
Advanced Guides OAuth Client Implementation

On this page

OAuth Client Implementation
This is a guide to implementing atproto OAuth clients "The Hard Way."
Optimistically, most developers will have an SDK available for their programming
language which supports OAuth, and they can simply refer to SDK documentation.
This guide is intended for early adopters, SDK maintainers, or developers with
more sophisticated OAuth needs. It is agnostic to whether developers are building
clients to work the the app.bsky microblogging Lexicons, or implementing novel
application Lexicons.

The atproto OAuth specification is the authoritative document on how to use OAuth
with atproto. If there are discrepancies between this document and the
specification, defer to the specification. This document skips over a few details
and uses more atproto-specific terminology, but readers are still expected to be
familiar with OAuth 2 concepts, terminology, and standards.

This guide is focused on apps which use OAuth to make authorized ("authz")
requests to user PDS servers, for example to write records to atproto
repositories, or make proxied API requests to other services. It is also possible
to use the atproto identity system only for authentication ("authn"), similar to
OpenID/OIDC.

Types of Clients
This guide covers three simplified types of OAuth client:

Web Services: traditional web apps which involve a server/backend running code
to make actual PDS requests and talk with a database. There is some form of
auth between browsers and the web service, such as cookie sessions; this auth
layer is distinct from OAuth. The server may return complete HTML pages, or
there may be an API between code running in the browser and code running on
the server. Integrations with and extensions of existing web services also
fall under this category.

Bluesky Search K

https://docs.bsky.app/
https://docs.bsky.app/docs/category/advanced-guides
https://atproto.com/specs/auth
https://docs.bsky.app/

Browser Apps: "single-page" applications which run in a web browser,
implemented using web platform APIs and JavaScript or WASM runtimes. The
server-side ("backend") component is minimal, or even just static file
hosting.

Mobile and Desktop Apps: what they sound like: "native" apps that run on
mobile operating systems (smartphones, tablets, etc), or desktop applications

Web Service Browser App
Mobile or Desktop

App

OAuth 2
Client Type

"Confidential" "Public" "Public"

client_id ✅ URL to metadata ✅ URL to metadata ✅ URL to metadata

client_secret ❌ ❌ ❌

OAuth 2 Grant
Types

authorization_code,
refresh_token

authorization_code,
refresh_token

authorization_code,
refresh_token

Client
Metadata

✅ Public Web ✅ Public Web ✅ Public Web

Client
Metadata JWK

✅ Public Web ❌ ❌

PKCE ✅ ✅ ✅

PAR ✅ ✅ ✅

DPoP ✅ ✅ ✅

Handle
Resolution

DNS and HTTPS
DNS-over-HTTPS and
HTTPS or via helper
service

DNS and HTTPS or
via helper service

DID
Resolution

HTTPS HTTPS HTTPS

Recommended
Client Secret

Environment
Variable, Secrets

❌ ❌

Key Storage Manager, Hardware
Enclave

Recommended
DPoP Key
Storage

Secure Database
non-exportable
CryptoKeyPair in
IndexedDB

Secure File or
Database, Hardware
Enclave

Recommended
Token Storage

Secure Database
IndexedDB or
LocalStorage

Secure File or
Database

SSRF + DoS
Hardening

✅ ✅ ✅

Authorization
UI

Browser Redirect Browser Redirect WebView/Browser

redirect_uri App URL (HTTPS) App URL (HTTPS)

App Link (Android),
Universal Link
(iOS), or Client-
specific URI scheme

✅: Required

❌: Forbidden

PKCE: Proof Key for Code Exchange (RFC 7636)

PAR: Pushed Authorization Requests (RFC 9126)

DPoP: Demonstrating Proof of Possession (RFC 9449)

Client Metadata: OAuth Client ID Metadata Document (draft-parecki-oauth-client-id-
metadata-document)

Other architectures are possible. For example, a mobile app which uses a web
service to mediate client authentication and refresh tokens, or a web service
could act as a "Public" client. This guide focuses on the most common use-cases.

