
Tyblog
All the posts unfit for blogging

blog.tjll.net

About ​ Blog ​ FAQ ​ Work ​ Code ​ Lab

« systemd has been a complete, utter, unmitigated

success
8 July, 2025 | 1,782 words | 7 minute read time

The year is 2013 and I am hopping mad.

systemd is replacing my plaintext logs with a
binary format and pumping steroids into init
and it is laughing at me. The unix philosophy
cries out: is this the end of Linux (or, as many
are calling it, GNU plus Linux)?

The year is 2025 and I’m here to repent. Not
only is systemd a worthy successor to
traditional init , but I think that it deserves a
defense for what it’s done for the landscape –
especially given the hostile reception it initially
received (and somehow continues to receive?
for some reason?). No software is perfect –
except for TempleOS – but I think that systemd
has largely been a success story and proven
many dire forecasts wrong (including my own).
I was wrong!

» The init Paleolithic

I hope that I don't need to whine about why the old status quo wasn't great – init
scripts of varying quality with janky dependencies and wildly varying semantics
were frustrating. It's sort of wild to me that I was working as a full-time software
engineer during an era in which we were still writing bespoke shell scripts to
orchestrate process management. "Lost" or unmanaged processes, the weirdness
of S99 -type directories for dependency ordering, and different interfaces into
/etc/init.d scripts were all real problems.

During the LINUX INIT WARS, you could probably
write an upstart, s6, or OpenRC init script that didn't
have too many problems. But even then you're
supporting a variety of service management
configuration formats with slightly differing
behaviors. I wrote services for all of these different
init systems! And the experience wasn't super!

Many of the deficiencies of traditional service
management are more obvious in hindsight.
Whereas bare-bones init was mostly about
handling and/or reaping orphaned processes,
entrusting a systemd-based PID 1 is also big for
sandboxing and dependency management. We
haven't even talked about timers, sockets, or
mounts, either.

» I Deprecated Your Mom

We don't need to re-tread in great detail the history of how we arrived here. But
the how is part of the reason I think systemd worked out in the end.

Consider that the two primary ways that older init systems managed processes –
either foregrounded or forked – were (and are!) fully supported modes. Modern
systemd provides for more nuanced "I'm ready" signaling apart from "is the
process alive" (via Type=notify), but this kind of backward compatability really
helped bridge the legacy gap. The systemd authors even wrote generator code to
help migrate old services.

I don't think the ini-style configuration format is a panacea (I like Dhall), but that's
another olive branch from systemd authors to system administrators: it doesn't
require a turing-complete configuration format or domain-specific language. You
can generally understand what this means when you read it and how to change it:

[Service]
Type=forking

Defaults matter and configuration languages matter, too. I appreciate that
systemd chose one that is obvious.

I can cite other examples but the point I want to make is that systemd deliberately
chose

backward compatability,
simple configuration paradigms,
and to proactively support and help folks migrate.

Not every open source project chooses to take explicit steps to support old paths
on the road to deprecation. Lennart, you sweetheart.

» Trust the Process

I don't just think that systemd is our newer, cooler Dad now that does previously-
annoying things better, but that systemd also brought us good, brand new things.

» Won't Somebody Think of the Plaintext?

journald is here. Past Me hated it, too. The primary
complaint with journald is that its journal files aren't
in plaintext. Do I miss that? A little, yeah. I'm sort of a
Linux boomer at heart and like to use awk for
everything.

However, I really like having one place to send
stdout and stderr ! Have you ever leveraged

custom fields when writing logs to the journal
natively? I attach NOTIFY_SLACK=1 to some of my
services and listen to my lab's log stream for these
events and forward them along to a Slack channel to
see logs I want more easily, it's great!

Moreover, delegating the responsibility to journald is
also convenient from a rotation and disk space
perspective. With an awareness of filesystem space, I essentially never have to
make rough guesses about rotation frequency any more, either . Are you aware
that part of the reason your journal files are in a binary format rather than
plaintext because journald is compressing them transparently? That default choice
is probably saving exabytes of space in aggregate across the entire computing
space.

We can still live-tail logs, we can still forward log streams to different servers, and
services can now reliably trust that their output will be captured during runtime.
These are all just net Good Things.

» Time-r Out

I can still remember debugging cron scripts at my
university job: was $PATH wrong? Should I
echo $USER somewhere? Why am I emitting

output to the mail spool by default???

If there's a candidate for "most legible over its
predecessor", it might be the systemd timer
system. Every Linux person feels some smug pride
knowing what 0 0 * * * means just by seeing a

sequence of asterisks, but we all know OnCalendar=daily is easier to understand.
Is OnCalendar=minutely a word? Not according to the grammar police, but you
can probably infer what minutely means!

I could fill a blog post with things I love about systemd timers, so here's a list
instead:

Persistent=true is a great tool to ensure you don't miss timer executions.

systemctl list-timers is an excellent way to see everything scheduled on a
machine.
The scheduling flexibility of OnCalendar= and OnActiveSec= are both
powerful and easy to understand.

