
++ed	by:
	 	 	 	

23	PAUSE	users
10	non-PAUSE	users

SBURKE
Sean	M.	Burke

Sean	M.	Burke		/		 	/	Text::Unidecode

Contents
[]

NAME
SYNOPSIS
DESCRIPTION
DESIGN	PHILOSOPHY
FUNCTIONS
DESIGN	GOALS	AND	CONSTRAINTS
A	POD	ENCODING	TEST
TODO
MOTTO
WHEN	YOU	DON'T	LIKE	WHAT	UNIDECODE	DOES
CAVEATS
THANKS
PORTS
SEE	ALSO
LICENSE
DISCLAIMER
AUTHOR
O	HAI!

NAME

Text::Unidecode	--	plain	ASCII	transliterations	of	Unicode	text

SYNOPSIS

DESCRIPTION

It	often	happens	that	you	have	non-Roman	text	data	in	Unicode,	but	you	can't	display	it--	usually	because	you're	trying	to	show	it	to	a
user	via	an	application	that	doesn't	support	Unicode,	or	because	the	fonts	you	need	aren't	accessible.	You	could	represent	the
Unicode	characters	as	"???????"	or	"\15BA\15A0\1610...",	but	that's	nearly	useless	to	the	user	who	actually	wants	to	read	what	the
text	says.

What	Text::Unidecode	provides	is	a	function,	 unidecode(...) 	that	takes	Unicode	data	and	tries	to	represent	it	in	US-ASCII
characters	(i.e.,	the	universally	displayable	characters	between	0x00	and	0x7F).	The	representation	is	almost	always	an	attempt	at
transliteration--	i.e.,	conveying,	in	Roman	letters,	the	pronunciation	expressed	by	the	text	in	some	other	writing	system.	(See	the
example	in	the	synopsis.)

NOTE:

To	make	sure	your	perldoc/Pod	viewing	setup	for	viewing	this	page	is	working:	The	six-letter	word	"résumé"	should	look	like	"resume"
with	an	"/"	accent	on	each	"e".

For	further	tests,	and	help	if	that	doesn't	work,	see	below,	"A	POD	ENCODING	TEST".

DESIGN	PHILOSOPHY

Unidecode's	ability	to	transliterate	from	a	given	language	is	limited	by	two	factors:

The	amount	and	quality	of	data	in	the	written	form	of	the	original	language

So	if	you	have	Hebrew	data	that	has	no	vowel	points	in	it,	then	Unidecode	cannot	guess	what	vowels	should	appear	in	a
pronunciation.	S	f	y	hv	n	vwls	n	th	npt,	y	wn't	gt	ny	vwls	n	th	tpt.	(This	is	a	specific	application	of	the	general	principle	of
"Garbage	In,	Garbage	Out".)

Basic	limitations	in	the	Unidecode	design

Writing	a	real	and	clever	transliteration	algorithm	for	any	single	language	usually	requires	a	lot	of	time,	and	at	least	a	passable
knowledge	of	the	language	involved.	But	Unicode	text	can	convey	more	languages	than	I	could	possibly	learn	(much	less	create
a	transliterator	for)	in	the	entire	rest	of	my	lifetime.	So	I	put	a	cap	on	how	intelligent	Unidecode	could	be,	by	insisting	that	it
support	only	context-insensitive	transliteration.	That	means	missing	the	finer	details	of	any	given	writing	system,	while	still
hopefully	being	useful.

Unidecode,	in	other	words,	is	quick	and	dirty.	Sometimes	the	output	is	not	so	dirty	at	all:	Russian	and	Greek	seem	to	work	passably;
and	while	Thaana	(Divehi,	AKA	Maldivian)	is	a	definitely	non-Western	writing	system,	setting	up	a	mapping	from	it	to	Roman	letters
seems	to	work	pretty	well.	But	sometimes	the	output	is	very	dirty:	Unidecode	does	quite	badly	on	Japanese	and	Thai.

