
Gamepad
Many	gamepads	are	working	out-of-the-box	nowadays,	but	there	are	still	many	potential	problems	and	sources	for	errors	since	gamepad	support	in	applications	varies	by	a	lot.

Linux	has	two	different	input	systems	for	Gamepads	–	the	original	Joystick	interface	and	the	newer	evdev-based	interface.

/dev/input/jsX 	maps	to	the	Joystick	API	interface	and	 /dev/input/event* 	maps	to	the	evdev	ones	(this	also	includes	other	input	devices	such	as	mice	and	keyboards).
Symbolic	links	to	those	devices	are	also	available	in	 /dev/input/by-id/ 	and	 /dev/input/by-path/ 	where	the	legacy	Joystick	API	has	names	ending	with	 -joystick
while	the	evdev	have	names	ending	with	 -event-joystick .

Most	new	games	will	default	to	the	evdev	interface	as	it	gives	more	detailed	information	about	the	buttons	and	axes	available	and	also	adds	support	for	force	feedback.

While	SDL1	defaults	to	evdev	interface	you	can	force	it	to	use	the	old	Joystick	API	by	setting	the	environment	variable	 SDL_JOYSTICK_DEVICE=/dev/input/js0 .	This	can
help	many	games	such	as	X3.	SDL2	supports	only	the	new	evdev	interface.

Installation
Loading	the	modules	for	analogue	devices
USB	gamepads

Configuration
Testing

Joystick	API
evdev	API
HTML5	Gamepad	API

Setting	up	deadzones	and	calibration
Wine	deadzones
Xorg	deadzones
Joystick	API	deadzones
evdev	API	deadzones
Configuring	curves	and	responsiveness

Disable	joystick	from	controlling	mouse
Using	gamepad	to	send	keystrokes

Xorg	configuration	example
Remapping	of	Gamepad	buttons	and	more

Specific	devices
Dance	pads
Logitech	Thunderpad	Digital
Nintendo	Gamecube	Controller
Nintendo	Switch	Pro	Controller	and	Joy-Cons

Using	the	kernel	Nintendo	HID	driver
Using	joycond	userspace	daemon
Using	hid-nintendo	Pro	Controller	with	Steam	games	(without	joycond)
Using	hid-nintendo	Pro	Controller	with	Steam	games	(with	joycond)
Using	hid-nintendo	with	SDL2	games
Mimic	Xbox	360	controller

Dolphin	(GameCube	controller	emulation)
Steam

iPEGA-9017s	and	other	Bluetooth	gamepads
iPEGA-9068	and	9087
Defender	X7

Stadia	Controller
Steam	Controller

Wine
Xbox	360	controller

xboxdrv
Multiple	controllers
Mimic	Xbox	360	controller	with	other	controllers

Using	generic/clone	controllers
Xbox	Wireless	Controller	/	Xbox	One	Wireless	Controller

Connect	Xbox	Wireless	Controller	with	usb	cable
Connect	Xbox	Wireless	Controller	with	Bluetooth

Update	controller	firmware	via	Windows	10
xpadneo

Connect	Xbox	Wireless	Controller	with	Microsoft	Xbox	Wireless	Adapter
xow
xone

Logitech	Dual	Action
PlayStation	2	controller	via	USB	adapter
PlayStation	3	controller

Pairing	via	USB
Pairing	via	Bluetooth

PlayStation	4	controller
Pairing	via	USB
Pairing	via	Bluetooth
Button	mapping
Fix	Motion	control	conflict	(gamepad	will	not	work	on	some	applications)
Disable	touchpad	acting	as	mouse

Playstation	5	(Dualsense)	controller
PlayStation	3/4	controller

Connecting	via	Bluetooth
Using	generic/clone	controllers

Tips	and	Tricks
Gamepad	over	network

Troubleshooting
Device	permissions
Joystick	moving	mouse
Gamepad	is	not	working	in	FNA/SDL	based	games
Gamepad	is	not	recognized	by	all	programs
Vibration	does	not	work	in	certain	Windows	games
Steam	Controller

Steam	Controller	not	pairing
Steam	Controller	makes	a	game	crash	or	not	recognized

Xbox	One	and	360	controllers
Xbox	One	Wireless	Gamepad	detected	but	no	inputs	recognized

PlayStation	4	Controllers

Unless	you	are	using	very	old	joystick	that	uses	Gameport	or	a	proprietary	USB	protocol,	you	will	need	just	the	generic	USB	Human	Interface	Device	(HID)	modules.

For	an	extensive	overview	of	all	 joystick	 related	modules	 in	Linux,	you	will	need	access	 to	 the	Linux	kernel	 sources	—	specifically	 the	Documentation	section.	Unfortunately,
official	kernel	packages	do	not	include	what	we	need.	If	you	have	the	kernel	sources	downloaded,	have	a	look	at	 Documentation/input/joydev/ .	You	can	browse	the	kernel
source	tree	at	kernel.org	(https://kernel.org/)	by	clicking	the	"browse"	(cgit	-	the	git	frontend)	link	for	the	kernel	that	you	are	using,	then	clicking	the	"tree"	link	near	the	top.
Alternatively,	see	documentation	from	the	latest	kernel	(https://docs.kernel.org/input/joydev/joystick.html).

Some	joysticks	need	specific	modules,	such	as	the	Microsoft	Sidewinder	controllers	(sidewinder),	or	the	Logitech	digital	controllers	(adi).	Many	older	joysticks	will	work
with	the	simple	 analog 	module.	If	your	joystick	is	plugging	in	to	a	gameport	provided	by	your	soundcard,	you	will	need	your	soundcard	drivers	loaded	—	however,	some	cards,
like	the	Soundblaster	Live,	have	a	specific	gameport	driver	(emu10k1-gp).	Older	ISA	soundcards	may	need	the	 ns558 	module,	which	is	a	standard	gameport	module.

As	you	can	see,	there	are	many	different	modules	related	to	getting	your	joystick	working	in	Linux,	so	everything	is	not	covered	here.	Please	have	a	look	at	the	documentation
mentioned	above	for	details.

You	need	 to	 load	a	module	 for	 your	gameport	 (ns558 ,	 emu10k1-gp ,	 cs461x ,	 etc...),	 a	module	 for	 your	 joystick	 (analog ,	 sidewinder ,	 adi ,	 etc...),	 and	 finally	 the
kernel	joystick	device	driver	(joydev).	Add	these	to	a	new	file	in	 /etc/modules-load.d/ ,	or	simply	modprobe	them.	The	 gameport 	module	should	load	automatically,
as	this	is	a	dependency	of	the	other	modules.

You	need	to	get	USB	working,	and	then	modprobe	your	gamepad	driver,	which	is	 usbhid ,	as	well	as	 joydev .	If	you	use	a	usb	mouse	or	keyboard,	 usbhid 	will	be	loaded
already	and	you	just	have	to	load	the	 joydev 	module.

Note:	If	your	Xbox	360	gamepad	is	connected	with	the	Play&Charge	USB	cable	it	will	show	up	in	 lsusb 	but	it	will	not	show	up	as	an	input	device	in	 /dev/input/js* ,	see
#Xbox	360	controller.

Once	the	modules	are	loaded,	you	should	be	able	to	find	a	new	device:	 /dev/input/js0 	and	a	file	ending	with	 -event-joystick 	in	 /dev/input/by-id 	directory.	You
can	simply	 cat 	those	devices	to	see	if	the	joystick	works	—	move	the	stick	around,	press	all	the	buttons	-	you	should	see	mojibake	printed	when	you	move	the	sticks	or	press
buttons.

If	you	get	a	permission	error,	see	#Device	permissions.

Both	interfaces	are	also	supported	in	wine	and	reported	as	separate	devices.	You	can	test	them	(including	vibration	feedback)	with	 wine	control	joy.cpl .

Tip:	Input	devices	by	default	have	input	group;	for	example,	pcsx2	(https://archlinux.org/packages/?name=pcsx2)	have	no	access	to	gamepad	without	rights.
Make	sure	your	user	is	in	the	input	group.

There	are	a	lot	of	applications	that	can	test	this	old	API,	 jstest 	from	the	joyutils	(https://archlinux.org/packages/?name=joyutils)	package	is	the	simplest
one.	If	the	output	is	unreadable	because	the	line	printed	is	too	long	you	can	also	use	graphical	tools.	KDE	Plasma	has	a	built	in	one	in	System	Settings	->	Input	Devices	->	Game
Controller.	There	is	jstest-gtk-git	(https://aur.archlinux.org/packages/jstest-gtk-git/)AUR	as	an	alternative.

Use	of	 jstest 	is	fairly	simple,	you	just	run	 jstest	/dev/input/js0 	and	it	will	print	a	line	with	state	of	all	the	axes	(normalised	to	 {-32767,32767})	and	buttons.

After	you	start	 jstest-gtk ,	it	will	just	show	you	a	list	of	joysticks	available,	you	just	need	to	select	one	and	press	Properties.

The	new	'evdev'	API	can	be	tested	using	the	SDL2	joystick	test	application	or	using	 evtest 	from	community	repository.	Install	sdl2-jstest-git	(https://aur.archlin
ux.org/packages/sdl2-jstest-git/)AUR	and	then	run	 sdl2-jstest	--test	0 .	Use	 sdl2-jstest	--list 	to	get	IDs	of	other	controllers	if	you	have	multiple	ones
connected.

To	test	force	feedback	on	the	device,	use	 fftest 	from	 linuxconsole 	package:

$	fftest	/dev/input/by-id/usb-*event-joystick

Go	to	https://gamepad-tester.com/.	To	test	vibration,	click	on	the	word	Vibration.	Vibration	and	gamepad	image	are	currently	supported	in	Chromium	browser,	but	not	in
Firefox.

If	you	want	to	set	up	the	deadzones	(or	remove	them	completely)	of	your	analog	input	you	have	to	do	it	separately	for	the	xorg	(for	mouse	and	keyboard	emulation),	Joystick	API
and	evdev	API.

Add	the	following	registry	entry	and	set	it	to	a	string	from	0	to	10000	(affects	all	axes):

HKEY_CURRENT_USER\Software\Wine\DirectInput\DefaultDeadZone

Source:	UsefulRegistryKeys	(https://wiki.winehq.org/UsefulRegistryKeys)

Add	a	similar	line	to	 /etc/X11/xorg.conf.d/51-joystick.conf 	(create	if	it	does	not	exist):

/etc/X11/xorg.conf.d/51-joystick.conf

Section	"InputClass"
				Option	"MapAxis1"	"deadzone=1000"
EndSection

1000	is	the	default	value,	but	you	can	set	anything	between	0	and	30	000.	To	get	the	axis	number	see	the	"Testing	Your	Configuration"	section	of	this	article.	If	you	already	have
an	option	with	a	specific	axis	just	type	in	the	 deadzone=value 	at	the	end	of	the	parameter	separated	by	a	space.

The	easiest	way	is	using	 jstest-gtk 	from	jstest-gtk-git	(https://aur.archlinux.org/packages/jstest-gtk-git/)AUR.	Select	the	joystick	you	want	to	edit,
click	the	Properties	button.	On	this	new	window,	click	the	Calibration	button	(do	not	click	Start	Calibration	after	that).	You	can	then	set	the	 CenterMin 	and	 CenterMax
values,	which	control	the	center	deadzone,	and	 RangeMin 	and	 RangeMax ,	which	control	the	end	of	throw	deadzones.	Note	that	the	calibration	settings	are	applied	when	the
application	opens	the	device,	so	you	need	to	restart	your	game	or	test	application	to	see	updated	calibration	settings.

