
What do you think?
1 Response

Share Best Newest Oldest

Upvote Funny Love Surprised Angry Sad

0 Comments 1 Login

LOG IN WITH OR SIGN UP WITH DISQUS

Name

Start the discussion…

?

Be the �rst to comment.

Subscribe Privacy Do Not Sell My Data

G

Related Articles

COMPUTER VISION

Building an AI�Powered Vehicle Speed
Monitor �Machine learning)

A complete guide for deploying a real-time vehicle speed

monitoring system using computer vision and machine learning

on Ubuntu 24.04 Server.

Share:

Share:

Monitoring vehicle speeds was not my life goal, but witnessing my wife and

two of my kids almost being run over in front of our home by a truck

speeding at almost 60 km/h in our 30 km/h limited street made me act. I

sent an email to the mayor of my city. The police were sent to check for

speeders for a weekend, then it was over. So I needed a system to bring real,

longer-term proof that action was needed.

Traditional radar traps and expensive speed cameras are not always practical

for communities or individuals. Thanks to open-source tools, affordable

cameras, and modern computer vision libraries, it is now possible to build a

sophisticated speed monitoring system yourself.

This post explains how I built a complete vehicle speed monitor using a

UniFi G4 Doorbell Pro camera and Python. The system detects vehicles in

real time, measures their speed, records violations with photos, and provides

advanced analytics through a web interface powered by AI (Machine

Learning).

You can �nd the full source code and contribute on my GitLab

What This System Does

This system uses OpenCV to process a live RTSP camera feed and detect

vehicles crossing two virtual detection lines. It measures how long a vehicle

takes to travel between them, compares that to the real distance you

con�gure, and calculates its speed. If the speed is above your threshold, the

system saves a screenshot and logs the violation in a local SQLite database.

The web interface shows live stats, daily, weekly, and monthly trends, and

provides machine learning insights like vehicle classi�cation, anomaly

detection, and predictions.

Why Positioning and Calibration Matter

Getting accurate speed measurements depends entirely on where you place

the detection lines and how well you calibrate the real-world distance

between them. If your lines are not placed perpendicular to the vehicle’s

path or if the distance is not measured precisely, the calculated speeds will

be wrong.

A small misalignment of the lines or an incorrect distance can result in

speed readings that are too high or too low. That’s why calibration is crucial:

you must drive through the detection zone at a known speed and adjust your

settings until the measured speed matches reality. This ensures your data is

reliable and your system can produce valid evidence if needed.

Key Features

Real-time vehicle detection and speed measurement using OpenCV.

Dual-direction monitoring with different calibration for each lane if

needed.

Automatic screenshots for each speed violation.

Machine learning for vehicle type classi�cation and anomaly detection.

Historical trends and predictions based on traf�c data.

Fully responsive dashboard with data export (CSV, JSON, Excel).

Hardware and Server Requirements

Camera

Any RTSP-compatible camera.

UniFi G4 Doorbell Pro recommended for reliable HD streaming.

Server

Ubuntu 24.04 Server.

Python 3.12 or newer.

Minimum 4 GB RAM (8 GB recommended for machine learning features).

At least 10 GB storage for database and screenshots.

Step 1� Prepare Ubuntu 24.04

Update your server �rst:

sudo apt update && sudo apt upgrade -y

Step 2� Install Required Packages

Install system libraries needed for OpenCV, streaming, and ML.

sudo apt install -y \
 python3 python3-pip python3-dev python3-venv \

 build-essential cmake pkg-config \
 libgl1-mesa-glx libglib2.0-0 libsm6 libxext6 libxrender-dev \

 libgomp1 libgtk-3-0 libavcodec-dev libavformat-dev libswscale-dev \
 libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev \
 libxvidcore-dev libx264-dev libjpeg-dev libpng-dev libtiff-dev \

 gfortran libatlas-base-dev libhdf5-dev libhdf5-serial-dev \
 libfontconfig1-dev libcairo2-dev libgdk-pixbuf2.0-dev \

 libpango1.0-dev libgtk2.0-dev libgtk-3-dev git curl wget

Step 3� Clone and Setup

Clone the project into /opt .

cd /opt

sudo git clone https://gitlab.raidho.fr/Stephane/vehicle-speed-monitor.git
sudo chown -R $USER:$USER vehicle-speed-monitor

cd vehicle-speed-monitor

chmod +x start_monitor.sh

./start_monitor.sh

The script sets up a Python virtual environment, installs all dependencies,

creates the database, and starts the monitor.

