	in	8-bit	and
16-bit	consoles,	and	remains	popular	today,	as	it	is	still	easy	to	implement	and	makes	level	editing
simpler	than	more	sophisticated	techniques.	It	also	allows	for	slopes	and	smooth	jump	arcs.

If	you’re	unsure	which	type	of	platformer	you	want	to	implement,	and	you	want	to	do	an	action
game,	I	suggest	going	for	this	one.	It’s	very	flexible,	relatively	easy	to	implement,	and	gives	you
the	most	control	of	all	four	types.	It’s	no	wonder	that	the	majority	of	the	best	action	platformers	of
all	time	are	based	on	this	type.

Mega	Man	X,	shown	with	tile	boundaries	and	player	hitbox.

Examples:	Super	Mario	World,	Sonic	the	Hedgehog,	Mega	Man,	Super	Metroid,	Contra,	Metal	Slug,
and	practically	every	platformer	of	the	16-bit	era

How	it	works

Map	information	is	stored	in	the	same	way	as	with	the	pure	tile	technique,	the	difference	is	merely
in	how	the	characters	interact	with	the	background.	The	character’s	collision	hitbox	is	now	an	Axis-
Aligned	Bounding	Box	(AABB,	that	is,	a	rectangle	that	cannot	be	rotated),	and	are	typically	still	an
integer	multiple	of	tile	size.	Common	sizes	include	one	tile	wide	and	one	(small	Mario,	morph	ball
Samus),	two	(big	Mario,	Mega	Man,	crouched	Samus)	or	three	(standing	Samus)	tiles	tall.	In	many
cases,	the	character	sprite	itself	is	larger	than	the	logical	hitbox,	as	this	makes	for	a	more	pleasant
visual	experience	and	fairer	gameplay	(it’s	better	for	the	player	to	avoid	getting	hit	when	he
should	have	than	for	him	to	get	hit	when	he	should	not	have).	In	the	image	above,	you	can	see
that	the	sprite	for	X	is	square-ish	(in	fact,	is	two	tiles	wide),	but	his	hitbox	is	rectangular	(one	tile
wide).

Assuming	that	there	are	no	slopes	and	one-way	platforms,	the	algorithm	is	straightforward:

1.	 Decompose	movement	into	X	and	Y	axes,	step	one	at	a	time.	If	you’re	planning	on
implementing	slopes	afterwards,	step	X	first,	then	Y.	Otherwise,	the	order	shouldn’t	matter
much.	Then,	for	each	axis:

2.	 Get	the	coordinate	of	the	forward-facing	edge,	e.g.	:	If	walking	left,	the	x	coordinate	of	left	of
bounding	box.	If	walking	right,	x	coordinate	of	right	side.	If	up,	y	coordinate	of	top,	etc.

3.	 Figure	which	lines	of	tiles	the	bounding	box	intersects	with	–	this	will	give	you	a	minimum	and
maximum	tile	value	on	the	OPPOSITE	axis.	For	example,	if	we’re	walking	left,	perhaps	the
player	intersects	with	horizontal	rows	32,	33	and	34	(that	is,	tiles	with	y	=	32	*	TS,	y	=	33	*
TS,	and	y	=	34	*	TS,	where	TS	=	tile	size).

4.	 Scan	along	those	lines	of	tiles	and	towards	the	direction	of	movement	until	you	find	the	closest
static	obstacle.	Then	loop	through	every	moving	obstacle,	and	determine	which	is	the	closest
obstacle	that	is	actually	on	your	path.

5.	 The	total	movement	of	the	player	along	that	direction	is	then	the	minimum	between	the
distance	to	closest	obstacle,	and	the	amount	that	you	wanted	to	move	in	the	first	place.

6.	 Move	player	to	the	new	position.	With	this	new	position,	step	the	other	coordinate,	if	still	not
done.

Slopes

Mega	Man	X,	with	slope	tile	annotations
Slopes	(the	tiles	pointed	by	green	arrows	on	the	image	above)	can	be	very	tricky,	because	they
are	obstacles,	and	yet	still	allow	the	character	to	move	into	their	tile.	They	also	cause	movement
along	the	X	axis	to	adjust	position	on	the	Y	axis.	One	way	to	deal	with	them	is	to	have	the	tile
store	the	“floor	y”	of	either	side.	Assuming	a	coordinate	system	where	(0,	0)	is	at	top-left,	then
the	tile	just	left	of	X	(first	slope	tile)	is	{0,	3}	(left,	right),	then	the	one	he	stands	on	is	{4,	7},
then	{8,	11},	then	{12,	15}.	After	that,	the	tiles	repeat,	with	another	{0,	3},	etc,	and	then	we
have	a	steeper	slope,	composed	of	two	tiles:	{0,	7}	and	{8,	15}.

Detailed	View	of	the	{4,	7}	tile
The	system	that	I’m	going	to	describe	allows	arbitrary	slopes,	though	for	visual	reasons,	those	two
slopes	are	the	most	common,	and	result	in	a	total	of	12	tiles	(the	6	described	previously,	and	their
mirrorings).	The	collision	algorithm	changes	as	follows	for	horizontal	movement:

Make	sure	that	you	step	X	position	before	Y	position.
During	collision	detection	(4	above),	the	slope	only	counts	as	a	collision	if	its	closest	edge	is
the	taller	(smaller	y	coordinate)	one.	This	will	prevent	characters	from	“popping”	through	the
slope	from	the	opposite	side.
You	might	want	to	forbid	slopes	to	stop	“halfway	through”	(e.g.	on	a	{4,	7}	tile).	This
restriction	is	adopted	by	Mega	Man	X	and	many	other	games.	If	you	don’t,	you	have	to	deal
with	the	more	complicated	case	of	the	player	attempting	to	climb	from	the	lower	side	of	the
slope	tile	–	one	way	to	deal	with	this	is	to	pre-process	the	level,	and	flag	all	such	offending
tiles.	Then,	on	collision	detection,	also	count	it	as	a	collision	from	the	lower	side	if	the	player’s
lowest	y	coordinate	is	greater	(that	is,	below)	the	tile’s	offset	edge	(tile	coord	*	tile	size	+
floor	y).
A	full	obstacle	tile	adjacent	to	the	slope	the	character	is	currently	on	should	not	be	considered
for	collision	if	it	connects	to	the	slope,	that	is,	if	the	character	(that	is,	his	bottom-center	pixel)
is	on	a	{0,	*}	slope,	ignore	left	tile,	and,	if	on	a	{*,	0}	slope,	ignore	the	right	tile.	You	may
have	to	do	this	for	more	tiles	if	your	character	is	wider	than	two	tiles	–	you	might	simply	skip
checking	on	the	entire	row	if	the	player	is	moving	towards	the	upper	side	of	slope.	The	reason
for	this	is	to	prevent	the	character	from	getting	stuck	at	those	tiles	(highlighted	yellow	above)
while	still	climbing	the	slope,	as	his	foot	will	still	be	below	the	“surface	level”	by	the	time	he
comes	into	contact	with	the	otherwise	solid	tile.