OAuth is not currently recommended as an auth solution for for "headless"
clients, such as command-line tools or bots.

https://datatracker.ietf.org/doc/html/rfc7636
https://datatracker.ietf.org/doc/html/rfc9126
https://datatracker.ietf.org/doc/html/rfc9449
https://datatracker.ietf.org/doc/draft-parecki-oauth-client-id-metadata-document/
https://datatracker.ietf.org/doc/draft-parecki-oauth-client-id-metadata-document/

Components
OAuth 2 is a framework for designing authentication systems, not a single
standard or API to implement. This section describes the standards used in the
specific atproto "profile" of OAuth, and components that a typical client will
need to implement.

Client and Server Metadata

The atproto network is decentralized: there are many independent PDS instances
and many client apps. OAuth needs to facilitate any client app being authorized
against any PDS instance, without prior registration or coordination between
users, developers, or service operators. The atproto OAuth profile makes this
possible by combining public client metadata and public authorization server
metadata.

All atproto OAuth clients must publish a client metadata JSON document on the
public web. The client_id, which globally identifies the client software
instance, is the fully-qualified https:// URL at which this JSON document can be
accessed.

"Confidential" clients (Web Services) include public cryptographic keys in their
client metadata which can be used during an authentication request to verify the
client. It is important that such clients be able to remove the public keys from
their client metadata in the event that the corresponding secret key is
compromised or leaked.

Client metadata fields include:

client_id (string, required): must exactly match the full URL used to fetch
the client metadata JSON itself

application_type (string, optional): must be one of web (default) or native

grant_types (array of strings, required): usually authorization_code and
refresh_token

scope (string, sub-strings space-separated, required): any scope values which
might be requested by this client are declared here. The atproto scope is
required.

response_types (array of strings, required): usually just code.

redirect_uris (array of strings, required): the fully-qualified
redirect/callback URL is declared here.

dpop_bound_access_tokens (boolean, required): must be true (DPoP is mandatory)

token_endpoint_auth_method (string, optional): confidential clients must set
this to private_key_jwt.

token_endpoint_auth_signing_alg (string, optional): confidential client set
this to ES256

jwks (object with array of JWKs, optional) or jwks_uri (string URL,
optional): confidential clients must supply at least one public key in JWK
format for use with JWT client authentication.

And some optional (but recommended) metadata fields:

client_name (string, optional): human-readable name of the client

client_uri (string, optional): not to be confused with client_id, this is a
homepage URL for the client. If provided, the client_uri must have the same
hostname as client_id.

logo_uri (string, optional): HTTP URL to client logo

tos_uri (string, optional): HTTP URL to human-readable terms of service
("ToS") for the client

policy_uri (string, optional): HTTP URL to human-readable privacy policy for
the client

Here is an example Browser App client metadata file, that would need to be hosted
at https://app.example.com/oauth/client-metadata.json (served with Content-Type
application/json and HTTP status 200, no redirects):

PDS instances (and any supporting servers) also publish public JSON documents
containing authorization server metadata.

{
 "client_id": "https://app.example.com/oauth/client-metadata.json",
 "application_type": "web",
 "client_name": "Example Browser App",
 "client_uri": "https://app.example.com",
 "dpop_bound_access_tokens": true,
 "grant_types": ["authorization_code", "refresh_token"],
 "redirect_uris": ["https://app.example.com/oauth/callback"],
 "response_types": ["code"],
 "scope": "atproto transition:generic",
 "token_endpoint_auth_method": "none"
}

https://app.example.com/oauth/client-metadata.json

In OAuth terminology, the PDS is a "Resource Server" which authenticated requests
are made to. The PDS publishes a "protected resource metadata" file at the well-
known HTTPS path /.well-known/oauth-protected-resource. This contains a field
authorization_servers with an array of URLs indicating the "Authorization Server"
location (the origin or "issuer"). In OAuth terminology, the "Authorization
Server" is responsible for authenticating the user and providing authorization
tokens. The authorization server might be the PDS itself (same origin), or it
might be separate. For example, an "entryway" service in large multi-PDS
deployments, or an delegated authorization provider. The authorization server
metadata endpoint is /.well-known/oauth-authorization-server. The response includes
the following fields relevant to clients:

issuer (string, required): the "origin" URL of the Authorization Server. Must
be a valid URL, with https scheme, matching the origin of URL used to fetch
this document. There must be no path segments.

pushed_authorization_request_endpoint (string, required): URL for Pushed
Authentication Requests (PAR)

authorization_endpoint (string, required): URL for authorization interface

token_endpoint (string, required): URL for token requests

scopes_supported (space-separated string, required): must include atproto, to
confirm that this server supports the atproto profile of OAuth. If supporting
the transitional grants, they should be included here as well.