Step 4� Run as a Service

Create a systemd service so the monitor runs continuously.

sudo tee /etc/systemd/system/vehicle-monitor.service > /dev/null <<EOF

[Unit]
Description=Vehicle Speed Monitor
After=network.target

[Service]

Type=simple
User=$USER
WorkingDirectory=/opt/vehicle-speed-monitor

Environment=PATH=/opt/vehicle-speed-monitor/venv/bin
ExecStart=/opt/vehicle-speed-monitor/venv/bin/python vehicle_speed_monitor.py

Restart=always
RestartSec=10

[Install]
WantedBy=multi-user.target

EOF

sudo systemctl daemon-reload
sudo systemctl enable vehicle-monitor
sudo systemctl start vehicle-monitor

sudo systemctl status vehicle-monitor

Step 5� Open the Web Port

sudo ufw allow 5000/tcp

sudo ufw reload

Python Dependencies

Server version uses opencv-python-headless :

numpy>=1.21,<2.0

opencv-python-headless>=4.5.0,<5.0
flask>=2.0.0

pandas>=1.3.0
scikit-learn>=1.0.0
scipy>=1.7.0

Pillow>=8.0.0
python-dateutil>=2.8.0

Configure Detection Lines

Edit config.json to match your street and camera angle.

{
 "rtsp_url": "rtsps://192.168.0.1:7441/your_camera_feed",

 "detection_lines": {
 "line_a": [[600, 500], [1000, 500]],
 "line_b": [[600, 700], [1000, 700]]

 },
 "distances": {

 "a_to_b": 12.0
 },

 "speed_limit": 30,
 "speeding_threshold": 35
}

How to Calibrate

Make sure lines are perpendicular to traf�c �ow.

Use a tape measure or GPS to measure the real distance.

Drive through the detection zone at a known speed.

Compare the recorded speed to your real speed.

Adjust the distance if needed:

new_distance = old_distance * (real_speed / recorded_speed)

You can enable debug mode to see lines and vehicle tracking:

self.draw_detections(frame, vehicles)

cv2.imshow('Debug View', frame)

Dashboard and API

Main dashboard: http://your-server-ip:5000/

ML analytics: http://your-server-ip:5000/ml_advanced_safe

Statistics: http://your-server-ip:5000/statistics

Example API endpoints:

/api/speed_data

/api/ml/status

/api/ml/predictions

Daily Backups

Add a daily backup:

sudo tee /opt/vehicle-speed-monitor/backup.sh > /dev/null <<'EOF'

#!/bin/bash
BACKUP_DIR="/backup/vehicle-monitor/$(date +%Y%m%d)"
mkdir -p "$BACKUP_DIR"

cp /opt/vehicle-speed-monitor/vehicle_speeds.db "$BACKUP_DIR/"
cp /opt/vehicle-speed-monitor/config.json "$BACKUP_DIR/"

cp -r /opt/vehicle-speed-monitor/ml_models/ "$BACKUP_DIR/" 2>/dev/null || true
tar -czf "$BACKUP_DIR/screenshots.tar.gz" /opt/vehicle-speed-monitor/screenshot

EOF

chmod +x /opt/vehicle-speed-monitor/backup.sh

echo "0 2 * * * /opt/vehicle-speed-monitor/backup.sh" | sudo crontab -

Accuracy

When your lines are positioned correctly and the system is well calibrated:

Speed readings within ±2 km/h.

Over 95% vehicle detection.

More than 90% ML classi�cation accuracy.

Future Enhancements

Planned updates include:

Deep learning classi�cation.

License plate detection where legal.

System Requirements: Ubuntu 24.04 Server, Python 3.12+, OpenCV 4.5+

(headless)

Repo: GitLab

Version: 3.0.0 — July 2025

Install it, calibrate it properly, position your lines precisely, and help your street

stay safe.