After	you	set	the	deadzones,	you	also	can	create	an	udev	rule	to	make	all	changes	permanent:

First,	grab	the	vendor	id	of	your	joystick	(replace	 X 	with	your	joystick's	number,	it's	usually	 0):

$	udevadm	info	-q	property	--property	ID_VENDOR_ID	--value	/dev/input/jsX

Also	rab	the	model	id:

$	udevadm	info	-q	property	--property	ID_MODEL_ID	--value	/dev/input/jsX

If	 the	 commands	 above	 give	 you	 an	 empty	 output,	 it	 could	 be	 because	 your	 controller	 is	 connected	 via	Bluetooth,	making	 these	 unique	 attributes	 only	 visible	 on	 the	 parent
device(s).	To	mitigate	this,	you	could	try	finding	other	unique	attributes	by	running:

$	udevadm	info	-a	/dev/input/jsX

This	 will	 list	 all	 available	 attributes	 from	 your	 device	 (and	 parent	 devices).	 So,	 for	 example,	 if	 the	 parent	 device	 of	 your	 joystick	 has	 the	 attribute	
ATTRS{uniq}=="a0:b1:c2:d3:e4:f5" ,	 or	 maybe	 both	 ATTRS{idVendor}=="054c" 	 and	 ATTRS{idProduct}=="09cc" ,	 then	 you	 can	 use	 these	 instead	 of	
ENV{ID_VENDOR_ID} 	and	 ENV{ID_MODEL_ID} 	in	the	udev	rule	below.

You	can	also	have	both	rules	at	the	same	time,	just	separate	them	with	a	new	line.

Anyway,	now	use	 jscal 	to	dump	the	new	calibration	settings	of	your	joystick:

$	jscal	-p	/dev/input/jsX

Now,	modify	this	udev	rule	with	the	values	you	got:

/etc/udev/rules.d/85-jscal-custom-calibration.rules

SUBSYSTEM=="input",	ENV{ID_VENDOR_ID}=="054c",	ENV{ID_MODEL_ID}=="09cc",	ACTION=="add",	RUN+="/usr/bin/jscal	-s	1,1,1,1	/dev/input/js%n"

This	 rule	 will	 automatically	 run	 /usr/bin/jscal	-s	1,1,1,1	/dev/input/js%n 	 whenever	 you	 connect	 a	 joystick	 with	 vendor	 id	 054c 	 and	model	 id	 09cc .	 The	
/dev/input/js%n 	part	is	required	to	automatically	determine	the	correct	joystick,	so	do	not	remove	it.

Finally,	load	this	new	udev	rule.

The	 evdev-joystick 	tool	from	the	linuxconsole	(https://archlinux.org/packages/?name=linuxconsole)	package	can	be	used	to	view	and	change	deadzones
and	calibration	for	 evdev 	API	devices.

To	view	your	device	configuration:

$	evdev-joystick	--showcal	/dev/input/by-id/usb-*-event-joystick

To	change	the	deadzone	for	a	particular	axis,	use	a	command	like:

$	evdev-joystick	--evdev	/dev/input/by-id/usb-*-event-joystick	--axis	0	--deadzone	0

To	set	the	same	deadzone	for	all	axes	at	once,	omit	the	 --axis	0 	option.

Use	udev	rules	file	to	set	them	automatically	when	the	controller	is	connected.

Note	that	inside	the	kernel,	the	value	is	called	 flatness 	and	is	set	using	the	 EVIOCSABS 	 ioctl .

Default	configuration	will	look	like	similar	to	this:

$	evdev-joystick	--showcal	/dev/input/by-id/usb-Madcatz_Saitek_Pro_Flight_X-55_Rhino_Stick_G0000090-event-joystick

Supported	Absolute	axes:
			Absolute	axis	0x00	(0)	(X	Axis)	(min:	0,	max:	65535,	flatness:	4095	(=6.25%),	fuzz:	255)
			Absolute	axis	0x01	(1)	(Y	Axis)	(min:	0,	max:	65535,	flatness:	4095	(=6.25%),	fuzz:	255)
			Absolute	axis	0x05	(5)	(Z	Rate	Axis)	(min:	0,	max:	4095,	flatness:	255	(=6.23%),	fuzz:	15)
			Absolute	axis	0x10	(16)	(Hat	zero,	x	axis)	(min:	-1,	max:	1,	flatness:	0	(=0.00%),	fuzz:	0)
			Absolute	axis	0x11	(17)	(Hat	zero,	y	axis)	(min:	-1,	max:	1,	flatness:	0	(=0.00%),	fuzz:	0)

While	a	more	reasonable	setting	would	be	achieved	with	something	like	this	(repeat	for	other	axes):

$	evdev-joystick	--evdev	/dev/input/by-id/usb-Madcatz_Saitek_Pro_Flight_X-55_Rhino_Stick_G0000090-event-joystick	--axis	0	--deadzone	512

Event	device	file:	/dev/input/by-id/usb-Madcatz_Saitek_Pro_Flight_X-55_Rhino_Stick_G0000090-event-joystick
	Axis	index	to	deal	with:	0
	New	dead	zone	value:	512
	Trying	to	set	axis	0	deadzone	to:	512
			Absolute	axis	0x00	(0)	(X	Axis)	Setting	deadzone	value	to	:	512
	(min:	0,	max:	65535,	flatness:	512	(=0.78%),	fuzz:	255)

In	case	your	game	requires	 just	 limited	amount	of	buttons	or	has	good	support	 for	multiple	controllers,	you	may	have	good	results	with	using	 xboxdrv 	 to	change	response
curves	of	the	joystick.

Below	are	example	setups	for	Saitek	X-55	HOTAS:

$	xboxdrv	--evdev	/dev/input/by-id/usb-Madcatz_Saitek_Pro_Flight_X-55_Rhino_Throttle_G0000021-event-joystick	\
		--evdev-no-grab	--evdev-absmap	'ABS_#40=x1,ABS_#41=y1,ABS_X=x2,ABS_Y=y2'	--device-name	'Hat	and	throttle'	\
		--ui-axismap	'x2^cal:-32000:0:32000=,y2^cal:-32000:0:32000='	--silent

this	maps	the	EV_ABS	event	with	id	of	40	and	41	(use	xboxdrv	with	 --evdev-debug 	to	see	the	events	registered),	which	is	the	normally	inaccessible	"mouse	pointer"	on	the
throttle,	to	first	gamepad	joystick	and	throttles	to	second	joystick,	it	also	clamps	the	top	and	lower	ranges	as	they	not	always	register	fully.

A	bit	more	interesting	is	the	setup	for	the	stick:

$	xboxdrv	--evdev	/dev/input/by-id/usb-Madcatz_Saitek_Pro_Flight_X-55_Rhino_Stick_G0000090-event-joystick	\
		--evdev-no-grab	--evdev-absmap	'ABS_X=x1'	--evdev-absmap	'ABS_Y=y1'	--device-name	'Joystick'	\
		--ui-axismap	'x1^cal:-32537:-455:32561=,x1^dead:-900:700:1=,x1^resp:-32768:-21845:-2000:0:2000:21485:32767='	\
		--ui-axismap	'y1^cal:-32539:-177:32532=,y1^dead:-700:2500:1=,y1^resp:-32768:-21845:-2000:0:2000:21485:32767='	\
		--evdev-absmap	'ABS_RZ=x2'	--ui-axismap	'x2^cal:-32000:-100:32000,x2^dead:-1500:1000:1=,x2^resp:-32768:-21845:-2000:0:2000:21485:32767='	\
		--silent

this	maps	the	3	joystick	axes	to	gamepad	axes	and	changes	the	calibration	(min	value,	centre	value,	max	value),	dead	zones	(negative	side,	positive	side,	flag	to	turn	smoothing)
and	finally	change	of	response	curve	to	a	more	flat	one	in	the	middle.

You	can	also	modify	the	responsiveness	by	setting	the	'sen'	(sensitivity).	Setting	it	to	value	of	0	will	give	you	a	linear	sensitivity,	value	of	-1	will	give	very	insensitive	axis	while	value
of	1	will	give	very	sensitive	axis.	You	can	use	intermediate	values	to	make	it	less	or	more	sensitive.	Internally	xboxdrv	uses	a	quadratic	formula	to	calculate	the	resulting	value,	so
this	setting	gives	a	more	smooth	result	than	'resp'	shown	above.

Nice	thing	about	xboxdrv	is	that	it	exports	resulting	device	as	both	old	Joystick	API	and	new	style	evdev	API	so	it	should	be	compatible	with	basically	any	application.

If	 you	 want	 to	 play	 games	 with	 your	 gamepad,	 you	 might	 want	 to	 disable	 its	 joystick	 control	 over	 mouse	 cursor.	 To	 do	 this,	 edit	
/etc/X11/xorg.conf.d/51-joystick.conf 	(create	if	it	does	not	exists)	so	that	it	looks	like	this:

/etc/X11/xorg.conf.d/51-joystick.conf	

Section	"InputClass"
								Identifier	"joystick	catchall"
								MatchIsJoystick	"on"
								MatchDevicePath	"/dev/input/event*"
								Driver	"joystick"
								Option	"StartKeysEnabled"	"False"
								Option	"StartMouseEnabled"	"False"
EndSection

A	couple	of	programs	exist	to	map	gamepad	buttons	to	keyboard	keys,	including:

qjoypad	(https://aur.archlinux.org/packages/qjoypad/)AUR

antimicrox	(https://aur.archlinux.org/packages/antimicrox/)AUR

sc-controller	(https://aur.archlinux.org/packages/sc-controller/)AUR

steam	(https://archlinux.org/packages/?name=steam)	-	see	Steam#Steam	Input

All	work	well	without	the	need	for	additional	X.org	configuration.

This	is	a	good	solution	for	systems	where	restarting	Xorg	is	a	rare	event	because	it	 is	a	static	configuration	loaded	only	on	X	startup.	The	example	runs	on	a	Kodi	media	PC,
controlled	with	a	Logitech	Cordless	RumblePad	2.	Due	to	a	problem	with	the	d-pad	(a.k.a.	"hat")	being	recognized	as	another	axis,	Joy2key	was	used	as	a	workaround.	Since
kodi	(https://archlinux.org/packages/?name=kodi)	 version	11.0	and	joy2key	(https://aur.archlinux.org/packages/joy2key/)AUR	 1.6.3-1,	 this	 setup
no	longer	worked	and	the	following	was	created	for	letting	Xorg	handle	joystick	events.

First,	 install	 the	 xf86-input-joystick	 (https://aur.archlinux.org/packages/xf86-input-joystick/)AUR	 package.	 Then,	 create	
/etc/X11/xorg.conf.d/51-joystick.conf 	like	so:

	Section	"InputClass"
		Identifier	"Joystick	hat	mapping"
		Option	"StartKeysEnabled"	"True"
		#MatchIsJoystick	"on"
		Option	"MapAxis5"	"keylow=113	keyhigh=114"
		Option	"MapAxis6"	"keylow=111	keyhigh=116"
	EndSection

Note:	The	 MatchIsJoystick	"on" 	line	does	not	seem	to	be	required	for	the	setup	to	work,	but	you	may	want	to	uncomment	it.

With	some	programs	you	can	also	configure	your	gamepad	further,	including	the	following	potential	features:

Remapping	buttons	and	axes.

Assigning	mapping	profiles	to	different	games.
Emulating	a	different	type	of	gamepad.	As	noted	in	#Mimic	Xbox	360	controller,	software	can	often	behave	better	when	seemingly	given	an	Xbox	360	Controller,	as	this	is
a	very	common	controller	that	many	games	have	been	tested	with.
Additional	functionality	such	as	Macros,	On-Screen-Displays	etc.

