
FrontPage RecentChanges FindPage HelpContents

/ Wiki /

New changes to the wiki submitted after 24 July 2025 will be licensed under CC BY-SA 4.0 unless otherwise noted.

SecureBoot
Translation(s): English - Français

Contents
1. What is UEFI?

2. What is UEFI Secure Boot?

3. What is UEFI Secure Boot NOT?

4. Shim

5. Finding out information on your system

1. Has the system booted via Secure Boot?

2. What keys are on my system?

3. I have shim and the Debian bootloader installed, and with secure boot enabled the machine fails to boot!

6. Finding Debian's Secure Boot keys

7. MOK - Machine Owner Key

1. DKMS and Secure Boot

1. Virtualbox Packages

2. Enrolling your key

3. Adding your key to DKMS

4. DKMS Sign Helper

2. Manually signing kernels and kernel modules

1. Using your key to sign your kernel

2. Using your key to sign modules

3. Verifying if a module is signed

4. Disabling/re-enabling Secure Boot

8. Supported architectures and packages

9. Secure Boot setup with systemd-boot

10. Testing UEFI Secure Boot

11. Secure Boot limitations

12. Infrastructure - how signing works in Debian

13. Testing Secure Boot in a virtual machine

14. arm64 problems

15. Alternatives to Secure Boot

What is UEFI?
UEFI is the Unified Extensible Firmware Interface. See the main UEFI page for more details about it.

What is UEFI Secure Boot?
UEFI Secure Boot (SB) is a verification mechanism for ensuring that code launched by a computer's UEFI
firmware is trusted. It is designed to protect a system against malicious code being loaded and executed
early in the boot process, before the operating system has been loaded.

Secure Boot works using cryptographic checksums and signatures. Each program that is loaded by the
firmware includes a signature and a checksum, and before allowing execution the firmware will verify that
the program is trusted by validating the checksum and the signature. When Secure Boot is enabled on a
system, any attempt to execute an untrusted program will not be allowed. This stops unexpected /
unauthorised code from running in the UEFI environment.

Most x86 hardware comes from the factory pre-loaded with Microsoft keys. This means the firmware on
these systems will trust binaries that are signed by Microsoft. Most modern systems will ship with Secure
Boot enabled - they will not run any unsigned code by default. Starting with Debian version 10 ("Buster"),
Debian supports UEFI Secure Boot by employing a small UEFI loader called shim which is signed by
Microsoft and embeds Debian's signing keys. This allows Debian to sign its own binaries without requiring
further signatures from Microsoft. Older Debian versions did not support Secure Boot, so users had to
disable Secure Boot in their machine's firmware configuration prior to installing those versions.

It is possible to change the firmware configuration to either disable Secure Boot or to enroll extra signing
keys. This is not required when running standard kernels provided by Debian but may be useful to some
users, for example when using custom kernel builds.

Most of the programs that are expected to run in the UEFI environment are boot loaders, but others exist
too. There are also programs to deal with firmware updates before operating system startup (like
fwupdate and fwupd), and other utilities may live here too.

What is UEFI Secure Boot NOT?
UEFI Secure Boot is not an attempt by Microsoft to lock Linux out of the PC market here; Secure Boot is a
security measure to protect against malware during early system boot. Microsoft act as a Certification
Authority (CA) for Secure Boot, and they will sign programs on behalf of other trusted organisations so that
their programs will also run. There are certain identification requirements that organisations have to meet
here, and code has to be audited for safety. But these are not too difficult to achieve.

Secure Boot is also not meant to lock users out of controlling their own systems. Users can enroll extra
keys into the system, allowing them to sign programs for their own systems. Many Secure Boot-enabled
systems also allow users to remove the platform-provided keys altogether, forcing the firmware to only
trust user-signed binaries.

Shim
shim is a simple software package that is designed to work as a first-stage bootloader on UEFI

systems.

It was developed by a group of Linux developers from various distros, working together to make Secure
Boot work using Free Software. It is a common piece of code that is safe, well-understood and audited so
that it can be trusted and signed using platform keys. This means that Microsoft (or other potential
firmware CA providers) only have to worry about signing shim, and not all of the other programs that distro
vendors might want to support.

Shim then becomes the root of trust for all the other distro-provided UEFI programs. It embeds a further
distro-specific CA key that is itself used for as a trust root for signing further programs (e.g. Linux, GRUB,
fwupdate). This allows for a clean delegation of trust - the distros are then responsible for signing the rest
of their packages. Shim itself should ideally not need to be updated very often, reducing the workload on
the central auditing and CA teams.

