
What do you think?
1 Response

Share Best Newest Oldest

Upvote Funny Love Surprised Angry Sad

0 Comments 1 Login

LOG IN WITH OR SIGN UP WITH DISQUS

Name

Start the discussion…

?

Be the first to comment.

Subscribe Privacy Do Not Sell My Data

G



Related Articles

COMPUTER VISION

Building an AI-Powered Vehicle Speed
Monitor (Machine learning)

A complete guide for deploying a real-time vehicle speed

monitoring system using computer vision and machine learning

on Ubuntu 24.04 Server.

Share:

Share:

Monitoring vehicle speeds was not my life goal, but witnessing my wife and

two of my kids almost being run over in front of our home by a truck

speeding at almost 60 km/h in our 30 km/h limited street made me act. I

sent an email to the mayor of my city. The police were sent to check for

speeders for a weekend, then it was over. So I needed a system to bring real,

longer-term proof that action was needed.

Traditional radar traps and expensive speed cameras are not always practical

for communities or individuals. Thanks to open-source tools, affordable

cameras, and modern computer vision libraries, it is now possible to build a

sophisticated speed monitoring system yourself.

This post explains how I built a complete vehicle speed monitor using a

UniFi G4 Doorbell Pro camera and Python. The system detects vehicles in

real time, measures their speed, records violations with photos, and provides

advanced analytics through a web interface powered by AI (Machine

Learning).

You can find the full source code and contribute on my GitLab

What This System Does

This system uses OpenCV to process a live RTSP camera feed and detect

vehicles crossing two virtual detection lines. It measures how long a vehicle

takes to travel between them, compares that to the real distance you

configure, and calculates its speed. If the speed is above your threshold, the

system saves a screenshot and logs the violation in a local SQLite database.

The web interface shows live stats, daily, weekly, and monthly trends, and

provides machine learning insights like vehicle classification, anomaly

detection, and predictions.

Why Positioning and Calibration Matter

Getting accurate speed measurements depends entirely on where you place

the detection lines and how well you calibrate the real-world distance

between them. If your lines are not placed perpendicular to the vehicle’s

path or if the distance is not measured precisely, the calculated speeds will

be wrong.

A small misalignment of the lines or an incorrect distance can result in

speed readings that are too high or too low. That’s why calibration is crucial:

you must drive through the detection zone at a known speed and adjust your

settings until the measured speed matches reality. This ensures your data is

reliable and your system can produce valid evidence if needed.

Key Features

Real-time vehicle detection and speed measurement using OpenCV.

Dual-direction monitoring with different calibration for each lane if

needed.

Automatic screenshots for each speed violation.

Machine learning for vehicle type classification and anomaly detection.

Historical trends and predictions based on traffic data.

Fully responsive dashboard with data export (CSV, JSON, Excel).

Hardware and Server Requirements

Camera

Any RTSP-compatible camera.

UniFi G4 Doorbell Pro recommended for reliable HD streaming.

Server

Ubuntu 24.04 Server.

Python 3.12 or newer.

Minimum 4 GB RAM (8 GB recommended for machine learning features).

At least 10 GB storage for database and screenshots.

Step 1: Prepare Ubuntu 24.04

Update your server first:

sudo apt update && sudo apt upgrade -y

Step 2: Install Required Packages

Install system libraries needed for OpenCV, streaming, and ML.

sudo apt install -y \
 python3 python3-pip python3-dev python3-venv \

 build-essential cmake pkg-config \
 libgl1-mesa-glx libglib2.0-0 libsm6 libxext6 libxrender-dev \

 libgomp1 libgtk-3-0 libavcodec-dev libavformat-dev libswscale-dev \
 libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev \
 libxvidcore-dev libx264-dev libjpeg-dev libpng-dev libtiff-dev \

 gfortran libatlas-base-dev libhdf5-dev libhdf5-serial-dev \
 libfontconfig1-dev libcairo2-dev libgdk-pixbuf2.0-dev \

 libpango1.0-dev libgtk2.0-dev libgtk-3-dev git curl wget

Step 3: Clone and Setup

Clone the project into /opt .

cd /opt

sudo git clone https://gitlab.raidho.fr/Stephane/vehicle-speed-monitor.git
sudo chown -R $USER:$USER vehicle-speed-monitor

cd vehicle-speed-monitor

chmod +x start_monitor.sh

./start_monitor.sh

The script sets up a Python virtual environment, installs all dependencies,

creates the database, and starts the monitor.