List	of	software:

SC	Controller	—	Open-source	software	supporting	button	remapping	and	Xbox	360	Controller	emulation.

https://github.com/Ryochan7/sc-controller	||	sc-controller	(https://aur.archlinux.org/packages/sc-controller/)AUR

xboxdrv	—	Xbox	360	controller	driver	which	supports	emulating	the	controller	from	a	different	input	controller.	Even	if	you	don't	have	or	need	a	360	controller,	this	is	still
flexible	option	for	performing	remapping.

https://xboxdrv.gitlab.io/	||	xboxdrv	(https://aur.archlinux.org/packages/xboxdrv/)AUR

Steam	—	Proprietary	storefront	whose	client	supports	rebinding	gamepad	inputs	via	Steam	Input	(https://partner.steamgames.com/doc/features/steam_controlle
r).	When	enabled,	Steam	exposes	a	Steam	Controller	to	games	that	opt	into	the	Steam	Input	API,	as	well	as	an	emulated	Xbox	360	Controller	to	games	using	traditional
gamepad	APIs.	See	Steam#Steam	Input	for	further	details.

https://store.steampowered.com/about/	||	steam	(https://archlinux.org/packages/?name=steam)

While	most	gamepads,	especially	USB	based	ones	should	just	work,	some	may	require	(or	give	better	results)	if	you	use	alternative	drivers.	If	it	does	not	work	the	first	time,	do	not
give	up,	and	read	the	following	sections	thoroughly!

Most	dance	pads	 should	work.	However	 some	pads,	 especially	 those	used	 from	a	 video	 game	 console	 via	 an	 adapter,	 have	 a	 tendency	 to	map	 the	directional	 buttons	 as	 axis
buttons.	This	prevents	hitting	left-right	or	up-down	simultaneously.	This	behavior	can	be	fixed	for	devices	recognized	by	xpad	via	a	module	option:

	#	modprobe	-r	xpad
	#	modprobe	xpad	dpad_to_buttons=1

If	 that	 did	 not	 work,	 you	 can	 try	 axisfix-git	 (https://aur.archlinux.org/packages/axisfix-git/)AUR	 or	 patching	 the	 joydev 	 kernel	 module
(https://github.com/adiel-mittmann/dancepad).

Logitech	Thunderpad	Digital	will	not	show	all	the	buttons	if	you	use	the	 analog 	module.	Use	the	device	specific	 adi 	module	for	this	controller.

Dolphin	Emulator	has	a	page	on	their	wiki	(https://wiki.dolphin-emu.org/index.php?title=How_to_use_the_Official_GameCube_Controller_Adapter_for_
Wii_U_in_Dolphin)	 that	 explains	 how	 to	 use	 the	 official	Nintendo	USB	 adapter	with	 a	Gamecube	 controller.	 This	 configuration	 also	works	with	 the	Mayflash	Controller
Adapter	if	the	switch	is	set	to	"Wii	U".

The	hid-nintendo	kernel	HID	driver	was	mainlined	in	kernel	5.16.	If	you	are	using	an	earlier	kernel,	you	will	need	to	install	the	DKMS	module	named	hid-nintendo-dkms	(h
ttps://aur.archlinux.org/packages/hid-nintendo-dkms/)AUR.	The	driver	provides	support	 for	rumble,	battery	 level,	and	control	of	 the	player	and	home	LEDs.	It
supports	the	Nintendo	Switch	Pro	Controller	over	both	USB	and	Bluetooth	in	addition	to	the	Joy-Cons.

An	alternate	DKMS	module	named	hid-nintendo-nso-dkms	(https://aur.archlinux.org/packages/hid-nintendo-nso-dkms/)AUR	 patches	 in	 support	 for	 the
Switch	Online	NES	and	SNES	controllers.

The	hid-nintendo	kernel	driver	does	not	handle	the	combination	of	two	Joy-Cons	into	one	virtual	input	device.	That	functionality	has	been	left	up	to	userspace.	joycond-git	(
https://aur.archlinux.org/packages/joycond-git/)AUR	 is	a	userspace	daemon	that	combines	two	kernel	Joy-Con	evdev	devices	into	one	virtual	input	device	using
uinput.	An	application	can	use	two	Joy-Cons	as	if	they	are	a	single	controller.	When	the	daemon	is	active,	switch	controllers	will	be	placed	in	a	pseudo	pairing	mode,	and	the	LEDs
will	start	flashing.	Holding	the	triggers	can	be	used	to	pair	controllers	and	make	them	usable.	To	pair	two	Joy-Cons	together,	press	one	trigger	on	each	Joy-Con.

The	hid-nintendo	driver	currently	conflicts	with	steam	using	hidraw	to	implement	its	own	pro	controller	driver.	If	you	wish	to	use	the	Steam	implementation,	the	hid-nintendo
driver	can	be	blacklisted.	Alternatively	if	you	want	to	use	hid-nintendo	with	a	Steam	game	directly,	Steam	can	be	started	without	access	to	hidraw	using	firejail:

	$	firejail	--noprofile	--blacklist=/sys/class/hidraw/	steam

An	issue	(https://github.com/ValveSoftware/steam-for-linux/issues/6651)	has	been	opened	on	the	steam-for-linux	github	repo.

A	workaround	has	been	added	to	joycond	to	have	udev	rules	to	block	steam	from	accessing	hidraw	for	the	Pro	Controller.

That	alone	is	not	enough	though,	since	steam	will	not	recognize	the	pro	controller	when	access	to	hidraw	is	blocked.	To	get	around	that	issue,	joycond	supports	creating	a	virtual
pro	controller	with	a	different	product	id.	Steam	will	view	this	as	a	typical	controller.	This	gives	the	best	of	both	worlds,	where	hid-nintendo	can	be	used	both	inside	and	outside	of
steam	simultaneously.

To	pair	the	pro	controller	in	virtual	mode,	press	the	Plus	and	Minus	buttons	simultaneously	(instead	of	using	the	triggers).	You	must	be	using	a	version	of	joycond	including	this
commit	(https://github.com/DanielOgorchock/joycond/commit/e31db38eeae14c63331ea8dae972e3873d7ff6fa).

To	add	a	mapping	for	the	joy-cons	or	the	pro	controller	to	an	SDL2	game,	controllermap	(https://aur.archlinux.org/packages/controllermap/)AUR	can	be	run
in	the	game's	directory	of	games	which	have	their	own	 gamecontrollerdb.txt 	file.

Alternatively,	the	mappings	can	be	added	to	an	environment	variable:

~/.bashrc	

#	hid-nintendo	SDL2	mappings
export	SDL_GAMECONTROLLERCONFIG="050000007e0500000920000001800000,Nintendo	Switch	Pro	Controller,platform:Linux,a:b0,b:b1,x:b3,y:b2,back:b9,guide:b11,start:b10,leftstick:b12,rightstick:b1
3,leftshoulder:b5,rightshoulder:b6,dpup:h0.1,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,leftx:a0,lefty:a1,rightx:a2,righty:a3,lefttrigger:b7,righttrigger:b8,
030000007e0500000920000011810000,Nintendo	Switch	Pro	Controller,platform:Linux,a:b0,b:b1,x:b3,y:b2,back:b9,guide:b11,start:b10,leftstick:b12,rightstick:b13,leftshoulder:b5,rightshoulder:b
6,dpup:h0.1,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,leftx:a0,lefty:a1,rightx:a2,righty:a3,lefttrigger:b7,righttrigger:b8,
060000007e0500000620000000000000,Nintendo	Switch	Combined	Joy-Cons,platform:Linux,a:b0,b:b1,x:b3,y:b2,back:b9,guide:b11,start:b10,leftstick:b12,rightstick:b13,leftshoulder:b5,rightshoulde
r:b6,dpup:b14,dpdown:b15,dpleft:b16,dpright:b17,leftx:a0,lefty:a1,rightx:a2,righty:a3,lefttrigger:b7,righttrigger:b8,
"

For	some	games	and	emulators	such	as	Stardew	Valley	and	RetroArch,	the	controllers	do	not	work	unless	you	create	a	virtual	Xbox	360	controller	with	xboxdrv.	One	possible
sample	configuration:

$	xboxdrv	--evdev	/dev/input/event*	--evdev-absmap	ABS_X=X1,ABS_Y=Y1,ABS_RX=X2,ABS_RY=Y2	--evdev-keymap	BTN_DPAD_UP=du,BTN_DPAD_DOWN=dd,BTN_DPAD_LEFT=dl,BTN_DPAD_RIGHT=dr,BTN_SELECT=back,
BTN_MODE=guide,BTN_START=start,BTN_TL=TL,BTN_TR=TR,BTN_EAST=A,BTN_SOUTH=B,BTN_NORTH=X,BTN_WEST=Y,BTN_THUMBL=LB,BTN_THUMBR=RB,BTN_TL2=LT,BTN_TR2=RT	--axismap	-Y1=Y1,-Y2=Y2

Shinyquagsire23	 made	 the	HID	 Joy-Con	 Whispering	 (https://github.com/shinyquagsire23/HID-Joy-Con-Whispering)	 repository,	 which	 contains	 a	 userspace
driver	 for	 the	Joy-Cons	and	 the	Switch	Pro	Controller	over	USB.	Currently,	 it	does	not	 support	 rumble	or	gyroscope.	For	 rumble	 support,	 see	 the	hid-nintendo	kernel	driver
section	above.

After	running	make,	load	the	uinput	module:

	#	modprobe	uinput

Then	to	activate	the	driver:

	#	./uinputdriver	>	/dev/null

Over	on	Dolphin's	controller	configuration	menu,	there	should	be	an	entry	for	 evdev/0/joycon 	(not	Nintendo	Switch	Pro	Controller).	Select	it,	and	you	should	now	be	able	to
configure	the	controls.

While	the	controller	works	for	native	Linux	games,	this	controller	is	not	detected	by	Steam.	To	fix	this,	we	will	need	to	add:

/lib/udev/rules.d/70-steam-controller.rules

#	NS	PRO	Controller	USB
KERNEL=="hidraw*",	ATTRS{idVendor}=="20d6",	ATTRS{idProduct}=="a711",	MODE="0660",	TAG+="uaccess"

udev	can	be	reloaded	with	the	new	configuration	by	executing

	#	udevadm	control	--reload-rules

If	you	want	to	use	one	of	the	widely	available	bluetooth	gamepads,	such	as	iPEGA-9017s	designed	mostly	for	Android	and	iOS	devices	you	would	need	xboxdrv	(https://aur
.archlinux.org/packages/xboxdrv/)AUR,	bluez	(https://archlinux.org/packages/?name=bluez),	bluez-plugins	 (https://archlinux.org/packag
es/?name=bluez-plugins),	 and	bluez-utils	(https://archlinux.org/packages/?name=bluez-utils).	You	 should	 connect	 it	 in	 gamepad	mode	 (if	 there	are
different	modes,	choose	the	gamepad	one).	Technically	it	is	ready	to	be	used,	but	in	most	cases	games	would	not	recognize	it,	and	you	would	have	to	map	it	individually	for	all
application.	The	best	way	to	simplify	it	and	make	it	work	with	all	applications	is	to	mimic	Microsoft	X360	controller	with	xboxdrv	(https://aur.archlinux.org/package
s/xboxdrv/)AUR.	Once	connected	you	can	create	a	udev	rule	to	give	it	a	persistent	name,	that	would	come	in	handy	when	setting	it	up.

/etc/udev/rules.d/99-btjoy.rules

#Create	a	symlink	to	appropriate	/dev/input/eventX	at	/dev/btjoy
ACTION=="add",	SUBSYSTEM=="input",	ATTRS{name}=="Bluetooth	Gamepad",	ATTRS{uniq}=="00:17:02:01:ae:2a",	SYMLINK+="btjoy"

Replace	"Bluetooth	Gampad"	with	your	device	name	and	"00:17:02:01:ae:2a"	with	your	device's	address.