And	for	vertical	movement:

If	you’re	letting	gravity	do	its	job	for	downhill	movement,	make	sure	that	the	minimum	gravity
displacement	is	compatible	with	slope	and	horizontal	velocity.	For	example,	on	a	4:1	slope	(as
{4,	7}	above),	the	gravity	displacement	must	be	at	least	1/4	of	the	horizontal	velocity,
rounded	up.	On	a	2:1	slope	(such	as	{0,	7}),	at	least	1/2.	If	you	don’t	ensure	this,	the	player
will	move	horizontally	right	off	the	ramp	for	a	while,	until	gravity	catches	up	and	drags	him
down,	making	him	bounce	on	the	ramp,	instead	of	smoothly	descending	it.
An	alternative	to	using	gravity	is	to	compute	how	many	pixels	above	floor	the	player	was
before	movement,	and	how	many	it	is	afterwards	(using	the	formula	below),	and	adjust	his
position	so	they’re	the	same.
When	moving	down,	instead	of	considering	a	slope	tile’s	top	edge	as	its	collision	boundary,
instead,	compute	its	floor	coordinate	at	the	current	vertical	line,	and	use	that.	To	do	that,	find
the	[0,	1]	value	which	represents	the	player’s	x	position	on	tile	(0	=	left,	1	=	right)	and	use	it
to	linearly	interpolate	the	floorY	values.	The	code	will	look	something	like:Â	

When	moving	down,	if	multiple	tiles	on	the	same	Y	coordinate	are	obstacle	candidates,	and
the	one	on	the	X	coordinate	of	the	player’s	center	is	a	slope	tile,	use	that	one,	and	ignore	the
rest	–	even	though	the	others	are	technically	closer.	This	ensures	proper	behaviour	around	the
edges	of	slopes,	with	the	character	actually	“sinking”	on	a	completely	solid	tile	because	of	the
adjacent	slope.

One-way	platforms

Super	Mario	World,	showing	Mario	falling	through	(left)	and	standing	on	(right)	the	same	one-way
platform

One-way	platforms	are	platforms	that	you	can	step	on,	but	you	can	also	jump	through	them.	In
other	words,	they	count	as	an	obstacle	if	you’re	already	on	top	of	them,	but	are	otherwise
traversable.	That	sentence	is	the	key	to	understanding	their	behavior.	The	algorithm	changes	as
follows:

On	the	x	axis,	the	tile	is	never	an	obstacle
On	the	y	axis,	the	tile	is	only	an	obstacle	if,	prior	to	the	movement,	the	player	was	entirely
above	it	(that	is,	bottom-most	coordinate	of	player	was	at	least	one	pixel	above	top-most
coordinate	of	one-way	platform).	To	check	for	this,	you	will	probably	want	to	store	the	original
player	position	before	doing	any	stepping.

It	might	be	tempting	to	have	it	act	as	an	obstacle	if	the	player’s	y	speed	is	positive	(that	is,	if	the
player	is	falling),	but	this	behavior	is	wrong:	it’s	possible	for	the	player	to	jump	so	he	overlaps	the
platform,	but	then	falls	down	again	without	having	his	feet	reach	the	platform.	In	that	case,	he
should	still	fall	through.

Some	games	allow	the	player	to	“jump	down”	from	such	platforms.	There	are	a	few	ways	to	do
this,	but	they	are	all	relatively	simple.	You	could,	for	example,	disable	one-way	platforms	for	a
single	frame	and	ensure	that	y	speed	is	at	least	one	(so	he’ll	be	clear	of	the	initial	collision
condition	on	the	next	frame),	or	you	could	check	if	he’s	standing	exclusively	on	one-way
platforms,	and,	if	so,	manually	move	the	player	one	pixel	to	the	bottom.

Ladders

Mega	Man	7,	with	tile	boundaries,	highlighted	ladder	tiles,	and	player	ladder	hitbox.

Ladders	might	seem	complicated	to	implement,	but	they	are	simply	an	alternate	state	–	when
you’re	in	a	ladder,	you	ignore	most	of	the	standard	collision	system,	and	replace	it	with	a	new	set
of	rules.	Ladders	are	typically	one	tile	wide.

You	can	usually	enter	the	ladder	state	in	two	ways:

Have	your	character	hitbox	overlap	with	the	ladder,	either	on	ground	or	on	air,	and	hit	up
(some	games	also	allow	you	to	hit	down)
Have	your	character	stand	on	top	of	a	“ladder	top”	tile	(which	is	often	a	one-way	platform	tile
as	well,	so	you	can	walk	on	top	of	it),	and	hit	down.

This	has	the	effect	of	immediately	snapping	the	player’s	x	coordinate	to	align	with	the	ladder	tiles,
and,	if	going	down	from	the	top	of	ladder,	move	y	coordinate	so	player	is	now	inside	the	actual
ladder.	At	this	point,	some	games	will	use	a	different	hitbox	for	the	purposes	of	determining
whether	the	player	is	still	on	the	ladder.	Mega	Man,	for	example,	seems	to	use	a	single	tile
(equivalent	to	top	tile	of	the	original	character,	highlighted	in	red	in	the	image	above).

There	are	a	few	different	ways	of	LEAVING	the	ladder:

Reaching	the	top	of	the	ladder.	This	will	usually	prompt	an	animation	and	move	the	player
several	pixels	up	in	y,	so	he’s	now	standing	on	top	of	the	ladder.
Reaching	the	bottom	of	a	hanging	ladder.	This	will	cause	the	player	to	simply	fall,	although
some	games	won’t	let	the	player	leave	the	ladder	in	this	way.
Moving	left	or	right.	If	there	is	no	obstacle	on	that	side,	the	player	may	be	allowed	to	leave
that	way.
Jumping.	Some	games	allow	you	to	release	the	ladder	by	doing	this.

While	on	the	ladder,	the	character’s	movement	changes	so,	typically,	all	he	can	do	is	move	up	and
down,	and	sometimes	attack.

Stairs

Castlevania:	Dracula	X,	with	tile	boundaries

Stairs	are	a	variation	of	ladders,	seen	in	few	games,	but	notably	in	the	Castlevania	series.	The
actual	implementation	is	very	similar	to	that	of	ladders,	with	a	few	exceptions:

The	player	moves	tile	by	tile	or	half-tile	by	half-tile	(as	in	Dracula	X)
Each	“step”	causes	the	player	to	be	shifted	simultaneously	on	X	and	Y	coordinates,	by	a	preset
amount.
Initial	overlapping	detection	when	going	up	might	look	on	the	tile	ahead	instead	of	just	the
current	overlap	one.

Other	games	also	have	stairs	that	behave	like	slopes.	In	that	case,	they	are	simply	a	visual
feature.

Moving	Platforms

Super	Mario	World

Moving	platforms	can	seem	a	little	tricky,	but	are	actually	fairly	simple.	Unlike	normal	platforms,
they	cannot	be	represented	by	fixed	tiles	(for	obvious	reasons),	and	instead	should	be	represented
by	an	AABB,	that	is,	a	rectangle	that	cannot	be	rotated.	It	is	a	normal	obstacle	for	all	collision
purposes,	and	if	you	stop	here,	you’ll	have	very	slippery	moving	platforms	(that	is,	they	work	as
intended,	except	that	the	character	does	not	move	along	it	on	his	own).

There	are	a	few	different	ways	to	implement	that.	One	algorithm	is	as	follows:

Before	anything	on	the	scene	is	stepped,	determine	whether	the	character	is	standing	on	a
moving	platform.	This	can	be	done	by	checking,	for	example,	whether	his	center-bottom	pixel
is	just	one	pixel	above	the	surface	of	the	platform.	If	it	is,	store	a	handle	to	the	platform	and
its	current	position	inside	the	character.
Step	all	moving	platforms.	Make	sure	that	this	happens	before	you	step	characters.
For	every	character	that’s	standing	on	a	moving	platform,	figure	the	delta-position	of	the
platform,	that	is,	how	much	it	has	moved	along	each	axis.	Now,	shift	the	character	by	the
same	amount.
Step	the	characters	as	usual.