» Socket Activation

This alone is a hugely different and powerful way to optimize a system.
nix-daemon leverages this to great effect by "lazily" running only when you need

it: the daemon will stop when you aren't building anything, but as soon as you ask
for it, nix-daemon.socket will start nix-daemon.service . That's a great feature!

True to form, systemd even provides the systemd-socket-proxyd executable to
bridge the gap for services that may not speak the native protocol yet. I leverate
this trick with heavy-handed daemons like Minecraft servers to great effect: I don't
need to alter the original daemon at all, but systemd-socket-proxyd lets me
leverage socket activation to run it on-demand anyway.

» A Fistful of Units

When you glue together the various unit types -
service , path , timer , mount , socket , and so

on - you can almost create a state machine out of
your system. I've done this on NixOS and it's a
powerful way to model interdependent service
management.

Expressing system configuration like mounts as mount units lets you correctly
order a daemon that needs a network mount to function. Triggering a service to
restart when a file changes is easy with a path unit. The variety of options
available to a service unit are mind-boggling and address almost every need you
can think of. Seriously – did you know that ConditionVirtualization= can be
used to run a unit depending on whether you're in AWS or Docker, for example?
That's crazy.

» Security

If you've written a nontrivial number of .service units, then you know the
options available for hardening services are vast in number. There are already
many great blog posts about what they are; I won't go into that there.

Personally, my problem is remembering what those options are. Did you know
that systemd built tools to help with that, too? Each one of these explains some
operational security benefit you can wrap a daemon with and in most cases they're
each easy to add and don't break functionality. These are a great way to take
advantage of features like capabilities easily.

$ systemd-analyze security polkit.service

 NAME DESCRI
✓ SystemCallFilter=~@swap System
✗ SystemCallFilter=~@resources System
✓ SystemCallFilter=~@reboot System
✓ SystemCallFilter=~@raw-io System
✗ SystemCallFilter=~@privileged System
✓ SystemCallFilter=~@obsolete System
✓ SystemCallFilter=~@mount System
✓ SystemCallFilter=~@module System
✓ SystemCallFilter=~@debug System
✓ SystemCallFilter=~@cpu-emulation System
✓ SystemCallFilter=~@clock System
✓ RemoveIPC= Servic
✗ RootDirectory=/RootImage= Servic
✓ User=/DynamicUser= Servic
✓ RestrictRealtime= Servic
✓ CapabilityBoundingSet=~CAP_SYS_TIME Servic
✓ NoNewPrivileges= Servic
✓ AmbientCapabilities= Servic
✓ CapabilityBoundingSet=~CAP_BPF Servic
✓ SystemCallArchitectures= Servic
✗ CapabilityBoundingSet=~CAP_SET(UID|GID|PCAP) Servic
✗ RestrictAddressFamilies=~AF_UNIX Servic
✓ ProtectSystem= Servic
✓ SupplementaryGroups= Servic
✓ CapabilityBoundingSet=~CAP_SYS_RAWIO Servic
✓ CapabilityBoundingSet=~CAP_SYS_PTRACE Servic
✓ CapabilityBoundingSet=~CAP_SYS_(NICE|RESOURCE) Servic
✓ CapabilityBoundingSet=~CAP_NET_ADMIN Servic
✓ CapabilityBoundingSet=~CAP_NET_(BIND_SERVICE|BROADCAST|RAW) Servic
✓ CapabilityBoundingSet=~CAP_AUDIT_* Servic
✓ CapabilityBoundingSet=~CAP_SYS_ADMIN Servic
✓ PrivateNetwork= Servic
✓ PrivateTmp= Servic
✓ CapabilityBoundingSet=~CAP_SYSLOG Servic
✓ ProtectHome= Servic
✓ PrivateDevices= Servic
✗ ProtectProc= Servic
✗ ProcSubset= Servic
✗ PrivateUsers= Servic
✗ DeviceAllow= Servic
✓ KeyringMode= Servic
✓ Delegate= Servic
✗ IPAddressDeny= Servic
✓ NotifyAccess= Servic
✓ ProtectClock= Servic
✓ CapabilityBoundingSet=~CAP_SYS_PACCT Servic
✓ CapabilityBoundingSet=~CAP_KILL Servic
✓ ProtectKernelLogs= Servic
✓ CapabilityBoundingSet=~CAP_WAKE_ALARM Servic
✓ CapabilityBoundingSet=~CAP_(DAC_*|FOWNER|IPC_OWNER) Servic
✓ ProtectControlGroups= Servic
✓ CapabilityBoundingSet=~CAP_LINUX_IMMUTABLE Servic
✓ CapabilityBoundingSet=~CAP_IPC_LOCK Servic
✓ ProtectKernelModules= Servic
✓ CapabilityBoundingSet=~CAP_SYS_MODULE Servic
✓ CapabilityBoundingSet=~CAP_SYS_TTY_CONFIG Servic
✓ CapabilityBoundingSet=~CAP_SYS_BOOT Servic
✓ CapabilityBoundingSet=~CAP_SYS_CHROOT Servic
✓ PrivateMounts= Servic
✓ CapabilityBoundingSet=~CAP_BLOCK_SUSPEND Servic
✓ MemoryDenyWriteExecute= Servic
✓ RestrictNamespaces=~user Servic
✓ RestrictNamespaces=~pid Servic
✓ RestrictNamespaces=~net Servic
✓ RestrictNamespaces=~uts Servic
✓ RestrictNamespaces=~mnt Servic
✓ CapabilityBoundingSet=~CAP_LEASE Servic
✓ CapabilityBoundingSet=~CAP_MKNOD Servic
✓ RestrictNamespaces=~cgroup Servic
✓ RestrictNamespaces=~ipc Servic
✓ ProtectHostname= Servic
✓ CapabilityBoundingSet=~CAP_(CHOWN|FSETID|SETFCAP) Servic
✓ LockPersonality= Servic
✓ ProtectKernelTunables= Servic
✓ RestrictAddressFamilies=~AF_PACKET Servic
✓ RestrictAddressFamilies=~AF_NETLINK Servic
✓ RestrictAddressFamilies=~… Servic
✓ RestrictAddressFamilies=~AF_(INET|INET6) Servic
✓ CapabilityBoundingSet=~CAP_MAC_* Servic
✓ RestrictSUIDSGID= SUID/S
✓ UMask= Files