Next,	create	a	configuration	for	xboxdrv	(https://aur.archlinux.org/packages/xboxdrv/)AUR	somewhere,	for	example:

~/.config/xboxdrv/ipega.conf

#iPEGA	PG-9017S	Config	

[xboxdrv]
evdev-debug	=	true
evdev-grab	=	true
rumble	=	false
mimic-xpad	=	true

[evdev-absmap]
ABS_HAT0X	=	dpad_x
ABS_HAT0Y	=	dpad_y

ABS_X	=	X1
ABS_Y	=	Y1

ABS_Z		=	X2
ABS_RZ	=	Y2

[axismap]
-Y1	=	Y1
-Y2	=	Y2

[evdev-keymap]
BTN_EAST=a
BTN_C=b
BTN_NORTH=y
BTN_SOUTH=x
BTN_TR2=start
BTN_TL2=back
BTN_Z=rt
BTN_WEST=lt

BTN_MODE	=	guide

Refer	to	xboxdrv(1)	(https://xboxdrv.gitlab.io/xboxdrv.html)	to	see	all	the	options.

Now	when	you	have	the	configuration	and	your	device	is	connected	you	can	start	the	xboxdrv	(https://aur.archlinux.org/packages/xboxdrv/)AUR	like	so:

#	xboxdrv	--evdev	/dev/btjoy	--config	.config/xboxdrv/ipega.conf

Your	games	will	now	work	with	bluetooth	gamepad	as	long	as	xboxdrv	is	running.

For	this	model,	use	the	same	procedures	as	above,	but	with	the	configs:

~/.config/xboxdrv/ipega.conf

#iPEGA	PG-9068	and	PG-9087	Config	

[xboxdrv]
evdev-debug	=	true
evdev-grab	=	true
rumble	=	false
mimic-xpad	=	true

[evdev-absmap]
ABS_HAT0X	=	dpad_x
ABS_HAT0Y	=	dpad_y

ABS_X	=	X1
ABS_Y	=	Y1

ABS_Z		=	X2
ABS_RZ	=	Y2

[axismap]
-Y1	=	Y1
-Y2	=	Y2

[evdev-keymap]
BTN_A=a
BTN_B=b
BTN_Y=y
BTN_X=x
BTN_TR=rb
BTN_TL=lb
BTN_TR2=rt
BTN_TL2=lt
BTN_THUMBL=tl
BTN_THUMBR=tr
BTN_START=start
BTN_SELECT=back

BTN_MODE	=	guide

For	this	model,	use	the	same	procedures	as	above,	but	with	the	configs:

~/.config/xboxdrv/defender.conf

#Defender	x7	xboxdrv	config

[xboxdrv]
evdev-debug	=	true
evdev-grab	=	true
rumble	=	false
mimic-xpad	=	true

[evdev-absmap]
ABS_HAT0X	=	dpad_x
ABS_HAT0Y	=	dpad_y

ABS_X	=	X1
ABS_Y	=	Y1

ABS_Z		=	X2
ABS_RZ	=	Y2

[axismap]
-Y1	=	Y1
-Y2	=	Y2

[evdev-keymap]
BTN_EAST=b
BTN_NORTH=x
BTN_SOUTH=a
BTN_WEST=y
BTN_TR2=rt
BTN_TL2=lt
BTN_TR=rb
BTN_TL=lb
BTN_THUMBL=tl
BTN_THUMBR=tr
BTN_START=start
BTN_SELECT=back

BTN_MODE	=	guide

Now	when	you	have	the	configuration	and	your	device	is	connected	you	can	start	the	xboxdrv	(https://aur.archlinux.org/packages/xboxdrv/)AUR	like	so:

#	xboxdrv	--evdev	/dev/btjoy	--config	.config/xboxdrv/defender.conf

The	Stadia	controller	can	also	be	mapped	with	xboxdrv:

~/.config/xboxdrv/stadia.conf

#	Stadia	xboxdrv	config

[xboxdrv]
mimic-xpad=true
silent=true

[evdev-absmap]
ABS_X=x1
ABS_Y=y1
ABS_Z=x2
ABS_RZ=y2
ABS_GAS=rt
ABS_BRAKE=lt
ABS_HAT0X=dpad_x
ABS_HAT0Y=dpad_y

[axismap]
-y1=y1
-y2=y2

[evdev-keymap]
BTN_SOUTH=A
BTN_EAST=B
BTN_NORTH=X
BTN_WEST=Y

BTN_START=start
BTN_SELECT=back
BTN_MODE=guide

BTN_THUMBL=tl
BTN_THUMBR=tr
BTN_TR=rb
BTN_TL=lb

Note:	Kernel	4.18	provides	a	kernel	driver	(https://lore.kernel.org/lkml/20180416122703.22306-1-rodrigorivascosta@gmail.com/)	for	wired/wireless	use	of
the	steam	controller	as	a	controller	input	device	without	Steam.

The	Steam	client	will	recognize	the	controller	and	provide	keyboard/mouse/gamepad	emulation	while	Steam	is	running.	The	in-game	Steam	overlay	needs	to	be	enabled	and
working	in	order	for	gamepad	emulation	to	work.	You	may	need	to	run	 udevadm	trigger 	with	root	privileges	or	plug	the	dongle	out	and	in	again,	if	the	controller	does	not
work	immediately	after	installing	and	running	Steam.	If	all	else	fails,	try	restarting	the	computer	while	the	dongle	is	plugged	in.

If	you	are	using	the	controller	connected	via	Bluetooth	LE,	make	sure	the	user	is	part	of	the	 input 	group.

If	you	cannot	get	the	Steam	Controller	to	work,	see	#Steam	Controller	not	pairing.

Alternatively	you	can	install	python-steamcontroller-git	(https://aur.archlinux.org/packages/python-steamcontroller-git/)AUR	to	have	controller	and
mouse	emulation	without	Steam	or	sc-controller	(https://aur.archlinux.org/packages/sc-controller/)AUR	for	a	versatile	graphical	configuration	tool	simillar
to	what	is	provided	by	the	Steam	client.

Note:	If	you	do	not	use	the	Steam	runtime,	you	might	actually	need	to	disable	the	overlay	for	the	controller	to	work	in	certain	games	(Rocket	Wars,	Rocket	League,	Binding	of
Isaac,	etc.).	Right	click	on	a	game	in	your	library,	select	"Properties",	and	uncheck	"Enable	Steam	Overlay".

python-steamcontroller-git	 (https://aur.archlinux.org/packages/python-steamcontroller-git/)AUR	 can	 also	 be	 used	 to	 make	 the	 Steam	 Controller
work	for	games	running	under	Wine.	You	need	to	find	and	download	the	application	 xbox360cemu.v.3.0 	(e.g.	from	here	(https://github.com/jacobmischka/ds4-in-w
ine/tree/master/xbox360cemu.v.3.0)).	 Then	 copy	 the	 files	 dinput8.dll ,	 xbox360cemu.ini ,	 xinput1_3.dll 	 and	 xinput_9_1_0.dll 	 to	 the	 directory	 that
contains	your	game	executable.	Edit	 xbox360cemu.ini 	and	only	change	the	following	values	under	 [PAD1] 	to	remap	the	Steam	Controller	correctly	to	a	XBox	controller.

xbox360cemu.ini

Right	Analog	X=4
Right	Analog	Y=-5
A=1
B=2
X=3
Y=4
Back=7
Start=8
Left	Thumb=10
Right	Thumb=11
Left	Trigger=a3
Right	Trigger=a6

Now	 start	 python-steamcontroller	 in	 Xbox360	mode	 (sc-xbox.py	start).	 You	 might	 also	 want	 to	 copy	 XInputTest.exe 	 from	 xbox360cemu.v.3.0 	 to	 the	 same
directory	and	run	it	with	Wine	in	order	to	test	if	the	mappings	work	correctly.	However	neither	mouse	nor	keyboard	emulation	work	with	this	method.

Alternatively	you	can	use	sc-controller	(https://aur.archlinux.org/packages/sc-controller/)AUR	for	a	similar	graphical	setup	as	Steam's	own	configurator.	As
of	writing,	it	is	a	bit	buggy	here	and	there	but	offers	an	easy	click	and	go	way	of	configuring	the	controller.

Both	 the	wired	and	wireless	 (with	 the	Xbox	360	Wireless	Receiver	 for	Windows)	 controllers	are	 supported	by	 the	 xpad 	 kernel	module	 and	 should	work	without	 additional
packages.	Note	that	using	a	wireless	Xbox360	controller	with	the	Play&Charge	USB	cable	will	not	work.	The	cable	is	for	recharging	only	and	does	not	transmit	any	input	data	over
the	wire.

It	has	been	reported	that	the	default	xpad	driver	has	some	issues	with	a	few	newer	wired	and	wireless	controllers,	such	as:

incorrect	button	mapping.	(discussion	in	Steam	bugtracker	(https://github.com/ValveSoftware/steam-for-linux/issues/95#issuecomment-14009081))
not-working	sync.	(discussion	in	Arch	Forum	(https://bbs.archlinux.org/viewtopic.php?id=156028))
all	four	LEDs	keep	blinking,	but	controller	works.	TLP's	USB	autosuspend	is	one	sure	cause	of	this	issue	with	wireless	controllers.	See	below	for	fix.

If	you	use	the	TLP	power	management	tool,	you	may	experience	connection	issues	with	your	Microsoft	wireless	adapter	(e.g.	the	indicator	LED	will	go	out	after	the	adapter	has
been	connected	for	a	few	seconds,	and	controller	connection	attempts	fail,	four	LEDs	keep	blinking	but	controller	works).	This	is	due	to	TLP's	USB	autosuspend	functionality,	and
the	solution	is	to	add	the	Microsoft	wireless	adapter's	device	ID	to	TLP	blacklist	(to	check	device	ID	to	blacklist,	run	 tlp-stat	-u ;	for	original	MS	wireless	dongle	just	add	
USB_DENYLIST="045e:0719" 	to	 /etc/tlp.conf),	check	TLP	configuration	(https://linrunner.de/en/tlp/docs/tlp-configuration.html#usb)	for	more	details.

If	you	experience	such	issues,	you	can	use	#xboxdrv	as	the	default	 xpad 	driver	instead.

If	you	wish	to	use	the	controller	for	controlling	the	mouse,	or	mapping	buttons	to	keys,	etc.	you	should	use	the	xf86-input-joystick	(https://aur.archlinux.org/pa
ckages/xf86-input-joystick/)AUR	package	(configuration	help	can	be	found	using	joystick(4)	(https://manpages.debian.org/latest/xserver-xorg-inpu
t-joystick/joystick.4.en.html)).	 If	 the	 mouse	 locks	 itself	 in	 a	 corner,	 it	 might	 help	 changing	 the	 MatchDevicePath 	 in	
/etc/X11/xorg.conf.d/50-joystick.conf 	from	 /dev/input/event* 	to	 /dev/input/js* .

In	order	to	connect	via	Bluetooth	using	KDE,	add	the	following	kernel	parameter	 bluetooth.disable_ertm=1 .

If	you	experience	problems	with	the	rumble	feature	not	working	in	games,	it	may	be	necessary	to	set	the	environment	variable	 SDL_JOYSTICK_HIDAPI=0

xboxdrv	(https://gitlab.com/xboxdrv/xboxdrv)	is	an	alternative	to	 xpad 	which	provides	more	functionality	and	might	work	better	with	certain	controllers.	It	works	in
userspace	and	can	be	launched	as	system	service.

Install	it	with	the	xboxdrv	(https://aur.archlinux.org/packages/xboxdrv/)AUR	package.	Then	start/enable	 xboxdrv.service .

If	you	have	issues	with	the	controller	being	recognized	but	not	working	in	steam	games	or	working	but	with	incorrect	mappings,	it	may	be	required	to	modify	you	configuration	as
such:

/etc/default/xboxdrv

[xboxdrv]
silent	=	true
device-name	=	"Xbox	360	Wireless	Receiver"
mimic-xpad	=	true
deadzone	=	4000

[xboxdrv-daemon]
dbus	=	disabled

Then	restart	 xboxdrv.service .

xboxdrv	supports	a	multitude	of	controllers,	but	they	need	to	be	set	up	in	 /etc/default/xboxdrv .	For	each	extra	controller,	add	an	 next-controller	=	true 	line.	For
example,	when	using	4	controllers,	add	it	3	times:

	[xboxdrv]
	silent	=	true
	next-controller	=	true
	next-controller	=	true
	next-controller	=	true
	[xboxdrv-daemon]
	dbus	=	disabled

Then	restart	 xboxdrv.service .

xboxdrv	 can	 be	 used	 to	make	 any	 controller	 register	 as	 an	 Xbox	 360	 controller	 with	 the	 --mimic-xpad 	 switch.	 This	may	 be	 desirable	 for	 games	 that	 support	 Xbox	 360
controllers	out	of	the	box,	but	have	trouble	detecting	or	working	with	other	gamepads.