If	you	want	a	smarter	transliteration	for	a	particular	language	than	Unidecode	provides,	then	you	should	look	for	(or	write)	a
transliteration	algorithm	specific	to	that	language,	and	apply	it	instead	of	(or	at	least	before)	applying	Unidecode.

In	other	words,	Unidecode's	approach	is	broad	(knowing	about	dozens	of	writing	systems),	but	shallow	(not	being	meticulous	about
any	of	them).

FUNCTIONS

Text::Unidecode	provides	one	function,	 unidecode(...) ,	which	is	exported	by	default.	It	can	be	used	in	a	variety	of	calling	contexts:

$out	=	unidecode($in); 	#	scalar	context

This	returns	a	copy	of	$in,	transliterated.

$out	=	unidecode(@in); 	#	scalar	context

This	is	the	same	as	 $out	=	unidecode(join	"",	@in);

@out	=	unidecode(@in); 	#	list	context

This	returns	a	list	consisting	of	copies	of	@in,	each	transliterated.	This	is	the	same	as	 @out	=	map	scalar(unidecode($_)),
@in;

unidecode(@items); 	#	void	context

unidecode(@bar,	$foo,	@baz); 	#	void	context

Each	item	on	input	is	replaced	with	its	transliteration.	This	is	the	same	as	 for(@bar,	$foo,	@baz)	{	$_	=	unidecode($_)	}

You	should	make	a	minimum	of	assumptions	about	the	output	of	 unidecode(...) .	For	example,	if	you	assume	an	all-alphabetic
(Unicode)	string	passed	to	 unidecode(...) 	will	return	an	all-alphabetic	string,	you're	wrong--	some	alphabetic	Unicode	characters
are	transliterated	as	strings	containing	punctuation	(e.g.,	the	Armenian	letter	"Թ"	(U+0539),	currently	transliterates	as	"T`"	(capital-T
then	a	backtick).

However,	these	are	the	assumptions	you	can	make:

Each	character	0x0000	-	0x007F	transliterates	as	itself.	That	is,	 unidecode(...) 	is	7-bit	pure.
The	output	of	 unidecode(...) 	always	consists	entirely	of	US-ASCII	characters--	i.e.,	characters	0x0000	-	0x007F.
All	Unicode	characters	translate	to	a	sequence	of	(any	number	of)	characters	that	are	newline	("\n")	or	in	the	range	0x0020-
0x007E.	That	is,	no	Unicode	character	translates	to	"\x01",	for	example.	(Although	if	you	have	a	"\x01"	on	input,	you'll	get	a
"\x01"	in	output.)
Yes,	some	transliterations	produce	a	"\n"	but	it's	just	a	few,	and	only	with	good	reason.	Note	that	the	value	of	newline	("\n")
varies	from	platform	to	platform--	see	perlport.
Some	Unicode	characters	may	transliterate	to	nothing	(i.e.,	empty	string).
Very	many	Unicode	characters	transliterate	to	multi-character	sequences.	E.g.,	Unihan	character	U+5317,	"北",	transliterates	as
the	four-character	string	"Bei	".
Within	these	constraints,	I	may	change	the	transliteration	of	characters	in	future	versions.	For	example,	if	someone	convinces
me	that	that	the	Armenian	letter	"Թ",	currently	transliterated	as	"T`",	would	be	better	transliterated	as	"D",	I	may	well	make	that
change.
Unfortunately,	there	are	many	characters	that	Unidecode	doesn't	know	a	transliteration	for.	This	is	generally	because	the
character	has	been	added	since	I	last	revised	the	Unidecode	data	tables.	I'm	always	catching	up!

DESIGN	GOALS	AND	CONSTRAINTS

Text::Unidecode	is	meant	to	be	a	transliterator	of	last	resort,	to	be	used	once	you've	decided	that	you	can't	just	display	the	Unicode
data	as	is,	and	once	you've	decided	you	don't	have	a	more	clever,	language-specific	transliterator	available,	or	once	you've	already
applied	smarter	algorithms	or	mappings	that	you	prefer	and	you	now	just	want	Unidecode	to	do	cleanup.