For extra trust and safety, from version 15 onwards the shim binary build is 100% reproducible - you can
rebuild the Debian shim binary yourself to verify that no unexpected changes have been embedded in this
key piece of security software.

Finding out information on your system
Has the system booted via Secure Boot?

$ sudo mokutil --sb-state

SecureBoot enabled

Note that you can be only sure that the above answer is correct if your system has not been
tampered with in the first place.

What keys are on my system?

If you want to know what keys are in use on your system, various other mokutil calls will help, e.g.
sudo mokutil --list-enrolled to show the current MOK key list. See the man page for more.

You can also see which keys your kernel knows about by looking in kernel boot messages.

First, the kernel will list keys included at build time, e.g. on current Debian kernels:

[1.378223] Loading compiled-in X.509 certificates

[1.395916] Loaded X.509 cert 'Debian Secure Boot CA: 6ccece7e4c6c0d1f6149f3dd27dfcc5cb

[1.395954] Loaded X.509 cert 'Debian Secure Boot Signer 2022 - linux: 14011249c2675ea8

Second, the kernel will list the keys it has found in the UEFI key variables (DB, and MokListRT if Secure
Boot is enabled). The following is example output from a Lenovo Thinkpad with Secure Boot enabled:

[1.378223] Loading compiled-in X.509 certificates

[1.398449] integrity: Loading X.509 certificate: UEFI:db

[1.399705] integrity: Loaded X.509 cert 'Lenovo Ltd.: ThinkPad Product CA 2012: 838b1f

[1.400994] integrity: Loading X.509 certificate: UEFI:db

[1.402315] integrity: Loaded X.509 cert 'Lenovo UEFI CA 2014: 4b91a68732eaefdd2c8ffffc

[1.403607] integrity: Loading X.509 certificate: UEFI:db

[1.404966] integrity: Loaded X.509 cert 'Microsoft Corporation UEFI CA 2011: 13adbf430

[1.406361] integrity: Loading X.509 certificate: UEFI:db

[1.407692] integrity: Loaded X.509 cert 'Microsoft Windows Production PCA 2011: a92902

[1.410410] integrity: Loading X.509 certificate: UEFI:MokListRT (MOKvar table)

[1.411856] integrity: Loaded X.509 cert 'Debian Secure Boot CA: 6ccece7e4c6c0d1f6149f3

I have shim and the Debian bootloader installed, and with secure boot
enabled the machine fails to boot!

Some recent machines are shipping with the Microsoft UEFI 3rd Party CA certificate disabled by default.
This stops shim from being trusted by the firmware, and it will cause the machine to fail to boot with a
security violation. All the machines that ship in this state should have an option in the firmware menu to re-
enable the certificate. In order to boot Debian with secure boot enabled, it is necessary to enable this
option, if present. Beware that there is no standard location or wording, and it depends on the OEM and
firmware where it is placed and what the text says.

Finding Debian's Secure Boot keys
In normal use, you're unlikely to ever need these directly. But, in case they're useful, here's where to find
them.

The Debian UEFI CA cert is the root of trust, and can be found in our shim source package - here in
git.

The public keys used directly for signing binaries are also found in git, in the ftp-team code-signing repo
here.

MOK - Machine Owner Key
A key part of the shim design is to allow users to control their own systems. The Debian distro CA key is
built in to the shim binary itself, but there is also an extra database of keys that can be managed by the
user. The user keys are called Machine Owner Key, or MOK for short.

Keys can be added and removed in the MOK list by the user, entirely separate from the distro CA key. The
mokutil utility can be used to help manage the keys here from Linux userland, but changes to the MOK
keys may only be confirmed directly from the console at boot time. This removes the risk of userland
malware potentially enrolling new keys and therefore bypassing the entire point of Secure Boot.

There are more docs online for how to work with MOK, for example:

https://www.rodsbooks.com/efi-bootloaders/secureboot.html#initial_shim

DKMS and Secure Boot

Debian uses the Dynamic Kernel Module System (DKMS) to allow individual kernel modules to be
upgraded without changing the whole kernel. Since DKMS modules are compiled individually on users own
machines, it is not possible to sign DKMS modules using the Debian project's signing keys. Instead,
modules built using DKMS will be signed using a machine owner key (MOK), which by default is located at
/var/lib/dkms/mok.key with the corresponding public key at /var/lib/dkms/mok.pub. These keys are
automatically generated automatically on the first build attempt of a DKMS module, but can be manually
generated before that by running the following command (see man 8 dkms):

$ sudo dkms generate_mok

In case you get an error message that says Error! Unknown action specified: "", it's due to a version
mismatch, with the dkms package being an older version that didn't implement the generate_mok action.
Don't worry: you can actually ignore this command, enable Secure Boot and let the driver setup take care
of generating the MOK (you can check that it was generated by looking for the files above). After that,
continue as below.