First,	you	need	to	find	out	what	each	button	and	axis	on	the	controller	is	called.	You	can	use	evtest	(https://archlinux.org/packages/?name=evtest)	for	this.	Run	
evtest 	and	select	the	device	event	ID	number	(/dev/input/event*)	that	corresponds	to	your	controller.	Press	the	buttons	on	the	controller	and	move	the	axes	to	read	the
names	of	each	button	and	axis.

Here	is	an	example	of	the	output:

Event:	time	1380985017.964843,	type	4	(EV_MSC),	code	4	(MSC_SCAN),	value	90003
Event:	time	1380985017.964843,	type	1	(EV_KEY),	code	290	(BTN_THUMB2),	value	1
Event:	time	1380985017.964843,	--------------	SYN_REPORT	------------
Event:	time	1380985018.076843,	type	4	(EV_MSC),	code	4	(MSC_SCAN),	value	90003
Event:	time	1380985018.076843,	type	1	(EV_KEY),	code	290	(BTN_THUMB2),	value	0
Event:	time	1380985018.076843,	--------------	SYN_REPORT	------------
Event:	time	1380985018.460841,	type	4	(EV_MSC),	code	4	(MSC_SCAN),	value	90002
Event:	time	1380985018.460841,	type	1	(EV_KEY),	code	289	(BTN_THUMB),	value	1
Event:	time	1380985018.460841,	--------------	SYN_REPORT	------------
Event:	time	1380985018.572835,	type	4	(EV_MSC),	code	4	(MSC_SCAN),	value	90002
Event:	time	1380985018.572835,	type	1	(EV_KEY),	code	289	(BTN_THUMB),	value	0
Event:	time	1380985018.572835,	--------------	SYN_REPORT	------------
Event:	time	1380985019.980824,	type	4	(EV_MSC),	code	4	(MSC_SCAN),	value	90006
Event:	time	1380985019.980824,	type	1	(EV_KEY),	code	293	(BTN_PINKIE),	value	1
Event:	time	1380985019.980824,	--------------	SYN_REPORT	------------
Event:	time	1380985020.092835,	type	4	(EV_MSC),	code	4	(MSC_SCAN),	value	90006
Event:	time	1380985020.092835,	type	1	(EV_KEY),	code	293	(BTN_PINKIE),	value	0
Event:	time	1380985020.092835,	--------------	SYN_REPORT	------------
Event:	time	1380985023.596806,	type	3	(EV_ABS),	code	3	(ABS_RX),	value	18
Event:	time	1380985023.596806,	--------------	SYN_REPORT	------------
Event:	time	1380985023.612811,	type	3	(EV_ABS),	code	3	(ABS_RX),	value	0
Event:	time	1380985023.612811,	--------------	SYN_REPORT	------------
Event:	time	1380985023.708768,	type	3	(EV_ABS),	code	3	(ABS_RX),	value	14
Event:	time	1380985023.708768,	--------------	SYN_REPORT	------------
Event:	time	1380985023.724772,	type	3	(EV_ABS),	code	3	(ABS_RX),	value	128
Event:	time	1380985023.724772,	--------------	SYN_REPORT	------------

In	this	case,	 BTN_THUMB ,	 BTN_THUMB2 	and	 BTN_PINKIE 	are	buttons	and	 ABS_RX 	is	the	X	axis	of	the	right	analogue	stick.	You	can	now	mimic	an	Xbox	360	controller	with
the	following	command:

$	xboxdrv	--evdev	/dev/input/event*	--evdev-absmap	ABS_RX=X2	--evdev-keymap	BTN_THUMB2=a,BTN_THUMB=b,BTN_PINKIE=rt	--mimic-xpad

The	above	example	is	 incomplete.	It	only	maps	one	axis	and	3	buttons	for	demonstration	purposes.	Use	 xboxdrv	--help-button 	 to	see	the	names	of	the	Xbox	controller
buttons	 and	 axes	 and	 bind	 them	 accordingly	 by	 expanding	 the	 command	 above.	 Axes	 mappings	 should	 go	 after	 --evdev-absmap 	 and	 button	 mappings	 follow	
--evdev-keymap 	(comma	separated	list;	no	spaces).

By	default,	xboxdrv	outputs	all	events	to	the	terminal.	You	can	use	this	to	test	that	the	mappings	are	correct.	Append	the	 --silent 	option	to	keep	it	quiet.

Some	clone	gamepads	might	require	a	specific	initialization	sequence	in	order	to	work	(Super	User	answer	(https://superuser.com/a/1380235)).	For	that	you	should	run
the	following	python	script	as	the	root	user:

#!/usr/bin/env	python3

import	usb.core

dev	=	usb.core.find(idVendor=0x045e,	idProduct=0x028e)

if	dev	is	None:
				raise	ValueError('Device	not	found')
else:
				dev.ctrl_transfer(0xc1,	0x01,	0x0100,	0x00,	0x14)	

This	is	supported	by	the	kernel	and	works	any	without	additional	packages.

The	firmware	of	the	Xbox	Wireless	Controller	used	to	cause	loops	of	connecting	/	disconnecting	with	Bluez.	The	best	workaround	for	now	is	to	plug	(via	a	USB	cord)	the	controller
to	a	Windows	10	computer,	download	the	xbox	accessories	application,	and	update	the	firmware	of	the	controller.

A	relatively	new	driver	which	does	support	the	Xbox	One	S	and	Xbox	Series	X|S	controller	via	Bluetooth	is	called	xpadneo	(https://github.com/atar-axis/xpadneo/).	In
addition	to	these	two	models,	it	has	also	basic	support	for	the	Xbox	Elite	Series	2	Wireless	controller.	In	exchange	for	fully	supporting	just	two	controllers	so	far,	it	enables	one	to
read	out	the	correct	battery	level,	supports	rumble	(even	the	one	on	the	trigger	buttons	-	L2/R2),	corrects	the	(sometimes	wrong)	button	mapping	and	more.

Installation	is	done	using	DKMS:	xpadneo-dkms-git	(https://aur.archlinux.org/packages/xpadneo-dkms-git/)AUR.

Note:	Pairing	a	new	Xbox	One	S	controller	for	the	first	time	may	prove	difficult,	from	not	pairing	at	all	to	entering	a	connect/disconnect	loop.	These	problems	are	described
there	(https://github.com/atar-axis/xpadneo/issues/295).	The	best	way	to	reliably	pair	the	controller	is	to	first	pair	it	in	Windows	10.	However,	this	needs	be	done
using	the	same	Bluetooth	adapter.	A	solution	is	to	install	a	free	copy	of	Windows	10	Evaluation	on	a	Virtual	machine	(using	QEMU	or	VirtualBox,	taking	care	of	the	Bluetooth
adapter	passthrough	requirements,	e.g.	as	an	USB	device)	using	Arch	Linux	as	your	host,	and	pair	in	Windows	10	first,	then	do	the	same	again	under	your	Arch	Linux	system.
Then	pairing	will	succeed	and	there	will	be	no	need	of	further	Windows	10	use.

xow	(https://github.com/medusalix/xow)	is	a	project	that	allows	connection	with	a	wireless	dongle.	It	is	currently	in	very	early	stages	of	development.	It	can	be	installed
via	xow-git	(https://aur.archlinux.org/packages/xow-git/)AUR

xone	(https://github.com/medusalix/xone)	is	a	Linux	kernel	driver	for	Xbox	One	and	Xbox	Series	X|S	accessories.	It	serves	as	a	modern	replacement	for	xpad,	supersedes
xow.	Currently	working	via	wired	or	with	the	wireless	dongle.	This	driver	is	still	in	active	development.

The	Logitech	Dual	Action	gamepad	has	a	very	similar	mapping	to	the	PS2	pad,	but	some	buttons	and	triggers	need	to	be	swapped	to	mimic	the	Xbox	controller.

	#	xboxdrv	--evdev	/dev/input/event*	\
			--evdev-absmap	ABS_X=x1,ABS_Y=y1,ABS_RZ=x2,ABS_Z=y2,ABS_HAT0X=dpad_x,ABS_HAT0Y=dpad_y	\
			--axismap	-Y1=Y1,-Y2=Y2	\
			--evdev-keymap	BTN_TRIGGER=x,BTN_TOP=y,BTN_THUMB=a,BTN_THUMB2=b,BTN_BASE3=back,BTN_BASE4=start,BTN_BASE=lt,BTN_BASE2=rt,BTN_TOP2=lb,BTN_PINKIE=rb,BTN_BASE5=tl,BTN_BASE6=tr	\
			--mimic-xpad	--silent

To	fix	the	button	mapping	of	PS2	dual	adapters	and	mimic	the	Xbox	controller	you	can	run	the	following	command:

	#	xboxdrv	--evdev	/dev/input/event*	\
			--evdev-absmap	ABS_X=x1,ABS_Y=y1,ABS_RZ=x2,ABS_Z=y2,ABS_HAT0X=dpad_x,ABS_HAT0Y=dpad_y	\
			--axismap	-Y1=Y1,-Y2=Y2	\
			--evdev-keymap			BTN_TOP=x,BTN_TRIGGER=y,BTN_THUMB2=a,BTN_THUMB=b,BTN_BASE3=back,BTN_BASE4=start,BTN_BASE=lb,BTN_BASE2=rb,BTN_TOP2=lt,BTN_PINKIE=rt,BTN_BASE5=tl,BTN_BASE6=tr	\
			--mimic-xpad	--silent

If	you	own	a	PS3	controller	and	can	connect	with	USB,	plug	it	to	your	computer	and	press	the	PS	button.	The	controller	will	power	up	and	one	of	the	four	LEDs	should	light	up
indicating	the	controller's	number.

Install	bluez	(https://archlinux.org/packages/?name=bluez)	bluez-utils	(https://archlinux.org/packages/?name=bluez-utils)	bluez-plugins
(https://archlinux.org/packages/?name=bluez-plugins).	Make	 sure	 bluetooth	 is	working	 by	 following	 the	 first	 five	 steps	 of	Bluetooth#Pairing	 and	 leave	 the
bluetoothctl	command	running,	then	turn	on	the	controller	by	pressing	the	middle	'PS'	button(all	4	leds	should	be	blinking	quickly	~4	hz)	and	connect	to	your	computer	using
usb.	Lastly,	type	yes	in	the	bluetoothctl	prompt	when	asked	' Authorize	service	00001124-0000-1000-8000-00805f9b34fb	(yes/no) '.

Alternative	instructions:	To	connect	your	PS3	controller	to	your	computer	using	Bluetooth,	you	first	need	to	install	bluez	(https://archlinux.org/packages/?name=bl
uez)	 and	bluez-plugins	(https://archlinux.org/packages/?name=bluez-plugins)	 then	 connect	 your	 controller	 via	USB.	 A	 pop-up	 should	 appear	 asking	 for
pairing.	Click	on	Trust	&	Authorize.	You	can	now	unplug	your	controller	and	press	the	PS	button.	The	controller	will	connect	and	a	LED	will	remain	solid.	You	can	now	use	it	to
play	games.	Connecting	using	the	USB	cable	is	only	needed	after	the	controller	has	been	connected	to	another	system.