Unidecode	transliterates	context-insensitively--	that	is,	a	given	character	is	replaced	with	the	same	US-ASCII	(7-bit	ASCII)	character	or
characters,	no	matter	what	the	surrounding	characters	are.

The	main	reason	I'm	making	Text::Unidecode	work	with	only	context-insensitive	substitution	is	that	it's	fast,	dumb,	and	straightforward
enough	to	be	feasible.	It	doesn't	tax	my	(quite	limited)	knowledge	of	world	languages.	It	doesn't	require	me	writing	a	hundred	lines	of
code	to	get	the	Thai	syllabification	right	(and	never	knowing	whether	I've	gotten	it	wrong,	because	I	don't	know	Thai),	or	spending	a
year	trying	to	get	Text::Unidecode	to	use	the	ChaSen	algorithm	for	Japanese,	or	trying	to	write	heuristics	for	telling	the	difference
between	Japanese,	Chinese,	or	Korean,	so	it	knows	how	to	transliterate	any	given	Uni-Han	glyph.	And	moreover,	context-insensitive
substitution	is	still	mostly	useful,	but	still	clearly	couldn't	be	mistaken	for	authoritative.

Text::Unidecode	is	an	example	of	the	80/20	rule	in	action--	you	get	80%	of	the	usefulness	using	just	20%	of	a	"real"	solution.

A	"real"	approach	to	transliteration	for	any	given	language	can	involve	such	increasingly	tricky	contextual	factors	as	these:

The	previous	/	preceding	character(s)

What	a	given	symbol	"X"	means,	could	depend	on	whether	it's	followed	by	a	consonant,	or	by	vowel,	or	by	some	diacritic
character.

Syllables

A	character	"X"	at	end	of	a	syllable	could	mean	something	different	from	when	it's	at	the	start--	which	is	especially	problematic
when	the	language	involved	doesn't	explicitly	mark	where	one	syllable	stops	and	the	next	starts.

Parts	of	speech

What	"X"	sounds	like	at	the	end	of	a	word,	depends	on	whether	that	word	is	a	noun,	or	a	verb,	or	what.

Meaning

By	semantic	context,	you	can	tell	that	this	ideogram	"X"	means	"shoe"	(pronounced	one	way)	and	not	"time"	(pronounced
another),	and	that's	how	you	know	to	transliterate	it	one	way	instead	of	the	other.

Origin	of	the	word

"X"	means	one	thing	in	loanwords	and/or	placenames	(and	derivatives	thereof),	and	another	in	native	words.

"It's	just	that	way"

"X"	normally	makes	the	/X/	sound,	except	for	this	list	of	seventy	exceptions	(and	words	based	on	them,	sometimes	indirectly).	Or:
you	never	can	tell	which	of	the	three	ways	to	pronounce	"X"	this	word	actually	uses;	you	just	have	to	know	which	it	is,	so	keep	a
dictionary	on	hand!

Language

The	character	"X"	is	actually	used	in	several	different	languages,	and	you	have	to	figure	out	which	you're	looking	at	before	you
can	determine	how	to	transliterate	it.

Out	of	a	desire	to	avoid	being	mired	in	any	of	these	kinds	of	contextual	factors,	I	chose	to	exclude	all	of	them	and	just	stick	with
context-insensitive	replacement.