Other	Features

Sonic	the	Hedgehog	2

Other	games	have	more	complicated	and	exclusive	features.	Sonic	the	Hedgehog	series	is	notable
for	this.	Those	are	beyond	the	scope	of	this	article	(and	my	knowledge,	for	that	matter!),	but
might	be	subject	of	a	future	article.

Type	#3:	Bitmask

Similar	to	“Tile	Based	(Smooth)”,	but	instead	of	using	large	tiles,	an	image	is	used	to	determine
collision	for	each	pixel.	This	allows	finer	detailing,	but	significantly	increases	complexity,	memory
usage,	and	requires	something	akin	to	an	image	editor	to	create	levels.	It	also	often	implies	that
tiles	won’t	be	used	for	visuals,	and	may	therefore	require	large,	individual	artwork	for	each	level.
Due	to	those	issues,	this	is	a	relatively	uncommon	technique,	but	can	produce	higher	quality
results	than	tile-based	approaches.	It	is	also	suitable	for	dynamic	environments	–	such	as	the
destructible	scenarios	in	Worms	–	as	you	can	“draw”	into	the	bitmask	to	change	the	scenario.

Worms	World	Party,	featuring	destructible	terrain

Examples:	Worms,	Talbot’s	Odyssey

How	it	works

The	basic	idea	is	very	similar	to	the	tile	(smooth)	algorithm	–	you	can	simply	consider	each	pixel
to	be	a	tile,	and	implement	the	exact	same	algorithm,	and	everything	will	work,	with	one	major
exception	–	slopes.	Since	slopes	are	now	implicitly	defined	by	the	positioning	between	nearby	tiles,
the	previous	technique	doesn’t	work,	and	a	much	more	complex	algorithm	has	to	be	used	in	its
place.	Other	things,	such	as	ladders,	also	become	trickier.

Slopes

Talbot’s	Odyssey,	with	the	collision	bitmask	overlaid	on	top	of	the	game.

Slopes	are	the	primary	reason	why	this	type	of	implementation	is	very	hard	to	get	right.
Unfortunately,	they	are	also	pretty	much	mandatory,	as	it’d	make	no	sense	to	use	this
implementation	without	slopes.	Often,	they’re	the	reason	why	you’re	even	using	this	system.

This	is,	roughly,	the	algorithm	used	by	Talbot’s	Odyssey:

Integrate	acceleration	and	velocity	to	compute	the	desired	delta-position	vector	(how	much	to
move	in	each	axis).
Step	each	axis	separately,	starting	with	the	one	with	the	largest	absolute	difference.
For	the	horizontal	movement,	offset	the	player	AABB	by	3	pixels	to	the	top,	so	he	can	climb
slopes.
Scan	ahead,	by	checking	against	all	valid	obstacles	and	the	bitmask	itself,	to	determine	how
many	pixels	it	is	able	to	move	before	hitting	an	obstacle.	Move	to	this	new	position.
If	this	was	horizontal	movement,	move	as	many	pixels	up	as	necessary	(which	should	be	up	to
3)	to	make	up	for	slope.
If,	at	the	end	of	the	movement,	any	pixel	of	the	character	is	overlaping	with	any	obstacle,
undo	the	movement	on	this	axis.
Regardless	of	result	of	last	condition,	proceed	to	do	the	same	for	the	other	axis.

Because	this	system	has	no	distinction	between	moving	down	because	you’re	going	downhill	or
because	you’re	falling,	you’re	likely	to	need	a	system	counting	how	many	frames	it’s	been	since
the	character	last	touched	the	floor,	for	purposes	of	determining	whether	it	can	jump	and	changing
animation.	For	Talbot,	this	value	is	10	frames.
Another	trick	here	is	efficiently	computing	how	many	pixels	it	can	move	before	hitting	something.
There	are	other	possible	complicating	factors,	such	as	one-way	platforms	(dealt	in	the	exact	same
way	as	for	tiled	(smooth))	and	sliding	down	steep	inclines	(which	is	fairly	complex	and	beyond	the
scope	of	the	article).	In	general,	this	technique	requires	a	lot	of	fine	tuning,	and	is	intrinsically	less
stable	than	tile-based	approaches.	I	only	recommend	it	if	you	absolutely	must	have	detailed
terrain.

Type	#4:	Vectorial

This	technique	uses	vectorial	data	(lines	or	polygons)	to	determine	the	boundaries	of	collision
areas.	Very	difficult	to	implement	properly,	it	is	nevertheless	increasingly	popular	due	to
theÂ	ubiquity	of	physics	engines,	such	as	Box2D,	which	are	suitable	for	implementing	this
technique.Â	It	provides	benefits	similar	to	the	bitmask	technique,	but	without	major	memory
overhead,	and	using	a	very	different	way	of	editing	levels.

Braid	(level	editor),	with	visible	layers	(top)	and	the	collision	polygons	(bottom)

Examples:	Braid,	Limbo

How	it	works

There	are	two	general	ways	of	approaching	this:

Resolve	movement	and	collisions	yourself,	similar	to	the	bitmask	method,	but	using	polygon
angles	to	compute	deflection	and	have	proper	slopes.
Use	a	physics	engine	(e.g.	Box2D)

Obviously,	the	second	is	more	popular	(though	I	suspect	that	Braid	went	for	the	first),	both
because	it	is	easier	and	because	it	allows	you	to	do	many	other	things	with	physics	in	the	game.
Unfortunately,	in	my	opinion,	one	has	to	be	very	careful	when	going	this	route,	to	avoid	making
the	game	feel	like	a	generic,	uninteresting	physics-platformer.

Compound	objects

This	approach	has	its	own	unique	problems.	It	may	suddenly	be	difficult	to	tell	whether	the	player
is	actually	standing	on	the	floor	(due	to	rounding	errors),	or	whether	it’s	hitting	a	wall	or	sliding
down	a	steep	incline.	If	using	a	physics	engine,	friction	can	be	an	issue,	as	you’ll	want	friction	to
be	high	on	the	foot,	but	low	on	the	sides.

There	are	different	ways	to	deal	with	those,	but	a	popular	solution	is	to	divide	the	character	into
several	different	polygons,	each	with	different	roles	associated:	so	you’d	(optionally)	have	the
main	central	body,	then	a	thin	rectangle	for	feet,	and	two	thin	rectangles	for	sides,	and	another	for
head	or	some	similar	combination.	Sometimes	they	are	tapered	to	avoid	getting	caught	into
obstacles.	They	can	have	different	physics	properties,	and	collision	callbacks	on	those	can	be	used
to	determine	the	status	of	character.	For	more	information,	sensors	(non-colliding	objects	that	are
just	used	to	check	for	overlap)	can	be	used.	Common	cases	include	determinining	whether	we’re
close	enough	to	the	floor	to	perform	a	jump,	or	if	the	character	is	pushing	against	a	wall,	etc.

General	Considerations
Regardless	of	the	type	of	platform	movement	that	you	have	chosen	(except	perhaps	for	type	#1),
a	few	general	considerations	apply.

Acceleration

Super	Mario	World	(low	acceleration),	Super	Metroid	(mid	acceleration),	Mega	Man	7	(high
acceleration)

One	of	the	factors	that	affects	the	feel	of	a	platformer	the	most	is	the	acceleration	of	the
character.	Acceleration	is	the	rate	of	change	in	speed.	When	it	is	low,	the	character	takes	a	long
time	to	reach	its	maximum	velocity,	or	to	come	to	a	halt	after	the	player	lets	go	of	controls.	This
makes	the	character	feel	“slippery”,	and	can	be	hard	to	master.	This	movement	is	most	commonly
associated	with	the	Super	Mario	series	of	games.	When	the	acceleration	is	high,	the	character
takes	very	little	(or	no	time)	to	go	from	zero	to	maximum	speed	and	back,	resulting	in	very	fast
responding,	“twitchy”	controls,	as	seen	in	the	Mega	Man	series	(I	believe	that	Mega	Man	actually
employs	infinite	acceleration,	that	is,	you’re	either	stopped	or	on	full	speed).