Stephane / vehicle-speed-monitor · GitLab

GitLab Community Edition

GitLab •

•

•

•

•

•

•

•

•

•

•

•

•

1.

2.

3.

4.

5.

•

•

•

•

•

•

•

•

•

•

•

Computer Vision Machine Learning Traffic Monitoring Community Safety

Self-Hosted

Previous article

Ready to unlock the full potential of AI?
A Quick Guide to Choosing the Right…

Choose the right AI system to unlock true potential. Paid
tiers (like $20/month) offer advanced features for…

Next article

Automating VMware VM Deployment
with Ansible: Guide to Static IP…

Deploying multiple VMs with consistent configuration
shouldn't require hours of manual clicking through…

text-generation-webui with AllTalk
TTS

15 Jan 2024 · 4 min read

text-generation-webui with
coquis_TTS

14 Jan 2024 · 3 min read

Stephane Thirion
3 Jul 2025 · 5 min read

Stephane Thirion Log in Subscribe

Subscribe

https://disqus.com/
https://disqus.com/home/notifications/
https://disqus.com/privacy-policy
https://disqus.com/data-sharing-settings/
https://www.archy.net/tag/computer-vision/
https://twitter.com/share?text=Building%20an%20AI-Powered%20Vehicle%20Speed%20Monitor%20(Machine%20learning)&url=https://www.archy.net/building-an-ai-powered-vehicle-speed-monitor/
https://www.facebook.com/sharer/sharer.php?u=https://www.archy.net/building-an-ai-powered-vehicle-speed-monitor/
https://www.linkedin.com/shareArticle?mini=true&url=https://www.archy.net/building-an-ai-powered-vehicle-speed-monitor/&title=Building%20an%20AI-Powered%20Vehicle%20Speed%20Monitor%20(Machine%20learning)
https://twitter.com/share?text=Building%20an%20AI-Powered%20Vehicle%20Speed%20Monitor%20(Machine%20learning)&url=https://www.archy.net/building-an-ai-powered-vehicle-speed-monitor/
https://www.facebook.com/sharer/sharer.php?u=https://www.archy.net/building-an-ai-powered-vehicle-speed-monitor/
https://www.linkedin.com/shareArticle?mini=true&url=https://www.archy.net/building-an-ai-powered-vehicle-speed-monitor/&title=Building%20an%20AI-Powered%20Vehicle%20Speed%20Monitor%20(Machine%20learning)
https://gitlab.raidho.fr/Stephane/vehicle-speed-monitor?ref=archy.net
https://gitlab.raidho.fr/Stephane/vehicle-speed-monitor?ref=archy.net
https://www.archy.net/tag/computer-vision/
https://www.archy.net/tag/machine-learning/
https://www.archy.net/tag/traffic-monitoring/
https://www.archy.net/tag/community-safety/
https://www.archy.net/tag/self-hosted-2/
https://www.archy.net/ready-to-unlock-the-full-potential-of-ai-a-quick-guide-to-choosing-the-right-system/
https://www.archy.net/ready-to-unlock-the-full-potential-of-ai-a-quick-guide-to-choosing-the-right-system/
https://www.archy.net/automating-vmware-vm-deployment-with-ansible-guide-to-static-ip-configuration-request/
https://www.archy.net/automating-vmware-vm-deployment-with-ansible-guide-to-static-ip-configuration-request/
https://www.archy.net/text-generation-webui-with-coquis_tts/
https://www.archy.net/text-generation-webui-with-tts/
https://www.archy.net/author/stephane/
https://www.archy.net/author/stephane/
https://www.archy.net/author/stephane/
https://www.archy.net/
javascript:;

Stephane Thirion

© 2025 Stephane Thirion. All rights reserved.

Design with by �GodoFredoNinja

LLM � Large Language Models with
text-generation-webui

13 Jan 2024 · 3 min read

https://www.archy.net/
https://www.facebook.com/archynet
https://x.com/archynet
https://godofredo.ninja/
https://www.archy.net/llm-large-language-models/