→ Overall exposure level for polkit.service: 1.2 OK :-)

» Hater Sauce and The Terror From The Year 2000

Part of the reason I wrote this piece is that I keep
stumbling onto threads like this:

Oh my god. Look, I respect that stvpidcvnt111111 has a right to their opinion,
but we can't let rhetoric with the intellectual weight of a mediocre fart waft into
spaces as critical as computing infrastructure. Get your stench outta here.

I'm not going to argue with straw men here, but wait, I am actually:

Have you considered that just "reaping old process IDs" wasn't enough
responsibility for an init daemon on a secure, robust system? That maybe it should
be protecting other parts of the system and tracking the liveness of a desired
service?

If I see an argument like this then I can only assume the interlocutor doesn't do
software engineering. Any sort of consistent experience using systemctl or
journalctl will tell you otherwise. I've never even heard of systemd failing at its

core responsibilities (starting, stopping, and managing daemons).

For everything that modern systemd does, I'm shocked that there aren't more
vulnerabilities (and yes, I'm aware of the CVEs that systemd does have). I have no
hard numbers supporting this claim, but I do wonder what the delta is between
"exploits due to systemd itself" against "exploits blocked by the service sandboxing
that systemd provides" is. The ease of dropping an executable in an unprivileged
environment is a great feature. The industry as a whole is almost assuredly safer
with the accessibility to process sandboxing that systemd brought down to an
easier level.

Yeah, systemd-boot and systemd-networkd do different things. Frankly, my life
as an operator has been significantly better thanks to the quality of software that
comes out of systemd-* based projects and they're all configured in similar ways,
too. I've integrated at a low level with systemd APIs as well, so it's not as if this
scary-sounding sprawl is closed, either. The APIs are there! You can use them!

I've consistently found myself preferring to use the systemd based alternatives like
systemd-resolved and systemd-networkd when given the option because they

end up being easier to configure and use.

This is absolutely true. I can't believe we, the SYSTEMD GLOBALIST ILLUMINATI,
have been exposed.

Footnotes:

The systemd wars of the tenties
were harsh and casualties were
many

/etc/init.d, uh, finds a way

Systemd 🗏

Logged logs logging loggily

1

shell 🗏

i used to think that systemd was made the default
and adopted by most distros because of its ease of
use and the fact it supplied a whole bunch of things
in one suite and i see where the appeal is in that but
after switching to artix openrc, im just lost on why
they decided to use systemd when openrc is objectively better when it comes to
being an init system and for managing services, and all the other components of
systemd suite can just be replaced, like why would they do this?

systemd does too much.

systemd does a bad job

systemd is too bloated and tries to do too much

red hat is trying to control the linux ecosystem with systemd

https://blog.tjll.net/
https://blog.tjll.net/about/
https://blog.tjll.net/blog/
https://blog.tjll.net/faq/
https://blog.tjll.net/work/
https://github.com/tylerjl
https://blog.tjll.net/lab/
https://blog.tjll.net/human-resources-misalignment/
https://en.wikipedia.org/wiki/TempleOS
https://www.freedesktop.org/software/systemd/man/latest/systemd-sysv-generator.html
https://www.freedesktop.org/software/systemd/man/latest/systemd-sysv-generator.html
https://dhall-lang.org/
https://mattinouye.com/defaults-matter
https://old.reddit.com/r/artixlinux/comments/1lc382o/why_is_systemd_the_default/

« The Human Resources Alignment
Problem

Start Discussion 0 replies

ty@tjll.net
Copyright © 2012-2025

I know logrotate can do very intelligent things. But the configuration steps for
journald is "print to stdout, done".

1

https://blog.tjll.net/human-resources-misalignment/
https://blog.tjll.net/human-resources-misalignment/
https://forum.tjll.net/t/tyblog-systemd-has-been-a-complete-utter-unmitigated-success/617