Even	if	a	game	has	no	acceleration	on	its	horizontal	movement,	it	is	likely	to	have	at	least	some
for	the	jump	arcs	–	otherwise	they	will	be	shaped	like	triangles.

How	it	works

Implementing	acceleration	is	actually	fairly	simple,	but	there	are	a	few	traps	to	watch	out	for.

Determine	xTargetSpeed.	This	should	be	0	if	the	player	is	not	touching	the	controls,	-
maxSpeed	if	pressing	left	or	+maxSpeed	if	pressing	right.
Determine	yTargetSpeed.	This	should	be	0	if	the	player	is	standing	on	a	platform,
+terminalSpeed	otherwise.
For	each	axis,	accelerate	the	current	speed	towards	target	speed	using	either	weighted
averaging	or	adding	acceleration.

The	two	acceleration	methods	are	as	follows:
Weighted	averaging:	acceleration	is	a	number	(“a”)	from	0	(no	change)	to	1	(instant
acceleration).	Use	that	value	to	linearly	interpolate	between	target	and	current	speed,	and	set
the	result	as	current	speed.

Adding	acceleration:	We’ll	determine	which	direction	to	add	the	acceleration	to	(using	the	sign
function,	which	returns	1	for	numbers	>0	and	-1	for	<0),	then	check	if	we	overshot.

It’s	important	to	integrate	the	acceleration	into	the	speed	before	moving	the	character,	otherwise
you’ll	introduce	a	one-frame	lag	into	character	input.
When	the	character	hits	an	obstacle,	it’s	a	good	idea	to	zero	his	speed	along	that	axis.

Jump	control

Super	Metroid,	Samus	performing	the	“Space	Jump”	(with	“Screw	Attack”	power-up)

Jumping	in	a	platform	game	can	be	as	simple	as	checking	if	the	player	is	on	the	ground	(or,	often,
whether	he	was	on	the	ground	anytime	on	the	last	n	frames),	and,	if	so,	giving	the	character	an
initial	negative	y	speed	(in	physical	terms,	an	impulse)	and	letting	gravity	do	the	rest.

There	are	four	general	ways	in	which	the	player	can	control	the	jump:

Impulse:	seen	in	games	such	as	Super	Mario	World	and	Sonic	the	Hedgehog,	the	jump
preserves	the	momentum	(that	is,	in	implementation	terms,	the	speed)	that	the	character	had
before	the	jump.	In	some	games,	this	is	the	only	way	to	influence	the	arc	of	the	jump	–	just
like	in	real	life.	There	is	nothing	to	implement	here	–	it	will	be	like	this	unless	you	do
something	to	stop	it!
Aerial	acceleration:	that	is,	retaining	control	of	horizontal	movement	while	in	mid-air.	Though
this	is	physically	implausible,	it	is	a	very	popular	feature,	as	it	makes	the	character	much	more
controllable.	Almost	every	platformer	game	has	it,	with	exceptions	for	games	similar	to	Prince
of	Persia.	Generally,	the	airborne	acceleration	is	greatly	reduced,	so	impulse	is	important,	but
some	games	(like	Mega	Man)	give	you	full	air	control.	This	is	generally	implemented	as	merely
tweaking	the	acceleration	parameter	while	you’re	airborne.
Ascent	control:	another	physically	implausible	action,	but	very	popular,	as	it	gives	you	much
greater	control	over	the	character.	The	longer	you	hold	the	jump	button,	the	higher	the
character	jumps.	Typically,	this	is	implemented	by	continuing	to	add	impulse	to	the	character
(though	this	impulse	can	incrementally	decrease)	for	as	long	as	the	button	is	held,	or
alternatively	byÂ	suppressingÂ	gravity	while	the	button	is	held.	A	time	limit	is	imposed,	unless
you	want	the	character	to	be	able	to	jumpÂ	infinitely.
Multiple	jumps:	once	airborne,	some	games	allow	the	player	to	jump	again,	perhaps	for	an
unlimited	number	of	times	(as	in	the	Space	Jump	in	Super	Metroid	or	the	flight	in	Talbot’s
Odyssey),	or	for	a	limited	number	of	jumps	before	touching	the	ground	(“double	jump”	being
the	most	common	choice).	This	can	be	accomplished	by	keeping	a	counter	that	increases	for
each	jump	and	decreases	when	you’re	on	the	ground	(be	careful	when	you	update	this,	or	you
might	reset	it	right	after	the	first	jump),	and	only	allowing	further	jumps	if	the	counter	is	low
enough.	Sometimes,	the	second	jump	is	shorter	than	the	initial	one.	Other	restrictions	may
apply	–	the	Space	Jump	only	triggers	if	you’re	already	doing	a	spin	jump	and	just	began	to
fall.

Animations	and	leading

Black	Thorne,	character	doing	a	long	animation	before	shooting	backwards	(Y	button)

In	many	games,	your	character	will	play	an	animation	before	actually	performing	the	action	you
requested.	However,	on	a	twitchy	action-based	game,	this	will	frustrate	players	–	DON’T	DO	THAT!
You	should	still	have	leading	animations	for	things	such	as	jumping	and	running,	but	if	you	care
about	how	the	game	responds,	make	those	cosmetic	only,	with	the	action	taken	immediately
regardless	of	the	animation.

Smoother	movement

Using	integers	to	represent	the	position	of	the	characters	is	wise,	as	it	makes	it	faster	and	stable.
However,	if	you	use	integers	for	everything,	you	will	end	up	with	some	jerky	motion.	There	are
multiple	solutions	to	this.	These	are	a	few:

Use	a	float	for	all	computations	and	for	storing	position,	and	cast	to	int	whenever	you’re
rendering	or	computing	collisions.	Fast	and	simple,	but	it	starts	losing	precision	if	you	move
too	far	away	from	(0,0).	This	is	probably	not	relevant	unless	you	have	a	very	large	playfield,
but	it’s	something	to	keep	in	mind.	If	it	comes	to	it,	you	can	use	a	double	instead.
Use	a	fixed	point	number	for	all	computations	and	position,	and	again	cast	to	int	when	you’re
rendering	or	computing	collisions.	Less	precise	than	float	and	with	a	more	limited	range,	but
the	precision	is	uniform	and	can,	on	some	hardware,	be	faster	(notably,	floating	point
processing	is	slow	on	many	mobile	phones).
Store	position	as	an	integer,	but	keep	a	“remainder”	stored	in	a	float.Â	When	integrating
position,	compute	the	delta-movement	as	a	float,	add	the	remainder	to	the	delta-movement,
then	add	the	integer	part	of	this	value	to	the	position,	and	the	fractional	part	to	the
“remainder”	field.	On	the	next	frame,	the	remainder	will	get	added	back	in.	The	advantage	of
this	method	is	that	you’re	using	an	integer	everywhere	except	for	movement,	ensuring	that
you	won’t	have	floating	point	complications	elsewhere,	and	increasing	performance.	This
technique	is	also	very	suitable	if	you	have	some	framework	in	which	the	position	of	the	object
has	to	be	an	integer,	or	where	it	is	a	float,	but	that	same	position	is	used	directly	by	the
rendering	system	–	in	that	case,	you	can	use	the	framework-provided	float	position	to	store
integer	values	only,	to	make	sure	that	the	rendering	is	always	aligned	to	pixels.