Regardless of whether the DKMS MOK keys are automatically or manually generated, the public key
needs to be manually enrolled by running the following commands:

$ sudo mokutil --import /var/lib/dkms/mok.pub # prompts for one-time password

$ sudo mokutil --list-new # recheck your key will be prompted on next boot

<rebooting machine then enters MOK manager EFI utility: enroll MOK, continue, confirm, ent

$ sudo dmesg | grep cert # verify your key is loaded

If you encounter problems after enrolling the MOK, such as not being able to connect an external monitor,
please run

$ sudo dpkg-reconfigure nvidia-kernel-dkms

This will rebuild the module and should fix every issue after a reboot.

Virtualbox Packages

Unlike Debian, Ubuntu places their auto-generated MOK at "/var/lib/shim-signed/mok/" which some
software--such as Oracle's virtualbox package (see 989463)--expect to be present.

Note that using this same location may result in future conflicts, but results in fewer surprises due to poor
coding (989463). Despite typically being poor practice, it is generally recommended to use the same
location. More pedantic admins will likely prefer "/root/.mok/" ... with an understanding of expected
headaches.

First make sure the key doesn't exist yet:

$ ls /var/lib/shim-signed/mok/

If you see the key there (consisting of the files MOK.der, MOK.pem and MOK.priv) then you can use these,
rather than creating your own.

To create a custom MOK:

mkdir -p /var/lib/shim-signed/mok/

cd /var/lib/shim-signed/mok/

openssl req -nodes -new -x509 -newkey rsa:2048 -keyout MOK.priv -outform DER -out MOK.de

openssl x509 -inform der -in MOK.der -out MOK.pem

NOTE It seems (2022-06-21) that shim won't support adding a 4096 RSA key to the ?MokList (it might
freezes when loading and verifying the grubx64.efi binary), so make sure you use a 2048 key for now.

Enrolling your key

Key enrollment requires issuing the request using mokutil and then confirming enrollment during a reboot.
This is intended to ensure that only the device custodian can approve enrollment of a new MOK.

To enroll a key:

$ sudo mokutil --import /var/lib/shim-signed/mok/MOK.der # prompts for one-time password

At next reboot, the device firmware should launch it's MOK manager and prompt the user to review the
new key and confirm it's enrollment, using the one-time password. Any kernel modules (or kernels) that
have been signed with this MOK should now be loadable.

To verify the MOK was loaded correctly:

$ sudo mokutil --test-key /var/lib/shim-signed/mok/MOK.der

/var/lib/shim-signed/mok/MOK.der is already enrolled

Adding your key to DKMS

In order for dkms to automatically sign kernel modules, it must be told which key to sign the module with.
This is done by adding two configuration values to "/etc/dkms/framework.conf", adjusting paths as
required:

mok_signing_key="/var/lib/shim-signed/mok/MOK.priv"

mok_certificate="/var/lib/shim-signed/mok/MOK.der"

DKMS Sign Helper

If these values are provided and dkms is able to build modules but does not attempt to sign them, then it is
likely that sign_tool is missing. This is more common in older and/or custom kernels.

In "/etc/dkms/framework.conf", add:

sign_tool="/etc/dkms/sign_helper.sh"

Create "/etc/dkms/sign_helper.sh" with:

/lib/modules/"$1"/build/scripts/sign-file sha512 /root/.mok/client.priv /root/.mok/client.

Manually signing kernels and kernel modules

The commands in this section use some shared environment variables:

$ VERSION="$(uname -r)"

$ SHORT_VERSION="$(uname -r | cut -d . -f 1-2)"

$ MODULES_DIR=/lib/modules/$VERSION

$ KBUILD_DIR=/usr/lib/linux-kbuild-$SHORT_VERSION

Using your key to sign your kernel

First, install sbsigntool

$ sbsign --key MOK.priv --cert MOK.pem "/boot/vmlinuz-$VERSION" --output "/boot/vmlinuz-$V

$ sudo mv "/boot/vmlinuz-$VERSION.tmp" "/boot/vmlinuz-$VERSION"

Using your key to sign modules

Building and signing modules is independent of building and signing your own kernel. Debian packages
that provide kernel modules will typically sign the modules automatically using DKMS, but if you want to
sign a kernel module manually, you can do so as shown below.