A	POD	ENCODING	TEST

"Brontë"	is	six	characters	that	should	look	like	"Bronte",	but	with	double-dots	on	the	"e"	character.
"Résumé"	is	six	characters	that	should	look	like	"Resume",	but	with	/-shaped	accents	on	the	"e"	characters.
"læti"	should	be	four	letters	long--	the	second	letter	should	not	be	two	letters	"ae",	but	should	be	a	single	letter	that	looks	like	an
"a"	entirely	fused	with	an	"e".
"χρονος"	is	six	Greek	characters	that	should	look	kind	of	like:	xpovoc
"КАК	ВАС	ЗОВУТ"	is	three	short	Russian	words	that	should	look	a	lot	like:	KAK	BAC	3OBYT
"ടധ"	is	two	Malayalam	characters	that	should	look	like:	sw
"丫⼆⼗一"	is	four	Chinese	characters	that	should	look	like:	 Y=+-
"Ｈｅｌｌｏ"	is	five	characters	that	should	look	like:	Hello

If	all	of	those	come	out	right,	your	Pod	viewing	setup	is	working	fine--	welcome	to	the	2010s!	If	those	are	full	of	garbage	characters,
consider	viewing	this	page	as	HTML	at	https://metacpan.org/pod/Text::Unidecode	or	http://search.cpan.org/perldoc?Text::Unidecode

If	things	look	mostly	okay,	but	the	Malayalam	and/or	the	Chinese	are	just	question-marks	or	empty	boxes,	it's	probably	just	that	your
computer	lacks	the	fonts	for	those.

TODO

Lots:

*	Rebuild	the	Unihan	database.	(Talk	about	hitting	a	moving	target!)

*	Add	tone-numbers	for	Mandarin	hanzi?	Namely:	In	Unihan,	when	tone	marks	are	present	(like	in	"kMandarin:	dào",	should	I	continue
to	transliterate	as	just	"Dao",	or	should	I	put	in	the	tone	number:	"Dao4"?	It	would	be	pretty	jarring	to	have	digits	appear	where
previously	there	was	just	alphabetic	stuff--	But	tone	numbers	make	Chinese	more	readable.	(I	have	a	clever	idea	about	doing	this,	for
Unidecode	v2	or	v3.)

*	Start	dealing	with	characters	over	U+FFFF.	Cuneiform!	Emojis!	Whatever!

*	Fill	in	all	the	little	characters	that	have	crept	into	the	Misc	Symbols	Etc	blocks.

*	More	things	that	need	tending	to	are	detailed	in	the	TODO.txt	file,	included	in	this	distribution.	Normal	installs	probably	don't	leave	the
TODO.txt	lying	around,	but	if	nothing	else,	you	can	see	it	at	http://search.cpan.org/search?dist=Text::Unidecode

MOTTO

The	Text::Unidecode	motto	is:

...in	both	meanings:	1)	seeing	the	output	of	 unidecode(...) 	is	better	than	just	having	all	font-unavailable	Unicode	characters
replaced	with	"?"'s,	or	rendered	as	gibberish;	and	2)	it's	the	worst,	i.e.,	there's	nothing	that	Text::Unidecode's	algorithm	is	better	than.
All	sensible	transliteration	algorithms	(like	for	German,	see	below)	are	going	to	be	smarter	than	Unidecode's.

WHEN	YOU	DON'T	LIKE	WHAT	UNIDECODE	DOES

I	will	repeat	the	above,	because	some	people	miss	it:

Text::Unidecode	is	meant	to	be	a	transliterator	of	last	resort,	to	be	used	once	you've	decided	that	you	can't	just	display	the	Unicode
data	as	is,	and	once	you've	decided	you	don't	have	a	more	clever,	language-specific	transliterator	available--	or	once	you've	already
applied	a	smarter	algorithm	and	now	just	want	Unidecode	to	do	cleanup.

In	other	words,	when	you	don't	like	what	Unidecode	does,	do	it	yourself.	Really,	that's	what	the	above	says.	Here's	how	you	would	do
this	for	German,	for	example:

In	German,	there's	the	typographical	convention	that	an	umlaut	(the	double-dots	on:	ä	ö	ü)	can	be	written	as	an	"-e",	like	with	"Schön"
becoming	"Schoen".	But	Unidecode	doesn't	do	that--	I	have	Unidecode	simply	drop	the	umlaut	accent	and	give	back	"Schon".