by	amz		/		May	20,	2012		/		Posted	in:	articles,	game	design,	programming,	tutorial

228	Responses

1 	 … 	 3 	 4 	 5

1 	 2 	 3

1.	 Primeiro	post	|	Technoverdrive
2.	 Research	and	inspiration	for	platform	games	|	School	related	work
3.	 æ–¯å ​¦ç¦ ​å¤§å ​¦å ​¦ç”Ÿæ•´ç ​†çš„æ¸¸æˆ ​å¼€å ​‘èµ„æº ​å¤§å…¨	–	å‰ ​ç«¯å¤´æ ​¡
4.	 Writing	an	HTML5	game	with	no	game	engine	â€“	Just	AngularJS	and	the	HTML5	Canvas!	|

The	adventures	of	Randeroo
5.	 La	guÃ ​a	para	implementar	juegos	de	plataformas	en	2D	[ENG]
6.	 æ–¯å ​¦ç¦ ​å¤§å ​¦å ​¦ç”Ÿæ•´ç ​†çš„æ¸¸æˆ ​å¼€å ​‘èµ„æº ​å¤§å…¨	-	code123
7.	 Recursos	para	desarrollar	videojuegos	|	We	Endanger	Species
8.	 Guia	para	implementar	juegos	de	plataformas	2D	|	El	blog	de	Tranquilinho
9.	 The	guide	to	implementing	2D	platformers	|	Higher-Order	Fun	|	Carlitos
10.	 A	Guide	to	Implementing	2D	Platform	Games	|	@MezBreezeDesign
11.	 MedBoy!	|	Science&Art	Enthusiast
12.	 Les	liens	de	la	semaine	â€“	Ã‰dition	#149	|	French	Coding
13.	 Irritating	Implementation	of	Platforming	Predicament,	Part	I:	Basic	Character	Control	|

Ascender:	The	Blog
14.	 cropped-cropped-cropped-tuttle-games-header1211.png,tuttle-games-header.png,cropped-

tuttle-games-header11.png,Morbidly	Obese	Dinosaur	Escape,Morbidly	Obese	Dinosaur
Escape,mode-thumbnail,mode-screenshot,Deducktion,Hayflower,growingtrees-
screenshot,Pumping

15.	 O	guia	para	programadores	de	jogos	de	plataforma	2D	|
16.	 Platform	game	«	MiÄ™dzy	bitami	a	neuronami
17.	 Best	Of	GDC	–	Tools	&	Technology	–	Matt	Eley	|	Labs
18.	 Game	Design	–	Sunzo
19.	 Useful	tips	for	a	2d	platformer	|	Flame	Game
20.	 Where	am	I?	–	The	Game	–	Games	and	AI,	a	learning	experience
21.	 ÐšÐ°Ðº	Ñ ​Ð¾Ð·Ð´Ð°Ñ‚ÑŒ	Ð¸Ð³Ñ€Ñƒ	Ð¶Ð°Ð½Ñ€Ð°	2d	Ð¿Ð»Ð°Ñ‚Ñ„Ð¾Ñ€Ð¼ÐµÑ€?	|

kychka-pc	|	SFML	|	kychka-pc	|	SFML
22.	 Reworking	the	System	–	Michael	Robinson	–	Development	Blog
23.	 LWJGL	|	Davies-Barnard
24.	 19/5/2013	(+1013	hours)	–	Testing	Ground
25.	 1/4/2013	(+929	hours)	–	Testing	Ground
26.	 Map	Collision	Detection	and	Slope	Implementation	–	Vermilion	Tower
27.	 Useful	Links	for	2D	Game	Development	–	Coders	Might
28.	 Game	Programming	Resources,	Tutorials,	Tips	&	Guides	for	Developers
29.	 Platformer	Physics	101	and	The	3	Fundamental	Equations	of	Platformers	–	My	Blog
30.	 LWJGL	–	Byte	Insight
31.	 The	Very	Basics	of	Platforming	Physics	Using	Thomas	Was	Alone	as	a	Visual	Cue	–

Unnecessary	Writing
32.	 Tutorial	Game	Platformer	|	gametutorialx
33.	 The	guide	to	implementing	2D	platformers	|	Higher-Order	Fun	–	DFX.lv

Leave	a	Reply

	Name	*

	E-mail	*

	Website

Submit	Comment

CAPTCHA	Code 	*

About

I'm	Rodrigo	Monteiro,	and	I	have	been
programming	video	games	since	1997,
ranging	from	Klik	&	Play	to	C++	and	Java.
I'm	the	creator	of	the	Aegisub	subtitling
software	(together	with	Niels	Hansen),
and	I	like	joining	game	programming
challenges	such	as	the	Allegro	SpeedHack
and	the	Global	Game	Jam.

I	currently	work	as	a	professional	video
game	programmer	at	Bossa	Studios,	in
London,	United	Kingdom.

All	opinions	are	my	own.

More...

Archives
September	2012	(1)
June	2012	(1)
May	2012	(2)
February	2012	(1)
November	2011	(1)
September	2011	(1)
June	2011	(1)
May	2011	(1)
February	2011	(3)
August	2010	(1)
February	2010	(1)
June	2009	(4)

Tags
article	c++	diablo	down	goes	the	phoenix
experiment	game	game	design	game
jam	greenlight	humor	lecture	main	loop

math	opengl	phoenix	presentation

programming	rant
religion	spjam	steam	technical	thread

tutorial	vector	vectors	video
win32

Blogroll
Aegisub	Blog

	 	 	 	

Higher-Order	Fun
Game	Design	&	Game	Programming

HOME ABOUT ARTICLES CONTACT PORTFOLIO

1
2

float	t	=	float(centerX	-	tileX)	/	tileSize;
float	floorY	=	(1-t)	*	leftFloorY	+	t	*	rightFloorY;

1
2
3

vector2f	curSpeed	=	a	*	targetSpeed	+	(1-a)	*	curSpeed;
if	(fabs(curSpeed.x)	<	threshold)	curSpeed.x	=	0;
if	(fabs(curSpeed.y)	<	threshold)	curSpeed.y	=	0;

1
2
3
4
5
6
7

vector2f	direction	=	vector2f(sign(targetSpeed.x	-	curSpeed.x),
																														sign(targetSpeed.y	-	curSpeed.y));
curSpeed	+=	acceleration	*	direction;
if	(sign(targetSpeed.x	-	curSpeed.x)	!=	direction.x)
				curSpeed.x	=	targetSpeed.x;
if	(sign(targetSpeed.y	-	curSpeed.y)	!=	direction.y)
				curSpeed.y	=	targetSpeed.y;

siddharthshekar		/		2015-01-05

Hi.	I	got	to	this	blog	from	raywenderlich’s	platform	game	tutorial.	I	am	trying	to	implement	a
slop.	What	do	you	my	OPPOSITE	axis?	Also	what	changes	would	I	have	to	make	in	Ray’s
tutorial	to	make	this	work?	Thanks.

Evan	Rodgers		/		2015-09-13

this	is	amazing	and	I	am	sincerely	grateful	that	you	took	the	time	to	make	this	write-up.	If
you	made	a	book	expanding	on	these	principles	I’d	buy	it!

Theck		/		2015-10-10

Hi,

I’m	theck	from	ZehnGames.com	an	spanish	videogames	site.	I	htink	this	articles	is	great	and
I	want	to	ask	you	for	permission	to	translate	it	to	spanish	and	publish	it	(with	proper
attribution)	in	ours	Development	section.