Step 4: Run as a Service

Create a systemd service so the monitor runs continuously.

sudo tee /etc/systemd/system/vehicle-monitor.service > /dev/null <<EOF

[Unit]
Description=Vehicle Speed Monitor
After=network.target

[Service]

Type=simple
User=$USER
WorkingDirectory=/opt/vehicle-speed-monitor

Environment=PATH=/opt/vehicle-speed-monitor/venv/bin
ExecStart=/opt/vehicle-speed-monitor/venv/bin/python vehicle_speed_monitor.py

Restart=always
RestartSec=10

[Install]
WantedBy=multi-user.target

EOF

sudo systemctl daemon-reload
sudo systemctl enable vehicle-monitor
sudo systemctl start vehicle-monitor

sudo systemctl status vehicle-monitor

Step 5: Open the Web Port

sudo ufw allow 5000/tcp

sudo ufw reload

Python Dependencies

Server version uses opencv-python-headless :

numpy>=1.21,<2.0

opencv-python-headless>=4.5.0,<5.0
flask>=2.0.0

pandas>=1.3.0
scikit-learn>=1.0.0
scipy>=1.7.0

Pillow>=8.0.0
python-dateutil>=2.8.0

Configure Detection Lines

Edit config.json to match your street and camera angle.

{
 "rtsp_url": "rtsps://192.168.0.1:7441/your_camera_feed",

 "detection_lines": {
 "line_a": [[600, 500], [1000, 500]],
 "line_b": [[600, 700], [1000, 700]]

 },
 "distances": {

 "a_to_b": 12.0
 },

 "speed_limit": 30,
 "speeding_threshold": 35
}

How to Calibrate

Make sure lines are perpendicular to traffic flow.

Use a tape measure or GPS to measure the real distance.

Drive through the detection zone at a known speed.

Compare the recorded speed to your real speed.

Adjust the distance if needed:

new_distance = old_distance * (real_speed / recorded_speed)

You can enable debug mode to see lines and vehicle tracking:

self.draw_detections(frame, vehicles)

cv2.imshow('Debug View', frame)

Dashboard and API

Main dashboard: http://your-server-ip:5000/

ML analytics: http://your-server-ip:5000/ml_advanced_safe

Statistics: http://your-server-ip:5000/statistics

Example API endpoints:

/api/speed_data

/api/ml/status

/api/ml/predictions

Daily Backups

Add a daily backup:

sudo tee /opt/vehicle-speed-monitor/backup.sh > /dev/null <<'EOF'

#!/bin/bash
BACKUP_DIR="/backup/vehicle-monitor/$(date +%Y%m%d)"
mkdir -p "$BACKUP_DIR"

cp /opt/vehicle-speed-monitor/vehicle_speeds.db "$BACKUP_DIR/"
cp /opt/vehicle-speed-monitor/config.json "$BACKUP_DIR/"

cp -r /opt/vehicle-speed-monitor/ml_models/ "$BACKUP_DIR/" 2>/dev/null || true
tar -czf "$BACKUP_DIR/screenshots.tar.gz" /opt/vehicle-speed-monitor/screenshot

EOF

chmod +x /opt/vehicle-speed-monitor/backup.sh

echo "0 2 * * * /opt/vehicle-speed-monitor/backup.sh" | sudo crontab -

Accuracy

When your lines are positioned correctly and the system is well calibrated:

Speed readings within ±2 km/h.

Over 95% vehicle detection.

More than 90% ML classification accuracy.

Future Enhancements

Planned updates include:

Deep learning classification.

License plate detection where legal.

System Requirements: Ubuntu 24.04 Server, Python 3.12+, OpenCV 4.5+

(headless)

Repo: GitLab

Version: 3.0.0 — July 2025

Install it, calibrate it properly, position your lines precisely, and help your street

stay safe.

