
Instantly	share	code,	notes,	and	snippets.

Latency	Numbers	Every	Programmer	Should	Know

Load	earlier	comments...

jboner / latency.txt
Last	active	May	23,	2022

	Code	 	Revisions	 18 	 	Stars	 5,000+ 	 	Forks	 1,825

	 latency.txt

1 Latency	Comparison	Numbers	(~2012)

2 ----------------------------------

3 L1	cache	reference																											0.5	ns

4 Branch	mispredict																												5			ns

5 L2	cache	reference																											7			ns																						14x	L1	cache

6 Mutex	lock/unlock																											25			ns

7 Main	memory	reference																						100			ns																						20x	L2	cache,	200x	L1	cache

8 Compress	1K	bytes	with	Zippy													3,000			ns								3	us

9 Send	1K	bytes	over	1	Gbps	network							10,000			ns							10	us

10 Read	4K	randomly	from	SSD*													150,000			ns						150	us										~1GB/sec	SSD

11 Read	1	MB	sequentially	from	memory					250,000			ns						250	us

12 Round	trip	within	same	datacenter						500,000			ns						500	us

13 Read	1	MB	sequentially	from	SSD*					1,000,000			ns				1,000	us				1	ms		~1GB/sec	SSD,	4X	memory

14 Disk	seek																											10,000,000			ns			10,000	us			10	ms		20x	datacenter	roundtrip

15 Read	1	MB	sequentially	from	disk				20,000,000			ns			20,000	us			20	ms		80x	memory,	20X	SSD

16 Send	packet	CA->Netherlands->CA				150,000,000			ns		150,000	us		150	ms

17

18 Notes

19 -----

20 1	ns	=	10^-9	seconds

21 1	us	=	10^-6	seconds	=	1,000	ns

22 1	ms	=	10^-3	seconds	=	1,000	us	=	1,000,000	ns

23

24 Credit

25 ------

26 By	Jeff	Dean:															http://research.google.com/people/jeff/

27 Originally	by	Peter	Norvig:	http://norvig.com/21-days.html#answers

28

29 Contributions

30 -------------

31 'Humanized'	comparison:		https://gist.github.com/hellerbarde/2843375

32 Visual	comparison	chart:	http://i.imgur.com/k0t1e.png

AnatoliiStepaniuk	commented	Dec	25,	2018

Is	there	any	resources	when	one	can	test	himself	with	a	tasks	involving	these	numbers?
E.g.	calculate	how	much	time	will	it	take	to	read	5Mb	from	DB	in	another	datacenter	and	get	it	back?
That	would	be	a	great	test	of	applying	those	numbers	in	some	real	use	cases.

bhaavanmerchant	commented	Dec	26,	2018

I	think	given	increased	use	of	GPUs	/	TPUs	it	might	be	interesting	numbers	to	add	here	now.	Like:	1MB	over	PCIexpress	to	GPU	memory,
Computing	100	prime	numbers	per	core	of	CPU	compared	to	CPU,	reading	1	MB	from	GPU	memory	to	GPU	etc.

sergekukharev	commented	Jan	11,	2019

Markdown	version	https://gist.github.com/sergekukharev/ccdd49d23a5078f108175dc71ad3c06c

binbinlau	commented	Jan	25,	2019

useful	information	&	thanks

bpmf	commented	Feb	22,	2019	•	

Some	data	of	the	Berkeley	interactive	version	(https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html	)	is	estimated,	eg:	4	µs	in
2019	to	read	1	MB	sequentially	from	memory;	it	seems	too	fast.

edited	

speculatrix	commented	Mar	25,	2019

this	is	a	great	idea.
how	about	the	time	to	complete	a	DNS	request	-	UDP	packet	request	and	response	with	a	DNS	server	having,	say,	1ms	response	time,	with	the
DNS	server	being	5ms	packet	time-of-flight	away?

schemacs	commented	Apr	12,	2019

https://computers-are-fast.github.io

joelkraehemann	commented	Apr	15,	2019

What	effect	on	latency	has	the	use	multiple	native	threads	on	doing	operations	possible	due	to	proper	mutex	locking?	Assumed	you	have:

an	operation	1024	ns	operation	in	1st	level	cache

2	x	lock	unlock	mutex	(50	ns)

move	it	from/to	main	memory	(200	ns)

Now,	I	wonder	about	malloc	latency,	can	you	tell	about	it?	It	is	definitely	missing	because	I	can	compute	data	without	any	lock	as	owning	the
data.

haai	commented	Sep	4,	2019

interesting	when	you	see	in	a	glance.	but	would't	it	be	good	to	use	one	unit	in	the	comparison	e.g.	memory	page	4k?