Many	thanks,
Theck

Valeria		/		2015-11-09

LimÃ£o	realiza	uma	limpeza	no	organismo,	alÃ©m	de	conter
muita	vitamina	C,	essa	fruta	cÃ ​trica,	faz	com	que	ele	funcione	corretamente,	porque	ele
contÃ©mÂ	sais	minerais
(fÃ³sforo,	cÃ¡lcio	e	ferro).

Salt	Lake	City	Social	Media	Company		/		2016-01-15

Hello,	I	want	to	subscribe	for	this	webpage	to	get	latest	updates,
so	where	can	i	do	it	please	help.

Connor		/		2016-01-23

I	finding	it	hard	to	figure	out	how	to	put	vectorial	collision	detection	into	code.	I	understand
the	laws	of	physics	and	slope	calculations	just	fine,	but	its	the	“don’t	check	for	collisions
unless	you	share	coordinates	with	the	player/where	the	player	will	be	in	the	next	screen
draw”	part	that	stumps	me.	How	would	you	determine	such	without	either	checking	EVERY
SINGLE	OBJECT	or	doing	math	to	find	out	what	tile	the	player	is	in	(which	is	method	2	and	is
not	my	desired	solution).	If	the	answer	is	actually	“Yes,	you	do	need	to	check	every	single
object.	Just	do	obvious	checks	to	make	sure	they	aren’t	out	of	view	and	you	can	in	fact	collide
with	them”,	please	enlighten	me	cause	I	cannot	get	this	working	efficiently	for	the	life	of	me…

Edgar	D		/		2016-02-13

I	just	wanted	to	drop	in	and	thank	you	for	this	article.	I	had	been	looking	for	something
similar	to	it	for	quite	a	while,	but	never	actually	found	anything	more	than	a	comment	from
game	devs	here	and	there.	Even	without	any	specific	implementation	details,	this	is	very
useful	to	figure	out	how	to	implement	my	future	games.	Thanks!

manfaat	daun	sirsak	untuk	kanker		/		2016-03-10

Good	way	of	explaining,	and	good	article	to	obtain	information	on	the	topic	of
my	presentation	subject,	which	i	am	going	to	deliver	in	institution	of	higher	education.

Soley		/		2016-04-27

This	article	is	so	useful	to	understand	platformers	games.

I	wonder	if	you	have	any	sample	code	like	what	@David	have	here:
http://gamedev.stackexchange.com/a/29618/68063

Thank	you	so	much

download	pdf		/		2016-05-24

Hey	there	just	wanted	tto	give	you	a	quick	heads	up.
The	text	in	yoour	article	seem	to	be	running	off	the	screen	in	Safari.

I’m	not	sure	if	this	is	a	format	issue	or	something	to
doo	with	browser	compatibility	but	I	thought	I’d	post	to	lett
you	know.	The	layout	look	great	though!	Hope	you	get	the	issue	fixed	soon.	Many	thanks

Vijay	V		/		2016-06-29

Many	thanks	man.	Great	stuff.	Learnt	a	lot.

Ankit		/		2016-07-04

As	a	beginner	It	was	really	difficult	to	get	the	collision	detection	done	easily.	It	was	a	mess.
One	of	the	best	article	I	have	ever	seen	in	my	life.
Thank	you.

alltagsbegleiter	fÃ¼r	demenzkranke		/		2016-08-19

Es	ist	zwar	schÃ¶n	zu	wissen,	dass	es	doch	mÃ¶glich
ist	enorme	Summen	abzustauben,	doch	bekommt	man	meist	keine	Informationen	Ã¼ber	die
Vorgehensweise	der
Spieler,	so	dass	einem	diese	Nachrichten	auch	relativ	wenig	bringen.

asad		/		2016-08-27

This	blog	awesome	and	i	learn	a	lot	about	programming	from	here.The	best	thing	about	this
blog	is	that	you	doing	from	beginning	to	experts	level.

Friv	2	Games		/		2016-10-09

friv2games.org.uk	are	updated	but	the	top	games	for	your	service	to	women.

Chaussures	Yeezy	Boost	350		/		2017-03-08

The	text	in	yoour	article	seem	to	be	running	off	the	screen	in	Safari.

Hersh		/		2017-03-22

Hi,

I	was	looking	how	to	implement	slopes	for	Type	2	Tile	Based	(Smooth)	platformers.	Most	of
the	tutorial	makes	sense	to	me,	but	I	do	not	understand	which	step	causes	the	character	to
move	uphill	on	a	slope.	Currently,	in	my	implementation	of	it,	moving	downhill	works	but	not
uphill,	but	I	do	not	know	which	part	I	implemented	incorrectly	as	I	am	unsure	which	part	of
the	tutorial	is	supposed	to	cause	the	character	to	ascend	a	slope.

Thanks	for	you	help	in	advanced.

tanki	online		/		2017-04-02

As	a	beginner	It	was	really	difficult	to	get	the	collision	detection	done	easily.	It	was	a	mess.
One	of	the	best	article	I	have	ever	seen	in	my	life.

Marekkgex		/		2017-09-19

Witam	serdecznie,
ChiaÅ‚bym	prosiÄ‡	o	ocenÄ™	mojej	strony	internetowej

FirstWayne		/		2017-09-21

I	see	you	don’t	monetize	your	page,	don’t	waste	your	traffic,	you	can	earn	extra	bucks	every
month	because	you’ve	got	high	quality	content.

If	you	want	to	know	how	to	make	extra	money,	search	for:
Mrdalekjd	methods	for	$$$

kevin		/		2017-10-10

Just	wanted	to	say	thank	you	so	much	for	this	article.	I’ve	made	on	top	down	galaga	type
game	in	the	past	with	pygame	and	recently	started	thinking	about	a	contra	type	game.	This	is
exactly	the	info	that	I	needed,	I	think	I	am	going	to	go	with	type	2	and	I’m	going	to	code	it	in
Lua	using	Love2d.	Do	you	mind	if	I	repost	this	on	my	site	with	credit	to	you	and	a	link	back	to
the	original?

Rachel		/		2018-06-05

This	article	is	SO	helpful!	Thank	you	so	much	for	taking	the	time	to	put	it	together.	Much
appreciated	

chirurgie	esthetique	Tunisie		/		2018-06-27

This	site	is	beautiful	thank	you	very	much	and	congratulations	!

chirurgie	esthetique	Suisse		/		2018-06-27

Hello,	This	site	is	beautiful.	thank	you	very	much	and	congratulations	!

chirurgie	esthetique	Suisse		/		2018-06-27

chirurgie	esthetique	VAUD:	This	site	is	beautiful	thank	you	very	much	and
congratulations	!

Amos		/		2018-10-18

I	think	what	you	composed	made	a	great	deal	of	sense.
But,	what	about	this?	suppose	you	added	a	little	content?
I	mean,	I	don’t	wish	to	tell	you	how	to	run	your	blog,	but
what	if	you	added	a	title	that	grabbed	a	person’s	attention?	I	mean	The	guide	to
implementing
2D	platformers	|	Higher-Order	Fun	is	a	little
boring.	You	could	look	at	Yahoo’s	front	page	and	note	how
they	write	article	titles	to	get	people	to	open	the	links.
You	might	add	a	video	or	a	related	picture	or	two	to	grab	readers	interested	about	what
you’ve	written.	Just	my	opinion,	it	might	make	your	blog	a	little	bit	more	interesting.

custom	product	packaging		/		2018-12-03

Absolutely	loved	your	blog!	it	gave	a	broad	understanding	on	how	the	packaging	is	handled
and	fully	explained	its	specialized	fields.	Designs	were	great.	keep	up	the	good	work.