(I	chose	this	not	because	I'm	a	big	meanie,	but	because	generally	changing	"ü"	to	"ue"	is	disastrous	for	all	text	that's	not	in	German.
Finnish	"Hyvää	päivää"	would	turn	into	"Hyvaeae	paeivaeae".	And	I	discourage	you	from	being	yet	another	German	who	emails	me,
trying	to	impel	me	to	consider	a	typographical	nicety	of	German	to	be	more	important	than	all	other	languages.)

If	you	know	that	the	text	you're	handling	is	probably	in	German,	and	you	want	to	apply	the	"umlaut	becomes	-e"	rule,	here's	how	to	do
it	for	yourself	(and	then	use	Unidecode	as	the	fallback	afterwards):

To	pick	another	example,	here's	something	that's	not	about	a	specific	language,	but	simply	having	a	preference	that	may	or	may	not
agree	with	Unidecode's	(i.e.,	mine).	Consider	the	"¥"	symbol.	Unidecode	changes	that	to	"Y=".	If	you	want	"¥"	as	"YEN",	then...

Then	if	you	do:

...you'll	get:

...just	as	you	like	it.

(By	the	way,	the	reason	I	don't	have	Unidecode	just	turn	"¥"	into	"YEN"	is	that	the	same	symbol	also	stands	for	yuan,	the	Chinese
currency.	A	"Y="	is	nicely,	safely	neutral	as	to	whether	we're	talking	about	yen	or	yuan--	Japan,	or	China.)

Another	example:	for	hanzi/kanji/hanja,	I	have	designed	Unidecode	to	transliterate	according	to	the	value	that	that	character	has	in
Mandarin	(otherwise	Cantonese,...).	Some	users	have	complained	that	applying	Unidecode	to	Japanese	produces	gibberish.

To	make	a	long	story	short:	transliterating	from	Japanese	is	difficult	and	it	requires	a	lot	of	context-sensitivity.	If	you	have	text	that
you're	fairly	sure	is	in	Japanese,	you're	going	to	have	to	use	a	Japanese-specific	algorithm	to	transliterate	Japanese	into	ASCII.	(And
then	you	can	call	Unidecode	on	the	output	from	that--	it	is	useful	for,	for	example,	turning	ｆｕｌｌｗｉｄｔｈ	characters	into	their
normal	(ASCII)	forms.

(Note,	as	of	August	2016:	I	have	titanic	but	tentative	plans	for	making	the	value	of	Unihan	characters	be	something	you	could	set
parameters	for	at	runtime,	in	changing	the	order	of	"Mandarin	else	Cantonese	else..."	in	the	value	retrieval.	Currently	that	preference
list	is	hardwired	on	my	end,	at	module-build	time.	Other	options	I'm	considering	allowing	for:	whether	the	Mandarin	and	Cantonese
values	should	have	the	tone	numbers	on	them;	whether	every	Unihan	value	should	have	a	terminal	space;	and	maybe	other	clever
stuff	I	haven't	thought	of	yet.)

CAVEATS

If	you	get	really	implausible	nonsense	out	of	 unidecode(...) ,	make	sure	that	the	input	data	really	is	a	utf8	string.	See	perlunicode
and	perlunitut.

Unidecode	will	work	disastrously	bad	on	Japanese.	That's	because	Japanese	is	very	very	hard.	To	extend	the	Unidecode	motto,
Unidecode	is	better	than	nothing,	and	with	Japanese,	just	barely!

On	pure	Mandarin,	Unidecode	will	frequently	give	odd	values--	that's	because	a	single	hanzi	can	have	several	readings,	and
Unidecode	only	knows	what	the	Unihan	database	says	is	the	most	common	one.