acuariano	commented	Sep	11,	2019

Nanoseconds

It's	an	excellent	explanation.	I	had	to	search	the	video	because	the	account	was	closed.	Here's	the	result	I	got:	https://www.youtube.com/watch?
v=9eyFDBPk4Yw

KevinZhou92	commented	Jan	30,	2020

Send	1K	bytes	over	1	Gbps	network	10,000	ns	10	us

This	doesn't	look	right	to	me.	1	Gbps	=	125,	000	KB/s,	the	time	should	be	1	/	125,000	=	8	*	10^-6	seconds	which	is	8000ns

andaru	commented	Apr	4,	2020

Send	1K	bytes	over	1	Gbps	network	10,000	ns	10	us

This	doesn't	look	right	to	me.	1	Gbps	=	125,	000	KB/s,	the	time	should	be	1	/	125,000	=	8	*	10^-6	seconds	which	is	8000ns

For	a	direct	host-to-host	connection	with	1000BaseT	interfaces,	a	wire	latency	of	8µs	is	correct.

However,	if	the	hosts	are	connected	using	SGMII,	the	Serial	Gigabit	Media	Independent	Interface,	data	is	8b10b	encoded,	meaning	10	bits	are
sent	for	every	8	bits	of	data,	leading	to	a	latency	of	10µs.

Jeff	may	also	have	been	referring	to	the	fact	that	in	a	large	cluster	you'll	have	a	few	switches	between	the	hosts,	so	even	where	1000BaseT	is	in
use,	the	added	switching	latency	(even	for	switches	operating	in	cut-through	mode)	for,	say,	2	switches	can	approach	2µs.

In	any	event,	the	main	thing	to	take	away	from	these	numbers	are	the	orders	of	magnitude	differences	between	latency	for	various	methods	of
I/O.

moon-chilled	commented	Apr	27,	2020

Fancy	unicode	version:

Latency	Comparison	Numbers	(~2012)
╭───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮

│L1	cache	reference	 	 	 										0.5	ns	 	 	 	 	 	 	 	
│
├───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤

│Branch	mispredict	 	 	 										5			ns	 	 	 	 	 	 	 	
│
├───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤

│L2	cache	reference	 	 	 										7			ns	 	 	 	 14×	L1	cache	 	 	
│
├───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤

│Mutex	lock/unlock	 	 	 									25			ns	 	 	 	 	 	 	 	
│
├───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤

│Main	memory	reference	 	 	 								100			ns	 	 	 	 20×	L2	cache,	200×	L1	cache	
│
├───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤

│Compress	1K	bytes	with	Zippy	 	 						3,000			ns									3	μs	 	 	 	 	 	 	
│
├───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤

│Send	1K	bytes	over	1	Gbps	network	 					10,000			ns								10	μs	 	 	 	 	 	 	
│
├───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤

│Read	4K	randomly	from	SSD*	 	 				150,000			ns							150	μs	 	 	 ~1GB/sec	SSD	 	 	
│
├───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤

│Read	1	MB	sequentially	from	memory	 				250,000			ns							250	μs	 	 	 	 	 	 	
│
├───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤

│Round	trip	within	same	datacenter	 				500,000			ns							500	μs	 	 	 	 	 	 	
│
├───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤

│Read	1	MB	sequentially	from	SSD*	 		1,000,000			ns					1,000	μs	 				1	ms			 ~1GB/sec	SSD,	4×	memory		
│
├───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤

│Disk	seek	 	 	 	 	10,000,000			ns				10,000	μs	 			10	ms			 20×	datacenter	roundtrip	
│
├───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤

│Read	1	MB	sequentially	from	disk	 	20,000,000			ns				20,000	μs	 			20	ms			 80×	memory,	20×	SSD	 	
│
├───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤

│Send	packet	CA→Netherlands→CA	 	 150,000,000			ns			150,000	μs	 		150	ms		 	 	 	 	
│
╰───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯

arunkumaras10	commented	May	20,	2020

Are	these	numbers	still	relevant	in	2020?	Or	this	needs	an	update?

maning711	commented	Jun	9,	2020

Are	these	numbers	still	relevant	in	2020?	Or	this	needs	an	update?

I	think	hardwares	are	so	expensive	that	can't	update	them~

vladimirvs	commented	Jul	21,	2020

One	thing	that	is	misleading	is	that	different	units	are	used	for	send	over	1Gbps	versus	read	1	MB	from	RAM.	RAM	is	at	least	x20	times	faster,
but	it	ranks	below	send	over	network	which	is	misleading.	They	should	have	used	the	same	1MB	for	network	and	RAM.

amresht	commented	Aug	6,	2020	•	

need	a	solar	system	type	visualization	for	this,	so	we	can	really	appreciate	the	change	of	scale.