The example below shows how to sign modules. Debian's dkms package puts those in the updates/dkms
subdirectory of the modules directory while Oracle's VirtualBox puts them in the misc subdirectory, so you'll
have to go to the modules directory accordingly:

$ cd "$MODULES_DIR/updates/dkms" # For dkms packages

$ cd "$MODULES_DIR/misc" # For Oracle packages

Securely record the passphrase for the private key:

$ echo -n "Passphrase for the private key: "

$ read -s KBUILD_SIGN_PIN

$ export KBUILD_SIGN_PIN

Sign just the VirtualBox module:

$ sudo --preserve-env=KBUILD_SIGN_PIN "$KBUILD_DIR"/scripts/sign-file sha256 /var/lib/shim

Or sign all modules below the current directory:

$ find -name *.ko | while read i; do sudo --preserve-env=KBUILD_SIGN_PIN "$KBUILD_DIR"/sc

If the modules are needed to boot your machine, make sure to update the initramfs, e.g. using

sudo update-initramfs -k all -u

Verifying if a module is signed

modinfo vboxdrv

filename: /lib/modules/5.10.0-9-amd64/misc/vboxdrv.ko

version: 6.1.28 r147628 (0x00320000)

license: GPL

description: Oracle VM VirtualBox Support Driver

author: Oracle Corporation

srcversion: 282AFDD3CE09DCCD935FAF2

depends:

retpoline: Y

name: vboxdrv

vermagic: 5.10.0-9-amd64 SMP mod_unload modversions

sig_id: PKCS#7

signer: My Name

sig_key: 13:FE:C2:ED:A1:40:CE:70:1A:75:91:E5:4C:1F:5F:DA:BD:17:57:A9

sig_hashalgo: sha256

signature: 0B:72:37:DD:10:97:F2:4F:DF:DF:52:27:38:88:63:7B:CC:2F:98:59:

 66:70:D1:22:94:05:62:77:E9:04:35:B4:2D:9F:6F:92:18:D5:98:C3:

 [etc.]

Disabling/re-enabling Secure Boot

In case it is difficult to control Secure Boot state through the EFI setup program, mokutil can also be used
to disable or re-enable Secure Boot for operating systems loaded through shim and GRUB:

1. Run: mokutil --disable-validation or mokutil --enable-validation.

2. Choose a password between 8 and 16 characters long. Enter the same password to confirm it.
3. Reboot.
4. When prompted, press a key to perform MOK management.
5. Select "Change Secure Boot state".
6. Enter each requested character of your chosen password to confirm the change. Note that you have to

press Return/Enter after each character.
7. Select "Yes".
8. Select "Reboot".

After doing mokutil --disable-validation, shim will disable secure boot and display "Booting in insecure
mode". However, if one does that, it's possible that the kernel reboots just right when it start. To remove
this behaving and re-enable secure boot validation, one way is to delete the EFI variable. This may depend
on your EFI shell implementation, though for me, this is what worked:

efi> dmpstore -all -d MockSBState

Note that the -all is needed to access non-defaults guids variables.

Supported architectures and packages
On each architecture, Debian includes various packages containing signed binaries:

Name amd64 i386 arm64 Signed
by

Purpose

fwupd fwupd-
amd64-
signed

fwupd-i386-
signed

fwupd-
arm64-
signed

Debian Tools to manage UEFI
firmware updates
automatically

fwupdate fwupdate-
amd64-
signed

fwupdate-
i386-signed

fwupdate-
arm64-
signed

Debian Tools to manage UEFI
firmware updates
manually (removed
after Buster in favour
of fwupd)

grub grub-efi-
amd64-
signed

grub-efi-
ia32-signed

grub-efi-
arm64-
signed

Debian GRUB boot loader

linux linux-image-
-amd64 ()

linux-
image-
-686 (*)

linux-image-
-arm64 ()

Debian Linux kernel, various
flavours

shim shim-signed shim-
signed

shim-signed Microsoft Main shim binary

shim-
helpers

shim-
helpers-
amd64-
signed

shim-
helpers-
i386-signed

shim-
helpers-
arm64-
signed

Debian Shim helper binaries -
?MokManager and ?
FallBack

systemd-
boot

systemd-
boot-efi-
amd64-
signed

- systemd-
boot-efi-
arm64-
signed

Debian systemd-boot boot
loader

(*) The various linux-image packages in Debian are now signed by default. The unsigned packages are
called linux-image-*-unsigned.