THANKS

Thanks	to	(in	only	the	sloppiest	of	sorta-chronological	order):	Jordan	Lachler,	Harald	Tveit	Alvestrand,	Melissa	Axelrod,	Abhijit	Menon-
Sen,	Mark-Jason	Dominus,	Joe	Johnston,	Conrad	Heiney,	fileformat.info,	Philip	Newton,	唐鳳,	Tomaž	Šolc,	Mike	Doherty,	JT	Smith
and	the	MadMongers,	Arden	Ogg,	Craig	Copris,	David	Cusimano,	Brendan	Byrd,	Hex	Martin,	and	many	other	pals	who	have	helped
with	the	ideas	or	values	for	Unidecode's	transliterations,	or	whose	help	has	been	in	the	secret	F5	tornado	that	constitutes	the	internals
of	Unidecode's	implementation.

And	thank	you	to	the	many	people	who	have	encouraged	me	to	plug	away	at	this	project.	A	decade	went	by	before	I	had	any	idea	that
more	than	about	4	or	5	people	were	using	or	getting	any	value	out	of	Unidecode.	I	am	told	that	actually	my	figure	was	missing	some
zeroes	on	the	end!

PORTS

Some	wonderful	people	have	ported	Unidecode	to	other	languages!

Python:	https://pypi.python.org/pypi/Unidecode
PHP:	https://github.com/silverstripe-labs/silverstripe-unidecode
Ruby:	http://www.rubydoc.info/gems/unidecode/1.0.0/frames
JavaScript:	https://www.npmjs.org/package/unidecode
Java:	https://github.com/xuender/unidecode

I	can't	vouch	for	the	details	of	each	port,	but	these	are	clever	people,	so	I'm	sure	they	did	a	fine	job.

SEE	ALSO

An	article	I	wrote	for	The	Perl	Journal	about	Unidecode:	http://interglacial.com/tpj/22/	(READ	IT!)

Jukka	Korpela's	http://www.cs.tut.fi/~jkorpela/fui.html8	which	is	brilliantly	useful,	and	its	code	is	brilliant	(so,	view	source!).	I	was	kinda
thinking	about	maybe	doing	something	sort	of	like	that	for	the	v2.x	versions	of	Unicode--	but	now	he's	got	me	convinced	that	I	should
go	right	ahead.

Tom	Christiansen's	Perl	Unicode	Cookbook,	http://www.perl.com/pub/2012/04/perlunicook-standard-preamble.html

Unicode	Consortium:	http://www.unicode.org/

Searchable	Unihan	database:	http://www.unicode.org/cgi-bin/GetUnihanData.pl

Geoffrey	Sampson.	1990.	Writing	Systems:	A	Linguistic	Introduction.	ISBN:	0804717567

Randall	K.	Barry	(editor).	1997.	ALA-LC	Romanization	Tables:	Transliteration	Schemes	for	Non-Roman	Scripts.	ISBN:	0844409405
[ALA	is	the	American	Library	Association;	LC	is	the	Library	of	Congress.]

Rupert	Snell.	2000.	Beginner's	Hindi	Script	(Teach	Yourself	Books).	ISBN:	0658009109

LICENSE

Copyright	(c)	2001,	2014,	2015,	2016	Sean	M.	Burke.

Unidecode	is	distributed	under	the	Perl	Artistic	License	(perlartistic),	namely:

This	library	is	free	software;	you	can	redistribute	it	and/or	modify	it	under	the	same	terms	as	Perl	itself.

This	program	is	distributed	in	the	hope	that	it	will	be	useful,	but	without	any	warranty;	without	even	the	implied	warranty	of
merchantability	or	fitness	for	a	particular	purpose.

DISCLAIMER

Much	of	Text::Unidecode's	internal	data	is	based	on	data	from	The	Unicode	Consortium,	with	which	I	am	unaffiliated.	A	good	deal	of
the	internal	data	comes	from	suggestions	that	have	been	contributed	by	people	other	than	myself.

The	views	and	conclusions	contained	in	my	software	and	documentation	are	my	own--	they	should	not	be	interpreted	as	representing
official	policies,	either	expressed	or	implied,	of	The	Unicode	Consortium;	nor	should	they	be	interpreted	as	necessarily	the	views	or
conclusions	of	people	who	have	contributed	to	this	project.