Hi
I	liked	your	request	and	made	an	comparison.	One	unit	is	Mass	of	earth	not	radius.

Operation Time	in	Nano	Seconds Astronomical	Unit	of	Weight

L1	cache	reference 0.5	ns 1/2	Earth	or	Five	times	Mars

Branch	mispredict 5	ns 5	Earths

L2	cache	reference 7	ns 7	Earths

Mutex	lock/unlock 25	ns Roughly	[Uranus	+Neptune]

Main	memory	reference 100	ns Roughly	Saturn	+	5	Earths

Compress	1K	bytes	with	Zippy 3,000	ns 10	Jupiters

Send	1K	bytes	over	1	Gbps	network 10,000	ns 20	Times	All	the	Planets	of	the	Solar	System

Read	4K	randomly	from	SSD* 150,000	ns 1.6	times	Red	Dwarf	Wolf	359

Read	1	MB	sequentially	from	memory 250,000	ns Quarter	of	the	Sun

Round	trip	within	same	datacenter 500,000	ns Half	of	the	Mass	of	Sun

Read	1	MB	sequentially	from	SSD* 1,000,000	ns Sun

Disk	seek 10,000,000	ns 10	Suns

Read	1	MB	sequentially	from	disk 20,000,000	ns Red	Giant	R136a2

Send	packet	CA->Netherlands->CA 150,000,000	ns An	Intermediate	Sized	Black	Hole

https://docs.google.com/spreadsheets/d/13R6JWSUry3-TcCyWPbBhD2PhCeAD4ZSFqDJYS1SxDyc/edit?usp=sharing

edited	

asimilon	commented	Oct	4,	2020

need	a	solar	system	type	visualization	for	this,	so	we	can	really	appreciate	the	change	of	scale.

Hi
I	liked	your	request	and	made	an	comparison.	One	unit	is	Mass	of	earth	not	radius.

For	me	the	best	way	of	making	this	"more	human	relatable"	would	be	to	treat	nanoseconds	as	seconds	and	then	convert	the	large	values.

eg.	150,000,000s	=	~4.75	years

sirupsen	commented	Jan	8,	2021

I've	been	doing	some	more	work	inspired	by	this,	surfacing	more	numbers,	and	adding	throughput:

https://github.com/sirupsen/napkin-math

sachin-j-joshi	commented	Mar	28,	2021

Is	there	a	2021	updated	edition?

ellingtonjp	commented	Apr	15,	2021	•	

@sirupsen	I	love	your	project	and	I'm	signed	up	for	the	newsletter.	Currently	making	Anki	flashcards	:)

There	are	some	large	discrepancies	between	your	numbers	and	the	ones	found	here	(not	sure	where	these	numbers	came	from):
https://colin-scott.github.io/personal_website/research/interactive_latency.html

I'm	curious	what's	causing	them.	Specifically,	1MB	sequential	memory	read:	100us	vs	3us.

edited	

sirupsen	commented	Apr	15,	2021

@ellingtonjp	My	program	is	getting	~100	us,	and	this	one	says	250	us	(from	2012).	Lines	up	to	me	with	some	increases	in	performance	since	:)
Not	sure	how	you	got	3	us

ellingtonjp	commented	Apr	15,	2021	•	

@sirupsen	I	was	referring	to	the	numbers	here	https://colin-scott.github.io/personal_website/research/interactive_latency.html

The	2020	version	of	"Read	1,000,000	bytes	sequentially	from	memory"	shows	3us.	Not	sure	where	that	comes	from	though.	Yours	seems	more
realistic	to	me

edited	

sirupsen	commented	Apr	17,	2021	•	

Ahh,	sorry	I	read	your	message	too	quick.	Yeah,	unclear	to	me	how	someone	would	get	3us.	The	code	I	use	for	this	is	very	simple.	It	took
reading	the	x86	a	few	times	to	ensure	that	the	compiler	didn't	optimize	it	out.	I	do	summing,	which	is	one	of	the	lightest	workloads	you	could	do
in	a	loop	like	that.	So	I	think	it's	quite	realistic.	Maybe	that	person's	script	it	was	optimized	out?	

edited	

ellingtonjp	commented	Apr	17,	2021

To	everyone	interested	in	numbers	like	this:

@sirupsen	's	project	is	really	good.	He	gave	an	excellent	talk	on	the	"napkin	math"	skill	and	has	a	newsletter	with	monthly	challenges	for
practicing	putting	these	numbers	to	use.