There is a longer list of fields that clients may want to confirm/validate in the
atproto OAuth specification.

Fetches of any of these metadata documents should be made using a hardened HTTP
client, as described below.

PKCE

All clients must implement PKCE. In practical terms, this means:

creating a unique random value at the start of the session

including a "challenge code" derived from this value during the Authentication
Request

verifying the value during the first token request

The "code challenge" method used is S256, which is the most popular PKCE
challenge method. The transform involves a relatively simple SHA-256 hash and
base64url string encoding. It can be implemented from scratch if needed, or

sometimes OAuth libraries provide a helpers. The code value is a set of 32 to 96
random bytes, encoded in base64url (resulting in 43 or more string-encoded
characters).

For example, given a randomly generated "verifier" token, whose base64url
representation is: dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

The S256 code challenge is: E9Melhoa2OwvFrEMTJguCHaoeK1t8URWbuGJSstw-cM

PAR

Pushed Authentication Requests (PAR) are required for all client types. This
means that the client makes an HTTP POST request to the PDS/entryway PAR endpoint
with all the authentication requests parameters as an HTTP form-encoded body, and
receives a request token in response. The client then redirects the browser to
the authorization endpoint with the token (and client_id) as a query parameter,
instead of passing a long list of request fields as query parameters.

The PAR request is submitted to the pushed_authorization_request_endpoint (from
server metadata), and must use Content-Type: application/x-www-form-urlencoded.

A successful response body will be a JSON object including the field request_uri
(not to be confused with redirect_uri).

DPoP

Clients must use DPoP to bind auth tokens to a specific client device or server.
DPoP nonces, provided by the auth server, must be used.

Clients generate a new DPoP cryptographic keypair for each auth session, and
retain the keypair for the duration of the auth session. DPoP keypairs should
never be exported or moved between devices, and should never be reused across
users or between sessions for the same user. Client must start DPoP at the
initial authorization request (PAR).

ES256 (NIST "P-256") is the cryptographic algorithm/curve which must be supported
by all clients and auth servers. Browser Apps should use the WebCrypto API to
generate non-exportable keypairs, which can be stored in IndexedDB to persist
across browser sessions (not to be confused with OAuth sessions). Other clients
may find implementations of this cryptographic system in generic JWT libraries,
or in generic cryptographic libraries for their language or environment. DPoP is

also increasingly required as part of OAuth profiles and will hopefully be
supported by generic OAuth libraries.

DPoP involves setting a HTTP Header (DPoP) on every token request and every
authorized request to the PDS. The header value is a self-signed JWT. There is a
unique random field (jti) in the body, and JWTs are generated and signed uniquely
for every request (DPoP proof JWTs can not be reused between requests).

The server returns the current DPoP nonce in the DPoP-Nonce HTTP header in every
response. Nonce values may be shared across all users and sessions on the server,
or may be scoped to individual users and sessions. Nonces may be shared between
access token use (PDS requests) and authorization server requests (PDS or
entryway), but they may be distinct servers, so clients should always track DPoP
nonces separately for the two uses. Nonces change periodically, with a rotation
period chosen by the server. Clients should persist the DPoP nonce for each
session, and update the persisted value when a response is received with a
different value.

If the nonce is missing (because it isn't known yet), or has become outdated, the
server will return an HTTP 401 ("Unauthorized") response, indicating the error
type as use_dpop_nonce and including the current nonce value in the DPoP-Nonce
header. The Authorization Server (entryway or PDS, when doing PAR or token
requests) indicates the error type with a JSON object body with the error field
set to use_dpop_nonce. The Resource Server (PDS, when making authorized requests)
indicates the error type using the WWW-Authenticate header with an error value
set to use_dpop_nonce. For example:

For other server type, the client can retry the request with a new DPoP proof JWT
including the nonce value. The client discovers the initial nonce for each server
by doing this request/error/retry cycle at least once. Servers will usually
accept stale/old nonce values for a short time window to reduce errors-and-
retries caused by clients making multiple concurrent authorized requests. Ideally
the request/error/retry cycle does not need to happen again, though clients
should be ready for it at any time (eg, if the nonce has rotated multiple times
between requests).