Tip:	There	are	many	complicated	instructions	on	the	internet	on	setting	up	a	PS3	controller	that	require	many	steps	such	as	compiling	and	installing	qtsixa	or	sixpair	and
setting	up	the	controller	manually,	or	patching	bluez	with	some	specific	patches.	None	of	this	is	necessary	on	a	modern	Linux	kernel	and	after	installing	bluez-plugins.

Connect	your	controller	via	USB	and	press	the	 PS 	button.

If	you	want	to	use	bluetooth	mode,	hold	down	the	 PS 	button	and	 Share 	button	together.	The	white	LED	of	the	controller	should	blink	very	quickly,	and	the	wireless	controller
can	be	paired	with	your	bluetooth	manager	(bluez,	gnome-bluetooth).

To	 fix	 the	button	mapping	of	PS4	 controller	 you	 can	use	 the	 following	 command	with	 xboxdrv	 (or	 try	with	 the	ds4drv	(https://github.com/chrippa/ds4drv)	 program,
ds4drv	(https://aur.archlinux.org/packages/ds4drv/)AUR):

	#	xboxdrv	\
			--evdev	/dev/input/by-id/usb-Sony_Computer_Entertainment_Wireless_Controller-event-joystick\
			--evdev-absmap	ABS_X=x1,ABS_Y=y1																	\
			--evdev-absmap	ABS_Z=x2,ABS_RZ=y2																\
			--evdev-absmap	ABS_HAT0X=dpad_x,ABS_HAT0Y=dpad_y	\
			--evdev-keymap	BTN_A=x,BTN_B=a																			\
			--evdev-keymap	BTN_C=b,BTN_X=y																			\
			--evdev-keymap	BTN_Y=lb,BTN_Z=rb																	\
			--evdev-keymap	BTN_TL=lt,BTN_TR=rt															\
			--evdev-keymap	BTN_SELECT=tl,BTN_START=tr								\
			--evdev-keymap	BTN_TL2=back,BTN_TR2=start								\
			--evdev-keymap	BTN_MODE=guide																				\
			--axismap	-y1=y1,-y2=y2																										\
			--mimic-xpad																																					\
			--silent

Dualshock	4	V1	and	V2	are	both	like	3	devices,	touchpad,	motion	control,	and	joypad.

With	some	software	 like	Parsec	and	Shadow	cloud	gaming	streaming	applications,	motion	control	 is	 in	conflict	with	 joypad,	you	can	disable	 touchpad	and	motion	control	by
adding	the	following	udev	rule:

/etc/udev/rules.d/51-disable-DS3-and-DS4-motion-controls.rules

SUBSYSTEM=="input",	ATTRS{name}=="*Controller	Motion	Sensors",	RUN+="/bin/rm	%E{DEVNAME}",	ENV{ID_INPUT_JOYSTICK}=""
SUBSYSTEM=="input",	ATTRS{name}=="*Controller	Touchpad",	RUN+="/bin/rm	%E{DEVNAME}",	ENV{ID_INPUT_JOYSTICK}=""

This	should	work	in	USB	and	Bluetooth	mode.

This	 fixes	 conflicts	 with	 games	 that	 actually	 use	 touchpad	 as	 part	 of	 the	 gamepad,	 such	 as	 Rise	 of	 the	 Tomb	 Raider.	 This	 will	 work	 with	 both	 DualShock4	 and	 DualSense
controllers.

Edit	 /etc/X11/xorg.conf.d/30-ds-disable-mouse.conf .

And	then	paste	the	following	and	restart	X11:

Section	"InputClass"
							Identifier			"ds-touchpad"
							Driver							"libinput"
							MatchProduct	"Wireless	Controller	Touchpad"
							Option							"Ignore"	"True"
EndSection

Configure	button	mapping	(thanks	to	yoyossef	(https://github.com/yoyossef/ds360)):

xboxdrv	\
		--evdev	/dev/input/by-id/usb-Sony_Interactive_Entertainment_Wireless_Controller-if03-event-joystick	\
		--evdev-absmap	ABS_HAT0X=dpad_x,ABS_HAT0Y=dpad_y,ABS_X=X1,ABS_Y=Y1,ABS_RX=X2,ABS_RY=Y2,ABS_Z=LT,ABS_RZ=RT	\
		--evdev-keymap	BTN_SOUTH=A,BTN_EAST=B,BTN_NORTH=Y,BTN_WEST=X,BTN_START=start,BTN_MODE=guide,BTN_SELECT=back	\
		--evdev-keymap	BTN_TL=LB,BTN_TR=RB,BTN_TL2=LT,BTN_TR2=RT,BTN_THUMBL=TL,BTN_THUMBR=TR	\
		--axismap	-y1=y1,-y2=y2																										\
		--mimic-xpad																																					\
		--silent

Some	applications,	for	example,	Steam	inside	Geforce	NOW	inside	web	browser,	may	be	confused	with	original	 joystick	events,	which	shadow	the	newly	created	event	source.
Simply	deleting	 /dev/input/js0 	works	this	around.

The	PlayStation	and	mode	buttons	still	do	not	work,	however.

The	DualShock	3,	DualShock	4	and	Sixaxis	 controllers	work	out	of	 the	box	when	plugged	 in	via	USB	 (the	PS	button	will	need	 to	be	pushed	 to	begin).	They	can	also	be	used
wirelessly	via	Bluetooth.

Steam	properly	recognizes	it	as	a	PS3	pad	and	Big	Picture	can	be	launched	with	the	PS	button.	Big	Picture	and	some	games	may	act	as	if	it	was	a	360	controller.	Gamepad	control
over	mouse	is	on	by	default.	You	may	want	to	turn	it	off	before	playing	games,	see	#Joystick	moving	mouse.

Install	 the	 bluez	 (https://archlinux.org/packages/?name=bluez),	 bluez-plugins	 (https://archlinux.org/packages/?name=bluez-plugins),	 and
bluez-utils	(https://archlinux.org/packages/?name=bluez-utils)	packages,	which	 includes	the	sixaxis	plugin.	Then	start	 the	bluetooth	 service	and	ensure
bluetooth	 is	powered	on.	 If	using	bluetoothctl	 start	 it	 in	a	 terminal	and	then	plug	 the	controller	 in	via	USB.	You	should	be	prompted	to	 trust	 the	controller	 in	bluetoothctl.	A
graphical	bluetooth	front-end	may	program	your	PC's	bluetooth	address	into	the	controller	automatically.	Hit	the	PlayStation	button	and	check	that	the	controller	works	while
plugged	in.

You	can	now	disconnect	your	controller.	The	next	time	you	hit	the	PlayStation	button	it	will	connect	without	asking	anything	else.

Alternatively,	on	a	PS4	controller	you	can	hold	the	share	button	and	the	PlayStation	button	simultaneously	(for	a	few	seconds)	to	put	the	gamepad	in	pairing	mode,	and	pair	as
you	would	normally.

GNOME's	Settings	also	provides	a	graphical	interface	to	pair	sixaxis	controllers	when	connected	by	wire.

Remember	to	disconnect	the	controller	when	you	are	done	as	the	controller	will	stay	on	when	connected	and	drain	the	battery.

Note:	If	the	controller	does	not	connect,	make	sure	the	bluetooth	interface	is	turned	on	and	the	controllers	have	been	trusted.	(See	Bluetooth)

Using	generic/clone	Dualshock	controllers	is	possible,	however	there	is	an	issue	that	may	require	to	install	a	patched	package.	The	default	Bluetooth	protocol	stack	does	not	detect
some	 of	 the	 clone	 controllers.	 The	 bluez-ps3	 (https://aur.archlinux.org/packages/bluez-ps3/)AUR	 package	 is	 a	 version	 patched	 to	 be	 able	 to	 detect	 them.
bluez-plugins-ps3	(https://aur.archlinux.org/packages/bluez-plugins-ps3/)AUR	 is	 another	package	 that	only	patch	 the	bluez-plugins	may	work	 for	 some
controllers.

If	you	want	to	use	your	gamepad	with	another	computer	over	a	network,	you	can	use	USB/IP	or	netstick-git	(https://aur.archlinux.org/packages/netstick-g
it/)AUR	to	do	this.

Gamepad	devices	are	affected	by	udev	rules:	unless	they	grant	access	to	the	device,	it	simply	will	not	be	readable	by	users.	This	section	investigates	the	possibility	of	you	already
having	a	configuration	file	handling	this.

Any	gamepad	device,	regardless	of	whether	it	is	over	USB	or	Bluetooth,	is	handled	by	the	"input"	subsystem	of	the	kernel	(https://docs.kernel.org/input/input_uapi.
html),	 corresponding	 with	 /dev/input .	 It's	 also	 common	 for	 udev	 rules	 to	 target	 the	 "hidraw"	 kernel	 module	 (https://docs.kernel.org/hid/hidraw.html).
Combining	these,	we	can	understand	udev's	handling	of	these	devices	by	inspecting	the	configuration	shipped	by	packages:

$	grep	--extended-regexp	'SUBSYSTEM=="input"|KERNEL=="hidraw'	--recursive	/usr/lib/udev/rules.d

Some	examples	of	applications	which	ship	noteworthy	rules:

systemd's	default	rules	set	the	group	of	all	 input 	devices	to	 input ,	and	the	mode	of	joystick	devices	to	 664 .
Steam	ships	udev	rules	allowing	access	to	a	variety	of	controllers.	See	this	Steam	discussion	(https://steamcommunity.com/app/353370/discussions/2/1735465524
711324558/)	for	further	info	about	the	contents	of	the	rules.
Dolphin	emulator	ships	udev	rules	allowing	access	to	controllers	it	supports.

If	your	system	does	not	already	happen	to	have	a	udev	rule	for	the	device	you	want	to	use,	you	can	either	write	one	yourself	or	install	the	game-devices-udev	(https://aur
.archlinux.org/packages/game-devices-udev/)AUR	package	and	restart	your	computer.

Sometimes	USB	gamepad	can	be	recognized	as	HID	mouse	(only	in	X,	it	is	still	being	installed	as	 /dev/input/js0 	as	well).	Known	issue	is	cursor	being	moved	by	the	joystick,
or	escaping	to	en	edge	of	a	screen	right	after	plugin.	If	your	application	can	detect	gamepad	by	itself,	you	can	remove	the	xf86-input-joystick	(https://aur.archlinux
.org/packages/xf86-input-joystick/)AUR	package.

A	more	gentle	solution	is	described	in	#Disable	joystick	from	controlling	mouse.

If	you	are	using	a	generic	non-widely	used	gamepad	you	may	encounter	issues	getting	the	gamepad	recognized	in	games	based	on	SDL.	Since	14	May	2015	(https://github.co
m/flibitijibibo/FNA/commit/e55742cfe7e38b778a21ed8a12cb2f2081490d8d),	FNA	supports	dropping	a	 gamecontrollerdb.txt 	into	the	executable	folder	of	the
game,	for	example	the	SDL_GameControllerDB	(https://github.com/gabomdq/SDL_GameControllerDB).