Newsletter:	https://sirupsen.com/napkin/
Github:	https://github.com/sirupsen/napkin-math
Talk:	https://www.youtube.com/watch?v=IxkSlnrRFqc

leswaters	commented	Jun	9,	2021

:)
Light	to	reach	the	moon	2,510,000,000	ns	2,510,000	us	2,510	ms	2.51	s

invisiblethings	commented	Nov	24,	2021

Heh,	imagine	this	transposed	into	human	distances.

1ns	=	1	step,	or	2	feet.

L1	cache	reference	=	reaching	1	foot	across	your	desk	to	pick	something	up
Datacentre	roundtrip	=	94	mile	hike.
Internet	roundtrip	(California	to	Netherlands)	=	Walk	around	the	entire	earth.	Wait!	You're	not	done.	Then	walk	from	London,	to	Havana.	Oh,	and
then	to	Jacksonville,	Florida.	Then	you're	done.

apimaker001	commented	Dec	23,	2021

useful	information	&	thanks

eduard93	commented	Jan	3,	2022

What	about	register	access	timings?

crazydogen	commented	Apr	6,	2022	•	

Markdown	version	:p

Operation ns µs ms note

L1	cache	reference 0.5	ns

Branch	mispredict 5	ns

L2	cache	reference 7	ns 14x	L1	cache

Mutex	lock/unlock 25	ns

Main	memory	reference 100	ns 20x	L2	cache,	200x	L1	cache

Compress	1K	bytes	with	Zippy 3,000	ns 3	µs

Send	1K	bytes	over	1	Gbps	network 10,000	ns 10	µs

Read	4K	randomly	from	SSD* 150,000	ns 150	µs ~1GB/sec	SSD

Read	1	MB	sequentially	from	memory 250,000	ns 250	µs

Round	trip	within	same	datacenter 500,000	ns 500	µs

Read	1	MB	sequentially	from	SSD* 1,000,000	ns 1,000	µs 1	ms ~1GB/sec	SSD,	4X	memory

Disk	seek 10,000,000	ns 10,000	µs 10	ms 20x	datacenter	roundtrip

Read	1	MB	sequentially	from	disk 20,000,000	ns 20,000	µs 20	ms 80x	memory,	20X	SSD