Moreover,	I	discourage	you	from	inferring	that	choices	that	I've	made	in	Unidecode	reflect	political	or	linguistic	prejudices	on	my	part.
Just	because	Unidecode	doesn't	do	great	on	your	language,	or	just	because	it	might	seem	to	do	better	on	some	another	language,
please	don't	think	I'm	out	to	get	you!

AUTHOR

Your	pal,	Sean	M.	Burke	 sburke@cpan.org

O	HAI!

If	you're	using	Unidecode	for	anything	interesting,	be	cool	and	email	me,	I'm	always	curious	what	people	use	this	for.	(The	answers	so
far	have	surprised	me!)

Text-Unidecode-1.30	 	

use	utf8;
use	Text::Unidecode;
print	unidecode(
		"北亰\n"
		#	Chinese	characters	for	Beijing	(U+5317	U+4EB0)
);
	
#	That	prints:	Bei	Jing

It's	better	than	nothing!

use	utf8;		#	<--	probably	necessary.
	
our(%German_Characters)	=	qw(
	Ä	AE			ä	ae
	Ö	OE			ö	oe
	Ü	UE			ü	ue
	ß	ss	
);
	
use	Text::Unidecode	qw(unidecode);
	
sub	german_to_ascii	{
		my($german_text)	=	@_;
			
		$german_text	=~
				s/([ÄäÖöÜüß])/$German_Characters{$1}/g;
			
		#	And	now,	as	a	*fallthrough*:
		$german_text	=	unidecode($german_text);
		return	$german_text;
}

use	Text::Unidecode	qw(unidecode);
	
sub	my_favorite_unidecode	{
		my($text)	=	@_;
			
		$text	=~	s/¥/YEN/g;
			
		#	...and	anything	else	you	like,	such	as:
		$text	=~	s/€/Euro/g;
			
		#	And	then,	as	a	fallback,...
		$text	=	unidecode($text);
				
		return	$text;				
}

print	my_favorite_unidecode("You	just	won	¥250,000	and	€40,000!!!");

You	just	won	YEN250,000	and	Euro40,000!!!