Motifz		/		2019-03-07

This	article	is	very	informative.	The	designs	were	great.	keep	up	the	good	work.	Thank	you
for	sharing	with	us.

Cosmetic	Packaging		/		2019-04-03

Right	here	is	the	perfect	site	for	anybody	who	really	wants	to	understand	this	topic.	Thanks
for	sharing!

Davidanimi		/		2019-04-12

Ñ€Ð°Ð·Ñ€Ð°Ð±Ð¾Ñ‚ÐºÐ°	Ñ ​Ð°Ð¹Ñ‚Ð°	Ð¿Ð¾Ð´	ÐºÐ»ÑŽÑ‡

WilliamRup		/		2019-06-10

ÐšÑ€Ð¸Ð¿Ñ‚Ð¾Ð²Ð°Ð»ÑŽÑ‚Ñ‹

BestKarina		/		2019-07-19

I	have	noticed	you	don’t	monetize	higherorderfun.com,	don’t	waste	your	traffic,	you	can	earn
additional	bucks	every	month	with
new	monetization	method.	This	is	the	best	adsense	alternative	for	any	type	of	website	(they
approve	all	sites),	for	more
info	simply	search	in	gooogle:	murgrabia’s	tools

stephanie	lotus		/		2019-08-27

Article	was	so	helpfull	keep	doing	great	job
The	Custom	Bath	Bomb	Packaging	are	aiding	the	top	cosmetic	brands	to	enhances	brand
awareness	effectually.

berita	olahraga	sepak	bola	di	indonesia		/		2019-10-26

The	guide	to	implementing	2D	platformers	|	Higher-Order	Fun	http://agensbobetjempol.com

Cosmetic	Boxes		/		2019-11-05

Thanks	for	this	authentic	piece	of	information.	keep	it	up	and	make	posts	like	these.

Exactly	how	would	you	utilize	$52413	to	make	more
cash:	https://vv-bs-f.blogspot.gr?is=16		/		2019-11-21

Forex	+	Cryptocurrency	=	$	4198	per	week:	https://aa-j-pp.blogspot.it?mf=29

hausfrauen		/		2020-01-13

Thanks	for	sharing	this	cool	article.	I	love	those	games

Reife	Frauen		/		2020-03-03

I	like	it,	thank	you	for	sharing	this	article

Gartenhaus		/		2020-03-10

Ich	schreibe	den	Artikel	fÃ¼r	Blog	von	Hansagarten24,	da	gibt	es	viele	Angebote	zu
Gartenhaus	Holz

Gartenhaus		/		2020-03-10

hello,	I	find	this	information	very	actual

SummerDream		/		2020-03-18

Great	job!	Thanks	a	lot	for	your	work.	Besides	programming	I	do	gardening,	but	I	consider	it
hard	when	living	in	an	urban	world	with	no	greenery.	That’s	why	my	first	game	was	about	a
flowerbed	and	garden	rooms.
I	try	to	create	everything	as	realistic	as	possible,	so	I	use	a	lot	of	websites	with	such	goods	to
find	inspiration

Juan		/		2020-05-09

You	should	be	a	part	of	a	contest	for	one	of	the	greatest	blogs	online.
I	will	recommend	this	web	site!

Leslie		/		2020-06-10

These	are	some	of	the	best	ideas	for	implementing	2D	platforms	for	gaming.	These	ready	to
wear	pret	are	best	collection	for	women.

Craig	Martin		/		2020-06-24

Great	writing,	great	place	to	learn.

Mycustomboxes		/		2020-06-26

Thank	you	much	for	sharing.	This	guide	is	really	beneficial.	Very	good	article	post.

