
© Copyright 2001-2025, Python Software Foundation.
This page is licensed under the Python Software Foundation License Version 2.

Examples, recipes, and other code in the documentation are additionally licensed under the Zero Clause BSD License.
See History and License for more information.

The Python Software Foundation is a non-profit corporation. Please donate.

Last updated on Jul 17, 2025 (18:46 UTC). Found a bug?
Created using Sphinx 8.2.3.

Python experimental support for free threading

Starting with the 3.13 release, CPython has experimental support for a build of Python called free threading where the global
interpreter lock (GIL) is disabled. Free-threaded execution allows for full utilization of the available processing power by run‐
ning threads in parallel on available CPU cores. While not all software will benefit from this automatically, programs designed
with threading in mind will run faster on multi-core hardware.

The free-threaded mode is experimental and work is ongoing to improve it: expect some bugs and a substantial single-
threaded performance hit.

This document describes the implications of free threading for Python code. See C API Extension Support for Free Threading
for information on how to write C extensions that support the free-threaded build.

See also: PEP 703 – Making the Global Interpreter Lock Optional in CPython for an overall description of free-threaded
Python.

Installation

Starting with Python 3.13, the official macOS and Windows installers optionally support installing free-threaded Python bina‐
ries. The installers are available at https://www.python.org/downloads/.

For information on other platforms, see the Installing a Free-Threaded Python, a community-maintained installation guide for
installing free-threaded Python.

When building CPython from source, the --disable-gil configure option should be used to build a free-threaded Python
interpreter.

Identifying free-threaded Python

To check if the current interpreter supports free-threading, python -VV and sys.version contain “experimental free-thread‐
ing build”. The new sys._is_gil_enabled() function can be used to check whether the GIL is actually disabled in the run‐
ning process.

The sysconfig.get_config_var("Py_GIL_DISABLED") configuration variable can be used to determine whether the
build supports free threading. If the variable is set to 1, then the build supports free threading. This is the recommended mech‐
anism for decisions related to the build configuration.

The global interpreter lock in free-threaded Python

Free-threaded builds of CPython support optionally running with the GIL enabled at runtime using the environment variable
PYTHON_GIL or the command-line option -X gil.

The GIL may also automatically be enabled when importing a C-API extension module that is not explicitly marked as support‐
ing free threading. A warning will be printed in this case.

In addition to individual package documentation, the following websites track the status of popular packages support for free
threading:

https://py-free-threading.github.io/tracking/
https://hugovk.github.io/free-threaded-wheels/

Thread safety

The free-threaded build of CPython aims to provide similar thread-safety behavior at the Python level to the default GIL-en‐
abled build. Built-in types like dict, list, and set use internal locks to protect against concurrent modifications in ways that
behave similarly to the GIL. However, Python has not historically guaranteed specific behavior for concurrent modifications to
these built-in types, so this should be treated as a description of the current implementation, not a guarantee of current or fu‐
ture behavior.

Note: It’s recommended to use the threading.Lock or other synchronization primitives instead of relying on the internal
locks of built-in types, when possible.

Known limitations

This section describes known limitations of the free-threaded CPython build.

Immortalization

The free-threaded build of the 3.13 release makes some objects immortal. Immortal objects are not deallocated and have ref‐
erence counts that are never modified. This is done to avoid reference count contention that would prevent efficient multi-
threaded scaling.

An object will be made immortal when a new thread is started for the first time after the main thread is running. The following
objects are immortalized:

function objects declared at the module level
method descriptors
code objects
module objects and their dictionaries
classes (type objects)

Because immortal objects are never deallocated, applications that create many objects of these types may see increased
memory usage. This is expected to be addressed in the 3.14 release.

Additionally, numeric and string literals in the code as well as strings returned by sys.intern() are also immortalized. This
behavior is expected to remain in the 3.14 free-threaded build.

Frame objects

It is not safe to access frame objects from other threads and doing so may cause your program to crash . This means that
sys._current_frames() is generally not safe to use in a free-threaded build. Functions like inspect.currentframe()
and sys._getframe() are generally safe as long as the resulting frame object is not passed to another thread.

Iterators

Sharing the same iterator object between multiple threads is generally not safe and threads may see duplicate or missing ele‐
ments when iterating or crash the interpreter.

Single-threaded performance

The free-threaded build has additional overhead when executing Python code compared to the default GIL-enabled build. In
3.13, this overhead is about 40% on the pyperformance suite. Programs that spend most of their time in C extensions or I/O
will see less of an impact. The largest impact is because the specializing adaptive interpreter (PEP 659) is disabled in the free-
threaded build. We expect to re-enable it in a thread-safe way in the 3.14 release. This overhead is expected to be reduced in
upcoming Python release. We are aiming for an overhead of 10% or less on the pyperformance suite compared to the default
GIL-enabled build.

3.13.5 Quick search Go

https://docs.python.org/3/copyright.html
https://docs.python.org/license.html
https://www.python.org/psf/donations/
https://docs.python.org/bugs.html
https://www.sphinx-doc.org/
https://docs.python.org/3/glossary.html#term-free-threading
https://docs.python.org/3/glossary.html#term-global-interpreter-lock
https://docs.python.org/3/glossary.html#term-global-interpreter-lock
https://docs.python.org/3/howto/free-threading-extensions.html#freethreading-extensions-howto
https://peps.python.org/pep-0703/
https://www.python.org/downloads/
https://py-free-threading.github.io/installing-cpython/
https://docs.python.org/3/using/configure.html#cmdoption-disable-gil
https://docs.python.org/3/using/cmdline.html#cmdoption-V
https://docs.python.org/3/library/sys.html#sys.version
https://docs.python.org/3/library/sys.html#sys._is_gil_enabled
https://docs.python.org/3/using/cmdline.html#envvar-PYTHON_GIL
https://docs.python.org/3/using/cmdline.html#cmdoption-X
https://py-free-threading.github.io/tracking/
https://hugovk.github.io/free-threaded-wheels/
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/threading.html#threading.Lock
https://docs.python.org/3/glossary.html#term-immortal
https://docs.python.org/3/reference/datamodel.html#user-defined-funcs
https://docs.python.org/3/reference/datamodel.html#instance-methods
https://docs.python.org/3/reference/datamodel.html#code-objects
https://docs.python.org/3/glossary.html#term-module
https://docs.python.org/3/reference/datamodel.html#classes
https://docs.python.org/3/library/sys.html#sys.intern
https://docs.python.org/3/reference/datamodel.html#frame-objects
https://docs.python.org/3/library/sys.html#sys._current_frames
https://docs.python.org/3/library/inspect.html#inspect.currentframe
https://docs.python.org/3/library/sys.html#sys._getframe
https://pyperformance.readthedocs.io/
https://peps.python.org/pep-0659/
https://www.python.org/