Send	packet	CA	->	Netherlands	->	CA 150,000,000	ns 150,000	µs 150	ms

edited	

https://gist.github.com/jboner
https://gist.github.com/jboner
https://gist.github.com/jboner/2841832
https://gist.github.com/jboner/2841832
https://gist.github.com/jboner/2841832/revisions
https://gist.github.com/jboner/2841832/stargazers
https://gist.github.com/jboner/2841832/forks
https://gist.github.com/jboner/2841832#file-latency-txt
https://gist.github.com/AnatoliiStepaniuk
https://gist.github.com/jboner/2841832?permalink_comment_id=2794568#gistcomment-2794568
https://gist.github.com/bhaavanmerchant
https://gist.github.com/jboner/2841832?permalink_comment_id=2794779#gistcomment-2794779
https://gist.github.com/sergekukharev
https://gist.github.com/jboner/2841832?permalink_comment_id=2807150#gistcomment-2807150
https://gist.github.com/sergekukharev/ccdd49d23a5078f108175dc71ad3c06c
https://gist.github.com/binbinlau
https://gist.github.com/jboner/2841832?permalink_comment_id=2819597#gistcomment-2819597
https://gist.github.com/bpmf
https://gist.github.com/jboner/2841832?permalink_comment_id=2844547#gistcomment-2844547
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://gist.github.com/speculatrix
https://gist.github.com/jboner/2841832?permalink_comment_id=2871240#gistcomment-2871240
https://gist.github.com/schemacs
https://gist.github.com/jboner/2841832?permalink_comment_id=2887708#gistcomment-2887708
https://computers-are-fast.github.io/
https://gist.github.com/joelkraehemann
https://gist.github.com/jboner/2841832?permalink_comment_id=2889146#gistcomment-2889146
https://gist.github.com/haai
https://gist.github.com/jboner/2841832?permalink_comment_id=3016138#gistcomment-3016138
https://gist.github.com/acuariano
https://gist.github.com/jboner/2841832?permalink_comment_id=3024220#gistcomment-3024220
https://www.youtube.com/watch?v=9eyFDBPk4Yw
https://gist.github.com/KevinZhou92
https://gist.github.com/jboner/2841832?permalink_comment_id=3160706#gistcomment-3160706
https://gist.github.com/andaru
https://gist.github.com/jboner/2841832?permalink_comment_id=3239969#gistcomment-3239969
https://en.wikipedia.org/wiki/Media-independent_interface#Serial_gigabit_media-independent_interface
https://en.wikipedia.org/wiki/8b/10b_encoding
https://gist.github.com/moon-chilled
https://gist.github.com/jboner/2841832?permalink_comment_id=3272283#gistcomment-3272283
https://gist.github.com/arunkumaras10
https://gist.github.com/jboner/2841832?permalink_comment_id=3310878#gistcomment-3310878
https://gist.github.com/maning711
https://gist.github.com/jboner/2841832?permalink_comment_id=3335175#gistcomment-3335175
https://gist.github.com/vladimirvs
https://gist.github.com/jboner/2841832?permalink_comment_id=3386217#gistcomment-3386217
https://gist.github.com/amresht
https://gist.github.com/jboner/2841832?permalink_comment_id=3407006#gistcomment-3407006
https://docs.google.com/spreadsheets/d/13R6JWSUry3-TcCyWPbBhD2PhCeAD4ZSFqDJYS1SxDyc/edit?usp=sharing
https://gist.github.com/asimilon
https://gist.github.com/jboner/2841832?permalink_comment_id=3476613#gistcomment-3476613
https://gist.github.com/sirupsen
https://gist.github.com/jboner/2841832?permalink_comment_id=3587478#gistcomment-3587478
https://github.com/sirupsen/napkin-math
https://gist.github.com/sachin-j-joshi
https://gist.github.com/jboner/2841832?permalink_comment_id=3684191#gistcomment-3684191
https://gist.github.com/ellingtonjp
https://gist.github.com/jboner/2841832?permalink_comment_id=3707733#gistcomment-3707733
https://github.com/sirupsen
https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://gist.github.com/sirupsen
https://gist.github.com/jboner/2841832?permalink_comment_id=3707880#gistcomment-3707880
https://github.com/ellingtonjp
https://gist.github.com/ellingtonjp
https://gist.github.com/jboner/2841832?permalink_comment_id=3707953#gistcomment-3707953
https://github.com/sirupsen
https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://gist.github.com/sirupsen
https://gist.github.com/jboner/2841832?permalink_comment_id=3709495#gistcomment-3709495
https://github.com/sirupsen/napkin-math/blob/f28197edd709453fbca7baca25a80e686772ec75/src/main.rs#L382-L415
https://gist.github.com/ellingtonjp
https://gist.github.com/jboner/2841832?permalink_comment_id=3709599#gistcomment-3709599
https://github.com/sirupsen
https://sirupsen.com/napkin/
https://github.com/sirupsen/napkin-math
https://www.youtube.com/watch?v=IxkSlnrRFqc
https://gist.github.com/leswaters
https://gist.github.com/jboner/2841832?permalink_comment_id=3774022#gistcomment-3774022
https://gist.github.com/invisiblethings
https://gist.github.com/jboner/2841832?permalink_comment_id=3972882#gistcomment-3972882
https://www.jojochips.com/
https://gist.github.com/apimaker001
https://gist.github.com/jboner/2841832?permalink_comment_id=4005303#gistcomment-4005303
https://gist.github.com/eduard93
https://gist.github.com/jboner/2841832?permalink_comment_id=4015458#gistcomment-4015458
https://gist.github.com/crazydogen
https://gist.github.com/jboner/2841832?permalink_comment_id=4123064#gistcomment-4123064
https://gist.github.com/AnatoliiStepaniuk
https://gist.github.com/bhaavanmerchant
https://gist.github.com/sergekukharev
https://gist.github.com/binbinlau
https://gist.github.com/bpmf
https://gist.github.com/speculatrix
https://gist.github.com/schemacs
https://gist.github.com/joelkraehemann
https://gist.github.com/haai
https://gist.github.com/acuariano
https://gist.github.com/KevinZhou92
https://gist.github.com/andaru
https://gist.github.com/moon-chilled
https://gist.github.com/arunkumaras10
https://gist.github.com/maning711
https://gist.github.com/vladimirvs
https://gist.github.com/amresht
https://gist.github.com/asimilon
https://gist.github.com/sirupsen
https://gist.github.com/sachin-j-joshi
https://gist.github.com/ellingtonjp
https://gist.github.com/sirupsen
https://gist.github.com/ellingtonjp
https://gist.github.com/sirupsen
https://gist.github.com/ellingtonjp
https://gist.github.com/leswaters
https://gist.github.com/invisiblethings
https://gist.github.com/apimaker001
https://gist.github.com/eduard93
https://gist.github.com/crazydogen