As	an	alternative	and	for	older	versions	of	FNA	or	for	SDL	you	can	generate	a	mapping	yourself	by	downloading	the	SDL	source	code	via	https://libsdl.org/,	navigating	to	
/test/ ,	compile	the	 controllermap.c 	program	(alternatively	 install	controllermap	(https://aur.archlinux.org/packages/controllermap/)AUR)	 and	 run
the	test.	After	completing	the	controllermap	test,	a	GUID	will	be	generated	that	you	can	put	 in	the	 SDL_GAMECONTROLLERCONFIG 	environment	variable	which	will	 then	be
picked	up	by	SDL/FNA	games.	For	example:

$	export	SDL_GAMECONTROLLERCONFIG="030000008f0e00000300000010010000,GreenAsia	Inc.	USB	Joystick	,platform:Linux,x:b3,a:b2,b:b1,y:b0,back:b8,start:b9,dpleft:h0.8,dpdown:h0.0,dpdown:h0.4,dp
right:h0.0,dpright:h0.2,dpup:h0.0,dpup:h0.1,leftshoulder:h0.0,leftshoulder:b6,lefttrigger:b4,rightshoulder:b7,righttrigger:b5,leftstick:b10,rightstick:b11,leftx:a0,lefty:a1,rightx:a3,righ
ty:a2,"

Some	software,	Steam	for	example,	will	only	recognize	the	first	gamepad	it	encounters.	Due	to	a	bug	in	the	driver	for	Microsoft	wireless	periphery	devices	this	can	in	fact	be	the
bluetooth	dongle.	If	you	find	you	have	a	 /dev/input/js* 	and	 /dev/input/event* 	belonging	to	you	keyboard's	bluetooth	transceiver	you	can	get	automatically	get	rid	of	it
by	creating	according	udev	rules.	Create	a	 / :

/etc/udev/rules.d/99-btcleanup.rules

ACTION=="add",	KERNEL=="js[0-9]*",	SUBSYSTEM=="input",	KERNELS=="...",	ATTRS{bInterfaceSubClass}=="00",	ATTRS{bInterfaceProtocol}=="00",	ATTRS{bInterfaceNumber}=="02",	RUN+="/usr/bin/rm	/
dev/input/js%n"
ACTION=="add",	KERNEL=="event*",	SUBSYSTEM=="input",	KERNELS=="...",	ATTRS{bInterfaceSubClass}=="00",	ATTRS{bInterfaceProtocol}=="00",	ATTRS{bInterfaceNumber}=="02",	RUN+="/usr/bin/rm	/de
v/input/event%n"

Correct	the	 KERNELS=="..." 	to	match	your	device.	The	correct	value	can	be	found	by	running

#	udevadm	info	-an	/dev/input/js0

Assuming	the	device	in	question	is	 /dev/input/js0 .	After	you	placed	the	rule	reload	the	rules	with

#	udevadm	control	--reload

Then	replug	the	device	making	you	trouble.	The	joystick	and	event	devices	should	be	gone,	although	their	number	will	still	be	reserved.	But	the	files	are	out	of	the	way.

Some	Windows	games	look	for	an	Xbox	360	controller	in	particular,	causing	vibration	to	not	work	even	with	otherwise	functional	XInput	gamepads.	One	example	of	such	game	is
Inside	(https://www.pcgamingwiki.com/wiki/Inside).

As	a	work-around	for	these	games:

Unload	the	 xpad 	kernel	module.
Launch	 xboxdrv ,	including	Xbox	360	mimicking	gamepad	and	with	vibration	support:

xboxdrv	--mimic-xpad	--force-feedback

There	are	 some	unknown	cases	where	 the	packaged	udev	 rule	 for	 the	Steam	controller	does	not	work	 (FS#47330	(https://bugs.archlinux.org/task/47330)).	The	most
reliable	workaround	is	to	make	the	controller	world	readable.	Copy	the	rule	 /usr/lib/udev/rules.d/70-steam-controller.rules 	to	 /etc/udev/rules.d 	with	a
later	prioritiy	and	change	anything	that	says	 MODE="0660" 	to	 MODE="0666" 	e.g.

/etc/udev/rules.d/99-steam-controller-perms.rules

...
SUBSYSTEM=="usb",	ATTRS{idVendor}=="28de",	MODE="0666"
...

You	may	have	to	reboot	in	order	for	the	change	to	take	effect.

If	your	Steam	Controller	is	working	well	in	Steam	Big	Picture	mode,	but	not	recognized	by	a	game	or	the	game	starts	crashing	when	you	plug	in	the	controller,	this	may	be	because
of	the	native	driver	that	has	been	added	to	the	Linux	kernel	4.18.	Try	to	unload	it,	restart	Steam	and	replug	the	controller.

The	module	name	of	the	driver	is	 hid_steam ,	so	to	unload	it	you	may	perform:

#	rmmod	hid_steam

This	can	occur	when	using	a	third	party	Xbox	One	controller	with	the	 xpad 	or	#xboxdrv	drivers.	Try	switching	to	#xpadneo.