When making DPoP requests to token endpoint:

HTTP/1.1 401 Unauthorized
WWW-Authenticate: DPoP error="use_dpop_nonce", error_description="Resource serve
DPoP-Nonce: eyJ7S_zG.eyJH0-Z.HX4w-7v

JWT header fields must be:
typ: dpop+jwt

alg: ES256

jwk: DPoP public key in JSON Web Key (JWK) string format

JWT fields should include:
jti: random token string (unique per request)

htm: HTTP method (eg, "POST" or "GET")

htu: HTTP request URL

iat: current UNIX time (integer seconds)

exp: optional, expiration UNIX time (integer seconds) in the near future

nonce: server-provided nonce string. If nonce isn’t known yet, don’t
include this field, then receive the nonce via header in the error response

JWT string in the DPoP HTTP header

When making DPoP requests to PDS endpoints:

same JWT header fields as above

same JWT body fields as above, plus:
ath: hash of the access token, using the same mechanism as the S256 PKCE
challenge hash

JWT string in the DPoP HTTP header

access token in the Authorization HTTP header, with type DPoP (so header looks
like Authorization: DPoP <token>)

NOTE

An earlier version of this guide indicated that iss should be included in the
JWT body for DPoP requests to PDS endpoints, with the value being the
authorization server issuer. Currently clients SHOULD NOT include this value,
or any value, in the iss field for these JWTs.

Confidential Client Authentication

Confidential clients declare their authentication keypair by including the public
key in their client metadata (in the jwks or jwks_uri fields), and then
authenticate by including a JWT bearer assertion in requests to the authorization
server. They are required for the authorization request (PAR) and all token
requests (both the initial token request and any subsequent refresh requests).

The client assertion type is urn:ietf:params:oauth:client-assertion-type:jwt-
bearer.

When constructing an assertion JWT:

assertion JWTs must not be reused: they include a random token, and must be
generated and signed on every relevant request

the ES256 cryptographic system must be supported by all clients and auth
servers

JWT header fields include:
alg: ES256

kid: string indicating which of the declared keys (in JWKS) is being used

JWT body fields include:
iss: the client_id

sub: the client_id

aud: the authorization server issuer URL (origin)

jti: randomly generated token string

iat: current UNIX time (integer seconds)

Token Management

Long-lived clients will need to manage access token lifetimes and periodic
refresh token requests. This is functionality that is sometimes implemented in
generic OAuth libraries. Care must be taken to ensure that concurrent resource
requests don't result in concurrent token refresh requests, which could result in
errors and loss of the overall auth session (requiring re-authorization).

Access and refresh tokens should never be copied or shared across end devices.
They should not be stored in session cookies.

Hardened HTTP Client (SSRF)

Clients need to make a several HTTP network requests using URLs provided by
unknown parties. These raise a number of security concerns, including network
requests to local or private IP addresses (SSRF), and trivial Denial of Service
attacks (large response bodies, slow responses, etc).

A good way to mitigate these issues is to use or implement a hardened HTTP
client. It should set appropriate timeouts and resource limits, validate URLs,

and check that resolve domain names don't point to protected or local IP
addresses.

Authorization Flow

Account or Server Identifier

Clients can start an auth flow in one of two ways:

starting with an atproto account identifier: handle or DID

starting with a server URL or hostname (PDS or entryway)

One use case for starting with a server URL instead of an account identifier is
when the user does not remember their full account handle or only knows their
account email. Another is for authentication when a user’s handle is broken. The
user still needs to know their hosting provider in these situations.

When starting with an account identifier, the client must resolve the atproto
identity to a DID document. If starting with a handle, it is critical (mandatory)
to bidirectionally verify the handle by checking that the DID document claims the
handle (see atproto Handle specification). All handle resolution techniques and
all atproto-blessed DID methods must be supported to ensure interoperability with
all accounts.

In some client environments, it may be difficult to resolve all identity types.
For example, handle resolution may involve DNS TXT queries, which are not
directly supported from browser apps. Client implementations might use
alternative techniques (such as DNS-over-HTTPS) or could make use of a supporting
web service to resolve identities.