http://frostpress.com/themes/comet/
http://www.wordpress.org/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/#comments
http://higherorderfun.com/blog/2012/05/17/on-how-diablo-iii-fails-to-live-up-to-the-diablo-legacy/
http://higherorderfun.com/blog/2012/06/03/math-for-game-programmers-05-vector-cheat-sheet/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/#respond
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-4/#comments
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-2/#comments
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-1/#comments
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comments
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-4/#comments
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-1/#comments
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-2/#comments
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/
http://higherorderfun.com/blog/wp-content/uploads/2012/05/Flashback_tiles_2.png
http://higherorderfun.com/blog/wp-content/uploads/2012/05/Mega_Man_X_tiles.png
http://higherorderfun.com/blog/wp-content/uploads/2012/05/Mega_Man_X_tiles_2.png
http://higherorderfun.com/blog/wp-content/uploads/2012/05/Mega_Man_X_Slope_Tile.png
http://higherorderfun.com/blog/wp-content/uploads/2012/05/Super_Mario_World_One_Way.png
http://higherorderfun.com/blog/wp-content/uploads/2012/05/Mega_Man_7_Ladder.png
http://higherorderfun.com/blog/wp-content/uploads/2012/05/Castlevania_Dracula_X_Stairs.png
http://higherorderfun.com/blog/wp-content/uploads/2012/05/Super_Mario_World_Moving_Platform.png
http://higherorderfun.com/blog/wp-content/uploads/2012/05/Sonic_2_Loop.jpg
http://higherorderfun.com/blog/wp-content/uploads/2012/05/Worms_World_Party.png
http://higherorderfun.com/blog/wp-content/uploads/2012/05/Talbot_Bitmask_2.png
http://higherorderfun.com/blog/wp-content/uploads/2012/05/braid11.jpg
http://higherorderfun.com/blog/wp-content/uploads/2012/05/braid2.png
http://higherorderfun.com/blog/wp-content/uploads/2012/05/Mario_Metroid_Megaman_Acceleration1.png
http://higherorderfun.com/blog/wp-content/uploads/2012/05/Super_Metroid_Screw_Attack.png
http://higherorderfun.com/blog/wp-content/uploads/2012/05/Black_Thorne_Lead.png
http://higherorderfun.com/blog/author/admin/
http://higherorderfun.com/blog/category/articles/
http://higherorderfun.com/blog/category/game-design/
http://higherorderfun.com/blog/category/tutorial/programming/
http://higherorderfun.com/blog/category/tutorial/
http://technoverdrive.com/?p=14
http://ranyao.wordpress.com/2014/09/24/research-and-inspiration-for-platform-games/
http://top.css88.com/archives/671
http://randolphburt.co.uk/2014/11/20/writing-an-html5-game-with-no-game-engine-just-angularjs-and-the-html5-canvas/
https://www.meneame.net/m/tecnolog%C3%83%C2%ADa/guia-implementar-juegos-plataformas-2d-eng
http://www.code123.cc/215.html
https://nullpointerdruid.wordpress.com/2015/08/15/recursos-para-desarrollar-videojuegos/
http://www.tranquilinho.com/videojuegos/guia-para-implementar-juegos-de-plataformas-2d/
http://metistd.com/2015/09/the-guide-to-implementing-2d-platformers-higher-order-fun/
http://mezbreezedesign.com/2015/09/12/a-guide-to-implementing-2d-platform-games/
https://yiweiwu.wordpress.com/2015/08/19/medboy-project/
http://frenchcoding.com/2015/09/14/les-liens-de-la-semaine-edition-149/
https://ascendergame.wordpress.com/2015/09/18/irritating-implementation-of-platforming-predicament-part-i-basic-character-control/
http://tuttlegames.com/2015/12/24/cropped-cropped-cropped-tuttle-games-header1211-pngtuttle-games-header-pngcropped-tuttle-games-header11-pngmorbidly-obese-dinosaur-escapemorbidly-obese-dinosaur-escap
http://towerupstudios.com/blog/2016/o-guia-para-programadores-de-jogos-de-plataforma-2d/
http://hedron.civ.pl/blog/2016/02/14/platform-game/
https://matteley.wordpress.com/2016/07/14/best-of-gdc-tools-technology/
https://sunzoblog.wordpress.com/2016/07/31/game-design/
http://flameconcept.azurewebsites.net/2016/10/15/useful-tips-for-a-2d-platformer/
https://tccmweb.wordpress.com/2017/02/24/where-am-i-the-game/
http://kychka-pc.ru/sfml/kak-sozdat-igru-zhanra-2d-platformer.html
http://mdr.repgameinjury.co.uk/wp/dev/2017/05/17/reworking-the-system/
http://davies-barnard.co.uk/lwjgl/
http://darklocker.com/wordpress/2013/05/19/1952013-1013-hours/
http://darklocker.com/wordpress/2013/04/01/142013-929-hours/
http://www.vermiliontower.com/2017/08/23/map-collision-detection-and-slope-implementation/
https://codersmight.wordpress.com/2017/11/23/useful-links-for-2d-game-development/
https://clemmons.io/game-programming-resources/
https://error454.com/2013/10/23/platformer-physics-101-and-the-3-fundamental-equations-of-platformers/
https://byteinsight.co.uk/2017/06/08/lwjgl/
https://unnecessarywriting.wordpress.com/2019/04/02/the-very-basics-of-platforming-physics-using-thomas-was-alone-as-a-visual-cue/
https://gametutorialx.wordpress.com/2020/03/10/tutorial-game-platformer/
https://dfx.lv/w/the-guide-to-implementing-2d-platformers-higher-order-fun_2264/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/#
http://www.bossastudios.com/
http://higherorderfun.com/blog/?page_id=37
http://higherorderfun.com/blog/2012/09/
http://higherorderfun.com/blog/2012/06/
http://higherorderfun.com/blog/2012/05/
http://higherorderfun.com/blog/2012/02/
http://higherorderfun.com/blog/2011/11/
http://higherorderfun.com/blog/2011/09/
http://higherorderfun.com/blog/2011/06/
http://higherorderfun.com/blog/2011/05/
http://higherorderfun.com/blog/2011/02/
http://higherorderfun.com/blog/2010/08/
http://higherorderfun.com/blog/2010/02/
http://higherorderfun.com/blog/2009/06/
http://higherorderfun.com/blog/tag/article/
http://higherorderfun.com/blog/tag/c/
http://higherorderfun.com/blog/tag/diablo/
http://higherorderfun.com/blog/tag/down-goes-the-phoenix/
http://higherorderfun.com/blog/tag/experiment/
http://higherorderfun.com/blog/tag/game/
http://higherorderfun.com/blog/tag/game-design/
http://higherorderfun.com/blog/tag/game-jam/
http://higherorderfun.com/blog/tag/greenlight/
http://higherorderfun.com/blog/tag/humor/
http://higherorderfun.com/blog/tag/lecture/
http://higherorderfun.com/blog/tag/main-loop/
http://higherorderfun.com/blog/tag/math-tutorial/
http://higherorderfun.com/blog/tag/opengl/
http://higherorderfun.com/blog/tag/phoenix/
http://higherorderfun.com/blog/tag/presentation/
http://higherorderfun.com/blog/tag/programming/
http://higherorderfun.com/blog/tag/rant/
http://higherorderfun.com/blog/tag/religion/
http://higherorderfun.com/blog/tag/spjam/
http://higherorderfun.com/blog/tag/steam/
http://higherorderfun.com/blog/tag/technical/
http://higherorderfun.com/blog/tag/thread/
http://higherorderfun.com/blog/tag/tutorial/
http://higherorderfun.com/blog/tag/vector/
http://higherorderfun.com/blog/tag/vectors/
http://higherorderfun.com/blog/tag/video/
http://higherorderfun.com/blog/tag/win32/
http://blog.aegisub.org/
http://higherorderfun.com/blog
http://higherorderfun.com/blog/feed/
http://higherorderfun.com/blog
http://higherorderfun.com/blog/about/
http://higherorderfun.com/blog/articles/
http://higherorderfun.com/blog/contact/
http://higherorderfun.com/blog/portfolio/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-13975
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=13975#respond
http://evanrodgers.com/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-19289
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=19289#respond
http://www.zehngames.com/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-19780
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=19780#respond
http://www.signal-lsp.com/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-20386
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=20386#respond
http://utahsocialmedia.marketing/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-21332
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=21332#respond
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-21403
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=21403#respond
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-21567
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=21567#respond
http://kapsuldaunsirsak.net/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-21818
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=21818#respond
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-22412
http://gamedev.stackexchange.com/a/29618/68063
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=22412#respond
http://blogsdelagente.com/eundefiledu
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-22671
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=22671#respond
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-22924
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=22924#respond
http://nowebyet.in.sec/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-23011
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=23011#respond
http://www.orf.at/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-23627
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=23627#respond
http://www.pprogramming.com/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-23757
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=23757#respond
http://www.friv2games.org.uk/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-24244
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=24244#respond
http://www.chaussuresyeezyboost.fr/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-26596
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=26596#respond
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-26986
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=26986#respond
http://tankionlineaz.com/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-27517
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=27517#respond
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-33137
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=33137#respond
https://11reyes.blogspot.co.uk/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-33260
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=33260#respond
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-34253
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=34253#respond
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-44446
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=44446#respond
https://www.esthetica.ch/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-45251
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=45251#respond
https://esthetica.ch/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-45252
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=45252#respond
https://esthetica.ch/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-45253
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/#comment-45251
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=45253#respond
http://computerhopenosswwith.com/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-53295
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=53295#respond
https://www.dodopackaging.com/product-packaging/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-56693
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=56693#respond
https://motifz.com.pk/pk/lawn.html
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-74164
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=74164#respond
https://www.thecosmeticboxes.com/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-75869
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=75869#respond
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-75918
https://develop-software.ru/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=75918#respond
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-82398
https://lakshmiflow.pro/partner/yarilo
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=82398#respond
https://followtresa.blogspot.se/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-84261
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=84261#respond
https://www.thecosmeticboxes.co.uk/product/custom-cbd-boxes-packaging-uk/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-84501
https://www.thecosmeticboxes.co.uk/product/custom-bath-bomb-boxes-packaging-uk/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=84501#respond
http://judibca.net/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-84918
http://agensbobetjempol.com/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=84918#respond
https://www.cosmeticboxespackaging.com/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-85018
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=85018#respond
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-85398
https://aa-j-pp.blogspot.it/?mf=29
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=85398#respond
https://hausfrauensex.net/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-86571
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=86571#respond
https://sextreff.net/reifefrauen
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-87072
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=87072#respond
https://www.hansagarten24.de/gartenhauser/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-87133
https://www.hansagarten24.de/gartenhauser/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=87133#respond
https://www.hansagarten24.de/gartenhauser/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-87134
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=87134#respond
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-87227
https://summerhouse24.co.uk/garden-rooms/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=87227#respond
http://wwayoverthenow2.com/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-87684
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=87684#respond
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-89093
https://www.sifona.com/product-category/pret-wear/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=89093#respond
https://www.articleted.com/article/266343/46091/The-Key-Factor-Is-To-Make-Sure-That-The-Environment-Is-Not-Harmed
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-89765
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=89765#respond
https://www.mycustomboxes.com/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/comment-page-3/#comment-89856
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/?replytocom=89856#respond