Contents

1 Installation

1.1 Loading	the	modules	for	analogue	devices

1.2 USB	gamepads

2 Configuration

2.3 Testing

2.3.1 Joystick	API

2.3.2 evdev	API

2.3.3 HTML5	Gamepad	API

2.4 Setting	up	deadzones	and	calibration

2.4.4 Wine	deadzones

2.4.5 Xorg	deadzones

2.4.6 Joystick	API	deadzones

2.4.7 evdev	API	deadzones

2.4.8 Configuring	curves	and	responsiveness

2.5 Disable	joystick	from	controlling	mouse

2.6 Using	gamepad	to	send	keystrokes

2.6.9 Xorg	configuration	example

2.7 Remapping	of	Gamepad	buttons	and	more

3 Specific	devices

3.8 Dance	pads

3.9 Logitech	Thunderpad	Digital

3.10 Nintendo	Gamecube	Controller

3.11 Nintendo	Switch	Pro	Controller	and	Joy-Cons

3.11.10 Using	the	kernel	Nintendo	HID	driver

3.11.10.1 Using	joycond	userspace	daemon

3.11.10.2 Using	hid-nintendo	Pro	Controller	with	Steam	games	(without	joycond)

3.11.10.3 Using	hid-nintendo	Pro	Controller	with	Steam	games	(with	joycond)

3.11.10.4 Using	hid-nintendo	with	SDL2	games

3.11.10.5 Mimic	Xbox	360	controller

3.11.11 Dolphin	(GameCube	controller	emulation)

3.11.12 Steam

3.12 iPEGA-9017s	and	other	Bluetooth	gamepads

3.12.13 iPEGA-9068	and	9087

3.12.14 Defender	X7

3.13 Stadia	Controller

3.14 Steam	Controller

3.14.15 Wine

3.15 Xbox	360	controller

3.15.16 xboxdrv

3.15.16.6 Multiple	controllers

3.15.16.7 Mimic	Xbox	360	controller	with	other	controllers

3.15.17 Using	generic/clone	controllers

3.16 Xbox	Wireless	Controller	/	Xbox	One	Wireless	Controller

3.16.18 Connect	Xbox	Wireless	Controller	with	usb	cable

3.16.19 Connect	Xbox	Wireless	Controller	with	Bluetooth

3.16.19.8 Update	controller	firmware	via	Windows	10

3.16.19.9 xpadneo

3.16.20 Connect	Xbox	Wireless	Controller	with	Microsoft	Xbox	Wireless	Adapter

3.16.20.10 xow

3.16.20.11 xone

3.17 Logitech	Dual	Action

3.18 PlayStation	2	controller	via	USB	adapter

3.19 PlayStation	3	controller

3.19.21 Pairing	via	USB

3.19.22 Pairing	via	Bluetooth

3.20 PlayStation	4	controller

3.20.23 Pairing	via	USB

3.20.24 Pairing	via	Bluetooth

3.20.25 Button	mapping

3.20.26 Fix	Motion	control	conflict	(gamepad	will	not	work	on	some	applications)

3.20.27 Disable	touchpad	acting	as	mouse

3.21 Playstation	5	(Dualsense)	controller

3.22 PlayStation	3/4	controller

3.22.28 Connecting	via	Bluetooth

3.22.29 Using	generic/clone	controllers

4 Tips	and	Tricks

4.23 Gamepad	over	network

5 Troubleshooting

5.24 Device	permissions

5.25 Joystick	moving	mouse

5.26 Gamepad	is	not	working	in	FNA/SDL	based	games

5.27 Gamepad	is	not	recognized	by	all	programs

5.28 Vibration	does	not	work	in	certain	Windows	games

5.29 Steam	Controller

5.29.30 Steam	Controller	not	pairing

5.29.31 Steam	Controller	makes	a	game	crash	or	not	recognized

5.30 Xbox	One	and	360	controllers

5.30.32 Xbox	One	Wireless	Gamepad	detected	but	no	inputs	recognized

https://wiki.archlinux.org/title/Gamepad#Loading_the_modules_for_analogue_devices
https://wiki.archlinux.org/title/Gamepad#USB_gamepads
https://wiki.archlinux.org/title/Gamepad#Installation
https://wiki.archlinux.org/title/Gamepad#Joystick_API
https://wiki.archlinux.org/title/Gamepad#evdev_API
https://wiki.archlinux.org/title/Gamepad#HTML5_Gamepad_API
https://wiki.archlinux.org/title/Gamepad#Testing
https://wiki.archlinux.org/title/Gamepad#Wine_deadzones
https://wiki.archlinux.org/title/Gamepad#Xorg_deadzones
https://wiki.archlinux.org/title/Gamepad#Joystick_API_deadzones
https://wiki.archlinux.org/title/Gamepad#evdev_API_deadzones
https://wiki.archlinux.org/title/Gamepad#Configuring_curves_and_responsiveness
https://wiki.archlinux.org/title/Gamepad#Setting_up_deadzones_and_calibration
https://wiki.archlinux.org/title/Gamepad#Disable_joystick_from_controlling_mouse
https://wiki.archlinux.org/title/Gamepad#Xorg_configuration_example
https://wiki.archlinux.org/title/Gamepad#Using_gamepad_to_send_keystrokes
https://wiki.archlinux.org/title/Gamepad#Remapping_of_Gamepad_buttons_and_more
https://wiki.archlinux.org/title/Gamepad#Configuration
https://wiki.archlinux.org/title/Gamepad#Dance_pads
https://wiki.archlinux.org/title/Gamepad#Logitech_Thunderpad_Digital
https://wiki.archlinux.org/title/Gamepad#Nintendo_Gamecube_Controller
https://wiki.archlinux.org/title/Gamepad#Using_joycond_userspace_daemon
https://wiki.archlinux.org/title/Gamepad#Using_hid-nintendo_Pro_Controller_with_Steam_games_(without_joycond)
https://wiki.archlinux.org/title/Gamepad#Using_hid-nintendo_Pro_Controller_with_Steam_games_(with_joycond)
https://wiki.archlinux.org/title/Gamepad#Using_hid-nintendo_with_SDL2_games
https://wiki.archlinux.org/title/Gamepad#Mimic_Xbox_360_controller
https://wiki.archlinux.org/title/Gamepad#Using_the_kernel_Nintendo_HID_driver
https://wiki.archlinux.org/title/Gamepad#Dolphin_(GameCube_controller_emulation)
https://wiki.archlinux.org/title/Gamepad#Steam
https://wiki.archlinux.org/title/Gamepad#Nintendo_Switch_Pro_Controller_and_Joy-Cons
https://wiki.archlinux.org/title/Gamepad#iPEGA-9068_and_9087
https://wiki.archlinux.org/title/Gamepad#Defender_X7
https://wiki.archlinux.org/title/Gamepad#iPEGA-9017s_and_other_Bluetooth_gamepads
https://wiki.archlinux.org/title/Gamepad#Stadia_Controller
https://wiki.archlinux.org/title/Gamepad#Wine
https://wiki.archlinux.org/title/Gamepad#Steam_Controller
https://wiki.archlinux.org/title/Gamepad#Multiple_controllers
https://wiki.archlinux.org/title/Gamepad#Mimic_Xbox_360_controller_with_other_controllers
https://wiki.archlinux.org/title/Gamepad#xboxdrv
https://wiki.archlinux.org/title/Gamepad#Using_generic/clone_controllers
https://wiki.archlinux.org/title/Gamepad#Xbox_360_controller
https://wiki.archlinux.org/title/Gamepad#Connect_Xbox_Wireless_Controller_with_usb_cable
https://wiki.archlinux.org/title/Gamepad#Update_controller_firmware_via_Windows_10
https://wiki.archlinux.org/title/Gamepad#xpadneo
https://wiki.archlinux.org/title/Gamepad#Connect_Xbox_Wireless_Controller_with_Bluetooth
https://wiki.archlinux.org/title/Gamepad#xow
https://wiki.archlinux.org/title/Gamepad#xone
https://wiki.archlinux.org/title/Gamepad#Connect_Xbox_Wireless_Controller_with_Microsoft_Xbox_Wireless_Adapter
https://wiki.archlinux.org/title/Gamepad#Xbox_Wireless_Controller_/_Xbox_One_Wireless_Controller
https://wiki.archlinux.org/title/Gamepad#Logitech_Dual_Action
https://wiki.archlinux.org/title/Gamepad#PlayStation_2_controller_via_USB_adapter
https://wiki.archlinux.org/title/Gamepad#Pairing_via_USB
https://wiki.archlinux.org/title/Gamepad#Pairing_via_Bluetooth
https://wiki.archlinux.org/title/Gamepad#PlayStation_3_controller
https://wiki.archlinux.org/title/Gamepad#Pairing_via_USB_2
https://wiki.archlinux.org/title/Gamepad#Pairing_via_Bluetooth_2
https://wiki.archlinux.org/title/Gamepad#Button_mapping
https://wiki.archlinux.org/title/Gamepad#Fix_Motion_control_conflict_(gamepad_will_not_work_on_some_applications)
https://wiki.archlinux.org/title/Gamepad#Disable_touchpad_acting_as_mouse
https://wiki.archlinux.org/title/Gamepad#PlayStation_4_controller
https://wiki.archlinux.org/title/Gamepad#Playstation_5_(Dualsense)_controller
https://wiki.archlinux.org/title/Gamepad#Connecting_via_Bluetooth
https://wiki.archlinux.org/title/Gamepad#Using_generic/clone_controllers_2
https://wiki.archlinux.org/title/Gamepad#PlayStation_3/4_controller
https://wiki.archlinux.org/title/Gamepad#Specific_devices
https://wiki.archlinux.org/title/Gamepad#Gamepad_over_network
https://wiki.archlinux.org/title/Gamepad#Tips_and_Tricks
https://wiki.archlinux.org/title/Gamepad#Device_permissions
https://wiki.archlinux.org/title/Gamepad#Joystick_moving_mouse
https://wiki.archlinux.org/title/Gamepad#Gamepad_is_not_working_in_FNA/SDL_based_games
https://wiki.archlinux.org/title/Gamepad#Gamepad_is_not_recognized_by_all_programs
https://wiki.archlinux.org/title/Gamepad#Vibration_does_not_work_in_certain_Windows_games
https://wiki.archlinux.org/title/Gamepad#Steam_Controller_not_pairing
https://wiki.archlinux.org/title/Gamepad#Steam_Controller_makes_a_game_crash_or_not_recognized
https://wiki.archlinux.org/title/Gamepad#Steam_Controller_2
https://wiki.archlinux.org/title/Gamepad#Xbox_One_Wireless_Gamepad_detected_but_no_inputs_recognized
https://wiki.archlinux.org/title/Gamepad#Xbox_One_and_360_controllers
https://wiki.archlinux.org/title/Gamepad#PlayStation_4_Controllers
https://wiki.archlinux.org/title/Gamepad#Troubleshooting
https://en.wikipedia.org/wiki/Game_port
https://kernel.org/
https://docs.kernel.org/input/joydev/joystick.html
https://wiki.archlinux.org/title/Modprobe
https://wiki.archlinux.org/title/Gamepad#Xbox_360_controller
https://wiki.archlinux.org/title/Gamepad#Device_permissions
https://archlinux.org/packages/?name=pcsx2
https://archlinux.org/packages/?name=joyutils
https://aur.archlinux.org/packages/jstest-gtk-git/
https://aur.archlinux.org/packages/sdl2-jstest-git/
https://gamepad-tester.com/
https://wiki.winehq.org/UsefulRegistryKeys
https://aur.archlinux.org/packages/jstest-gtk-git/
https://wiki.archlinux.org/title/Udev
https://wiki.archlinux.org/title/Udev#Loading_new_rules
https://archlinux.org/packages/?name=linuxconsole
https://aur.archlinux.org/packages/qjoypad/
https://aur.archlinux.org/packages/antimicrox/
https://aur.archlinux.org/packages/sc-controller/
https://archlinux.org/packages/?name=steam
https://wiki.archlinux.org/title/Steam#Steam_Input
https://wiki.archlinux.org/title/Kodi
https://wiki.archlinux.org/title/Joy2key
https://archlinux.org/packages/?name=kodi
https://aur.archlinux.org/packages/joy2key/
https://wiki.archlinux.org/title/Install
https://aur.archlinux.org/packages/xf86-input-joystick/
https://wiki.archlinux.org/title/Gamepad#Mimic_Xbox_360_controller
https://github.com/Ryochan7/sc-controller
https://aur.archlinux.org/packages/sc-controller/
https://wiki.archlinux.org/title/Xboxdrv
https://xboxdrv.gitlab.io/
https://aur.archlinux.org/packages/xboxdrv/
https://wiki.archlinux.org/title/Steam
https://partner.steamgames.com/doc/features/steam_controller
https://wiki.archlinux.org/title/Steam#Steam_Input
https://store.steampowered.com/about/
https://archlinux.org/packages/?name=steam
https://aur.archlinux.org/packages/axisfix-git/
https://github.com/adiel-mittmann/dancepad
https://wiki.dolphin-emu.org/index.php?title=How_to_use_the_Official_GameCube_Controller_Adapter_for_Wii_U_in_Dolphin
https://wiki.archlinux.org/title/DKMS
https://aur.archlinux.org/packages/hid-nintendo-dkms/
https://aur.archlinux.org/packages/hid-nintendo-nso-dkms/
https://aur.archlinux.org/packages/joycond-git/
https://wiki.archlinux.org/title/Firejail
https://github.com/ValveSoftware/steam-for-linux/issues/6651
https://github.com/DanielOgorchock/joycond/commit/e31db38eeae14c63331ea8dae972e3873d7ff6fa
https://aur.archlinux.org/packages/controllermap/
https://wiki.archlinux.org/title/Gamepad#Mimic_Xbox_360_controller_with_other_controllers
https://github.com/shinyquagsire23/HID-Joy-Con-Whispering
https://wiki.archlinux.org/title/Add
https://aur.archlinux.org/packages/xboxdrv/
https://archlinux.org/packages/?name=bluez
https://archlinux.org/packages/?name=bluez-plugins
https://archlinux.org/packages/?name=bluez-utils
https://aur.archlinux.org/packages/xboxdrv/
https://aur.archlinux.org/packages/xboxdrv/
https://xboxdrv.gitlab.io/xboxdrv.html
https://aur.archlinux.org/packages/xboxdrv/
https://aur.archlinux.org/packages/xboxdrv/
https://lore.kernel.org/lkml/20180416122703.22306-1-rodrigorivascosta@gmail.com/
https://wiki.archlinux.org/title/Steam
https://wiki.archlinux.org/title/Steam
https://wiki.archlinux.org/title/Gamepad#Steam_Controller_not_pairing
https://aur.archlinux.org/packages/python-steamcontroller-git/
https://aur.archlinux.org/packages/sc-controller/
https://wiki.archlinux.org/title/Steam_runtime
https://aur.archlinux.org/packages/python-steamcontroller-git/
https://github.com/jacobmischka/ds4-in-wine/tree/master/xbox360cemu.v.3.0
https://aur.archlinux.org/packages/sc-controller/
https://github.com/ValveSoftware/steam-for-linux/issues/95#issuecomment-14009081
https://bbs.archlinux.org/viewtopic.php?id=156028
https://wiki.archlinux.org/title/TLP
https://linrunner.de/en/tlp/docs/tlp-configuration.html#usb
https://wiki.archlinux.org/title/Gamepad#xboxdrv
https://aur.archlinux.org/packages/xf86-input-joystick/
https://manpages.debian.org/latest/xserver-xorg-input-joystick/joystick.4.en.html
https://wiki.archlinux.org/title/Kernel_parameter
https://gitlab.com/xboxdrv/xboxdrv
https://aur.archlinux.org/packages/xboxdrv/
https://wiki.archlinux.org/title/Start
https://wiki.archlinux.org/title/Enable
https://wiki.archlinux.org/title/Restart
https://wiki.archlinux.org/title/Restart
https://archlinux.org/packages/?name=evtest
https://superuser.com/a/1380235
https://github.com/atar-axis/xpadneo/
https://aur.archlinux.org/packages/xpadneo-dkms-git/
https://github.com/atar-axis/xpadneo/issues/295
https://wiki.archlinux.org/title/QEMU
https://wiki.archlinux.org/title/VirtualBox
https://github.com/medusalix/xow
https://aur.archlinux.org/packages/xow-git/
https://github.com/medusalix/xone
https://archlinux.org/packages/?name=bluez
https://archlinux.org/packages/?name=bluez-utils
https://archlinux.org/packages/?name=bluez-plugins
https://wiki.archlinux.org/title/Bluetooth#Pairing
https://archlinux.org/packages/?name=bluez
https://archlinux.org/packages/?name=bluez-plugins
https://github.com/chrippa/ds4drv
https://aur.archlinux.org/packages/ds4drv/
https://github.com/yoyossef/ds360
https://wiki.archlinux.org/title/Gamepad#Joystick_moving_mouse
https://archlinux.org/packages/?name=bluez
https://archlinux.org/packages/?name=bluez-plugins
https://archlinux.org/packages/?name=bluez-utils
https://wiki.archlinux.org/title/Start
https://wiki.archlinux.org/title/Bluetooth
https://wiki.archlinux.org/title/Bluetooth
https://aur.archlinux.org/packages/bluez-ps3/
https://aur.archlinux.org/packages/bluez-plugins-ps3/
https://wiki.archlinux.org/title/USB/IP
https://aur.archlinux.org/packages/netstick-git/
https://wiki.archlinux.org/title/Udev#Allowing_regular_users_to_use_devices
https://docs.kernel.org/input/input_uapi.html
https://docs.kernel.org/hid/hidraw.html
https://wiki.archlinux.org/title/Systemd
https://wiki.archlinux.org/title/Steam
https://steamcommunity.com/app/353370/discussions/2/1735465524711324558/
https://wiki.archlinux.org/title/Dolphin_emulator
https://aur.archlinux.org/packages/game-devices-udev/
https://aur.archlinux.org/packages/xf86-input-joystick/
https://wiki.archlinux.org/title/Gamepad#Disable_joystick_from_controlling_mouse
https://github.com/flibitijibibo/FNA/commit/e55742cfe7e38b778a21ed8a12cb2f2081490d8d
https://github.com/gabomdq/SDL_GameControllerDB
https://libsdl.org/
https://aur.archlinux.org/packages/controllermap/
https://www.pcgamingwiki.com/wiki/Inside
https://wiki.archlinux.org/title/Kernel_modules#Manual_module_handling
https://bugs.archlinux.org/task/47330
https://wiki.archlinux.org/title/Gamepad#xboxdrv
https://wiki.archlinux.org/title/Gamepad#xpadneo

If	 using	 Dualshock	 4	 devices	 through	 bluetooth,	 install	 the	 ds4drv	 (https://aur.archlinux.org/packages/ds4drv/)AUR	 package	 and	 run	 it	 with	 the	 hidraw	 (
ds4drv	--hidraw)	backend	parameter.

Retrieved	from	"https://wiki.archlinux.org/index.php?title=Gamepad&oldid=749362"

This	page	was	last	edited	on	28	September	2022,	at	13:26.

Content	is	available	under	GNU	Free	Documentation	License	1.3	or	later	unless	otherwise	noted.

Privacy	policy
About	ArchWiki
Disclaimers

5.31 PlayStation	4	Controllers

https://aur.archlinux.org/packages/ds4drv/
https://wiki.archlinux.org/index.php?title=Gamepad&oldid=749362
https://www.gnu.org/copyleft/fdl.html
https://terms.archlinux.org/docs/privacy-policy/
https://wiki.archlinux.org/title/ArchWiki:About
https://wiki.archlinux.org/title/ArchWiki:General_disclaimer