If the auth flow instead starts with a server (hostname or URL), the client will
first attempt to fetch Resource Server metadata (and resolve to Authorization
Server if found) and then attempt to fetch Authorization Server metadata. If
either is successful, the client will end up with an identified Authorization
Server. The Authorization Request and flow will proceed without a login_hint or
account identifier being bound to the session, but the Authorization Server
issuer will be bound to the session.

Either way, by the end of the authorization flow it will be important to resolve
the DID of the authorized account and verify that it is consistent with the

authorization server being talked to, and that the server granted access tokens
for the expected account.

Authorization Request

The client next makes a Pushed Authorization Request via HTTP POST request to the
pushed_authorization_request_endpoint. Notable details include:

a randomly generated state token is required, and will be used to reference
this authorization request with the subsequent response callback

PKCE is required, so a secret value is generated and stored, and a derived
challenge is included in the request

scopes value is included here, and must include atproto

for confidential clients, a client_assertion is included, with type jwt-
bearer, signed using the secret client authentication key

the client generates a new DPoP key for the user/session and uses it starting
with the PAR request

if the auth flow started with an account identifier, the client should pass
that starting identifier via the login_hint field

The initial response will be a DPoP error, with the server nonce included in an
HTTP header. The client includes this nonce in a new DPoP JWT and retries the
request.

The Authorization Server will receive the PAR request and use the client_id URL
to resolve the client metadata document. If all goes well, the server returns a
request_uri token to the client.

The client persists information about the session to some form of storage. This
might be a database (for a web service backend) or web platform storage like
IndexedDB (for a browser app).

Then the client redirects the user via browser to the Authorization Server’s auth
endpoint, including the request_uri as a URL parameter.

The user will authenticate with the server and approve the authorization request,
using the "authorization interface" on the PDS/entryway.

Callback and Access Token Request

The server redirects the user back to the redirect_uri (from the authorization
interface), with some query parameters included:

state: matching state included in the authorization request

iss: the URL (origin) of the authorization server

code: the authorization code which can be used for an initial token request

The client can now make an initial token request to the authorization server
token endpoint. It includes the code and PKCE code verification. Confidential
clients must also include a client assertion (JWT signed with the client
keypair).

This request uses DPoP, using the authorization server nonce saved after the
earlier authorization request.

The server will return a JSON object with a set of tokens (access_token and
refresh_token). It will also include a sub field containing the atproto account
DID, and authorized scope.

It is critical for the client to verify that the sub DID matches the account
expected. If the entire auth flow started with an account identifier (handle or
DID), this value is compared against the original DID. If the auth flow started
with a PDS/entryway URL, the client should now resolve the DID document, and
verify that the declared PDS instances is consistent with the authorization
server.

Authentication-only clients can end the flow here.

PDS Requests and Token Refresh

Using the access token, clients are now able to make authorized requests to the
PDS. They must use DPoP for all such requests, with a separate server-provided
nonce, along with the access token.

Tokens (both access and refresh) will need to be periodically "refreshed" by
subsequent request to the Authorization Server token endpoint.

Edit this page

Previous Next

https://github.com/bluesky-social/bsky-docs/tree/main/docs/advanced-guides/oauth-client.md
https://github.com/bluesky-social/bsky-docs/tree/main/docs/advanced-guides/oauth-client.md
https://docs.bsky.app/docs/advanced-guides/intent-links
https://docs.bsky.app/docs/advanced-guides/api-directory

« Action Intent Links API Hosts and Auth »

Docs

Starter Templates

AT Protocol

Community

Bluesky

Twitter

Community-run Discord

Mailing List

More

Blog

GitHub Discussions

GitHub

Copyright © 2025 Bluesky, PBC.

https://docs.bsky.app/docs/advanced-guides/intent-links
https://docs.bsky.app/docs/advanced-guides/api-directory
https://docs.bsky.app/docs/category/starter-templates
https://atproto.com/
https://bsky.app/profile/bsky.app
https://twitter.com/bluesky
https://discord.gg/3srmDsHSZJ
https://docs.bsky.app/docs/support/mailing-list
https://docs.bsky.app/blog
https://github.com/bluesky-social/atproto/discussions
https://github.com/bluesky-social