Stephane / vehicle-speed-monitor · GitLab

GitLab Community Edition

GitLab •

•

•

•

•

•

•

•

•

•

•

•

•

1.

2.

3.

4.

5.

•

•

•

•

•

•

•

•

•

•

•

Computer Vision Machine Learning Traffic Monitoring Community Safety

Self-Hosted

Previous article

Ready to unlock the full potential of AI?
A Quick Guide to Choosing the Right…

Choose the right AI system to unlock true potential. Paid
tiers (like $20/month) offer advanced features for…

Next article

Automating VMware VM Deployment
with Ansible: Guide to Static IP…

Deploying multiple VMs with consistent configuration
shouldn't require hours of manual clicking through…

text-generation-webui with AllTalk
TTS

15 Jan 2024 · 4 min read

text-generation-webui with
coquis_TTS

14 Jan 2024 · 3 min read

Stephane Thirion
3 Jul 2025 · 5 min read

Stephane Thirion Log in Subscribe

Subscribe

https://disqus.com/
https://disqus.com/home/notifications/
https://disqus.com/privacy-policy
https://disqus.com/data-sharing-settings/
https://www.archy.net/tag/computer-vision/
https://twitter.com/share?text=Building%20an%20AI-Powered%20Vehicle%20Speed%20Monitor%20(Machine%20learning)&url=https://www.archy.net/building-an-ai-powered-vehicle-speed-monitor/
https://www.facebook.com/sharer/sharer.php?u=https://www.archy.net/building-an-ai-powered-vehicle-speed-monitor/
https://www.linkedin.com/shareArticle?mini=true&url=https://www.archy.net/building-an-ai-powered-vehicle-speed-monitor/&title=Building%20an%20AI-Powered%20Vehicle%20Speed%20Monitor%20(Machine%20learning)
https://twitter.com/share?text=Building%20an%20AI-Powered%20Vehicle%20Speed%20Monitor%20(Machine%20learning)&url=https://www.archy.net/building-an-ai-powered-vehicle-speed-monitor/
https://www.facebook.com/sharer/sharer.php?u=https://www.archy.net/building-an-ai-powered-vehicle-speed-monitor/
https://www.linkedin.com/shareArticle?mini=true&url=https://www.archy.net/building-an-ai-powered-vehicle-speed-monitor/&title=Building%20an%20AI-Powered%20Vehicle%20Speed%20Monitor%20(Machine%20learning)
https://gitlab.raidho.fr/Stephane/vehicle-speed-monitor?ref=archy.net
https://gitlab.raidho.fr/Stephane/vehicle-speed-monitor?ref=archy.net
https://www.archy.net/tag/computer-vision/
https://www.archy.net/tag/machine-learning/
https://www.archy.net/tag/traffic-monitoring/
https://www.archy.net/tag/community-safety/
https://www.archy.net/tag/self-hosted-2/
https://www.archy.net/ready-to-unlock-the-full-potential-of-ai-a-quick-guide-to-choosing-the-right-system/
https://www.archy.net/ready-to-unlock-the-full-potential-of-ai-a-quick-guide-to-choosing-the-right-system/
https://www.archy.net/automating-vmware-vm-deployment-with-ansible-guide-to-static-ip-configuration-request/
https://www.archy.net/automating-vmware-vm-deployment-with-ansible-guide-to-static-ip-configuration-request/
https://www.archy.net/text-generation-webui-with-coquis_tts/
https://www.archy.net/text-generation-webui-with-tts/
https://www.archy.net/author/stephane/
https://www.archy.net/author/stephane/
https://www.archy.net/author/stephane/
https://www.archy.net/
javascript:;

Stephane Thirion

© 2025 Stephane Thirion. All rights reserved.

Design with by @GodoFredoNinja

LLM - Large Language Models with
text-generation-webui

13 Jan 2024 · 3 min read

https://www.archy.net/
https://www.facebook.com/archynet
https://x.com/archynet
https://godofredo.ninja/
https://www.archy.net/llm-large-language-models/