https://metacpan.org/author/DRTECH
https://metacpan.org/author/SIMBABQUE
https://metacpan.org/author/SYP
https://metacpan.org/author/ARISTOTLE
https://metacpan.org/author/SREZIC
https://metacpan.org/dist/Text-Unidecode/plussers
https://metacpan.org/author/SBURKE
https://metacpan.org/author/SBURKE
https://metacpan.org/author/SBURKE
https://metacpan.org/pod/Text::Unidecode#NAME
https://metacpan.org/pod/Text::Unidecode#SYNOPSIS
https://metacpan.org/pod/Text::Unidecode#DESCRIPTION
https://metacpan.org/pod/Text::Unidecode#DESIGN-PHILOSOPHY
https://metacpan.org/pod/Text::Unidecode#FUNCTIONS
https://metacpan.org/pod/Text::Unidecode#DESIGN-GOALS-AND-CONSTRAINTS
https://metacpan.org/pod/Text::Unidecode#A-POD-ENCODING-TEST
https://metacpan.org/pod/Text::Unidecode#TODO
https://metacpan.org/pod/Text::Unidecode#MOTTO
https://metacpan.org/pod/Text::Unidecode#WHEN-YOU-DON'T-LIKE-WHAT-UNIDECODE-DOES
https://metacpan.org/pod/Text::Unidecode#CAVEATS
https://metacpan.org/pod/Text::Unidecode#THANKS
https://metacpan.org/pod/Text::Unidecode#PORTS
https://metacpan.org/pod/Text::Unidecode#SEE-ALSO
https://metacpan.org/pod/Text::Unidecode#LICENSE
https://metacpan.org/pod/Text::Unidecode#DISCLAIMER
https://metacpan.org/pod/Text::Unidecode#AUTHOR
https://metacpan.org/pod/Text::Unidecode#O-HAI!
https://metacpan.org/pod/Text::Unidecode#NAME
https://metacpan.org/pod/Text::Unidecode#SYNOPSIS
https://metacpan.org/pod/Text::Unidecode#DESCRIPTION
https://metacpan.org/pod/Text::Unidecode#DESIGN-PHILOSOPHY
https://metacpan.org/pod/Text::Unidecode#FUNCTIONS
https://metacpan.org/pod/Text::Unidecode#$out-=-unidecode(-$in-);-%23-scalar-context
https://metacpan.org/pod/Text::Unidecode#$out-=-unidecode(-@in-);-%23-scalar-context
https://metacpan.org/pod/Text::Unidecode#@out-=-unidecode(-@in-);-%23-list-context
https://metacpan.org/pod/Text::Unidecode#unidecode(-@items-);-%23-void-context
https://metacpan.org/pod/Text::Unidecode#unidecode(-@bar,-$foo,-@baz-);-%23-void-context
https://metacpan.org/pod/Text::Unidecode#DESIGN-GOALS-AND-CONSTRAINTS
https://metacpan.org/pod/Text::Unidecode#The-previous-/-preceding-character(s)
https://metacpan.org/pod/Text::Unidecode#Syllables
https://metacpan.org/pod/Text::Unidecode#Parts-of-speech
https://metacpan.org/pod/Text::Unidecode#Meaning
https://metacpan.org/pod/Text::Unidecode#Origin-of-the-word
https://metacpan.org/pod/Text::Unidecode#%22It's-just-that-way%22
https://metacpan.org/pod/Text::Unidecode#Language
https://metacpan.org/pod/Text::Unidecode#A-POD-ENCODING-TEST
https://metacpan.org/pod/Text::Unidecode#TODO
https://metacpan.org/pod/Text::Unidecode#MOTTO
https://metacpan.org/pod/Text::Unidecode#WHEN-YOU-DON'T-LIKE-WHAT-UNIDECODE-DOES
https://metacpan.org/pod/Text::Unidecode#CAVEATS
https://metacpan.org/pod/Text::Unidecode#THANKS
https://metacpan.org/pod/Text::Unidecode#PORTS
https://metacpan.org/pod/Text::Unidecode#SEE-ALSO
https://metacpan.org/pod/Text::Unidecode#LICENSE
https://metacpan.org/pod/Text::Unidecode#DISCLAIMER
https://metacpan.org/pod/Text::Unidecode#AUTHOR
https://metacpan.org/pod/Text::Unidecode#O-HAI!
https://metacpan.org/pod/Text::Unidecode#A-POD-ENCODING-TEST
https://metacpan.org/pod/perlport
https://metacpan.org/pod/Text::Unidecode
http://search.cpan.org/perldoc?Text::Unidecode
http://search.cpan.org/search?dist=Text::Unidecode
https://metacpan.org/pod/perlunicode
https://metacpan.org/pod/perlunitut
https://pypi.python.org/pypi/Unidecode
https://github.com/silverstripe-labs/silverstripe-unidecode
http://www.rubydoc.info/gems/unidecode/1.0.0/frames
https://www.npmjs.org/package/unidecode
https://github.com/xuender/unidecode
http://interglacial.com/tpj/22/
http://www.cs.tut.fi/~jkorpela/fui.html8
http://www.perl.com/pub/2012/04/perlunicook-standard-preamble.html
http://www.unicode.org/
http://www.unicode.org/cgi-bin/GetUnihanData.pl
https://metacpan.org/pod/perlartistic
https://metacpan.org/dist/Text-Unidecode
https://metacpan.org/pod/utf8
https://metacpan.org/pod/Text::Unidecode
https://metacpan.org/pod/utf8
https://metacpan.org/pod/Text::Unidecode
https://metacpan.org/pod/Text::Unidecode