Secure Boot setup with systemd-boot
GRUB is the default bootloader of choice in Debian, so the Secure Boot integration of systemd-boot has
been designed with the intention of being a no-op if GRUB is installed on the target machine.

Starting with Trixie, users of Debian (and of the Debian Installer, since Trixie RC3) can optionally choose to
use systemd-boot with shim. The integration point is the systemd-boot package and its postinst/prerm
scripts. If GRUB packages are not installed, and both the shim-signed and
systemd-boot-efi-[amd64|arm64]-signed packages are installed, then the maintainer scripts will run logic
to install the appropriate EFI binaries to the ESP, and to add an EFI boot entry (named Debian) pointing to
shim and making it the default entry. If either or both packages are removed, this logic runs in reverse and
completely removes the binaries from the ESP, and deletes the EFI boot entry.

A dpkg trigger is declared by the systemd-boot package on the directory/usr/lib/shim, and on a named
trigger systemd-boot-signed, so that the maintainer script can run the install/uninstall/update logic when
the content of any of the involved packages changes.

Two EFI boot entries will be created by the systemd-boot package upon install. The default one will point to
shim and chainload systemd-boot, this should remain the default and be used in all normal cases. The

LoginWIKI Search Titles Text

More Actions:Login Info Attachments

https://wiki.debian.org/FrontPage
https://wiki.debian.org/RecentChanges
https://wiki.debian.org/FindPage
https://wiki.debian.org/HelpContents
https://wiki.debian.org/FrontPage
https://wiki.debian.org/copyright.html
https://wiki.debian.org/SecureBoot
https://wiki.debian.org/DebianWiki/EditorGuide#translation
https://wiki.debian.org/SecureBoot
https://wiki.debian.org/fr/SecureBoot
https://wiki.debian.org/UEFI
https://packages.debian.org/fwupdate
https://packages.debian.org/fwupdate
https://packages.debian.org/fwupdate
https://packages.debian.org/fwupd
https://packages.debian.org/fwupd
https://packages.debian.org/shim
https://packages.debian.org/shim
https://salsa.debian.org/efi-team/shim/-/raw/master/debian/debian-uefi-ca.der
https://salsa.debian.org/efi-team/shim/-/raw/master/debian/debian-uefi-ca.der
https://salsa.debian.org/ftp-team/code-signing/-/tree/master/etc
https://salsa.debian.org/ftp-team/code-signing/-/tree/master/etc
https://www.rodsbooks.com/efi-bootloaders/secureboot.html#initial_shim
https://www.rodsbooks.com/efi-bootloaders/secureboot.html#initial_shim
https://bugs.debian.org/989463
https://bugs.debian.org/989463
https://bugs.debian.org/989463
https://bugs.debian.org/989463
https://wiki.debian.org/MokList
https://packages.debian.org/sbsigntool
https://packages.debian.org/sbsigntool
https://wiki.debian.org/VirtualBox
https://wiki.debian.org/VirtualBox
https://wiki.debian.org/MokManager
https://wiki.debian.org/FallBack
https://www.debian.org/
https://wiki.debian.org/SecureBoot?action=login
https://wiki.debian.org/FrontPage
https://www.debian.org/
https://wiki.debian.org/SecureBoot?action=login
https://wiki.debian.org/SecureBoot?action=info
https://wiki.debian.org/SecureBoot?action=AttachFile

second one points to systemd-boot directly and should only be used for recovery in case shim does not
work for any reason and secure boot is disabled.

A user wanting to switch from GRUB to systemd-boot should do so by removing the GRUB packages and
installing systemd-boot at the same time, for example on an amd64 system:

apt install --allow-remove-essential systemd-boot grub-efi-amd64-signed-

To switch back to GRUB the inverse operation can be used:

apt install systemd-boot- grub-efi-amd64-signed

To install systemd-boot on a system with no bootloader:

apt install systemd-boot shim-signed

Testing UEFI Secure Boot
In preparation for the Debian 10 (Buster) release, some tests were performed to make sure that everything
was ready. The information about that is is here.

Secure Boot limitations
By its very design, Secure Boot may affect or limit some things that users want to do.

If you want to build and run your own kernel (e.g. for development or debugging), then you will obviously
end up making binaries that are not signed with the Debian key. If you wish to use those binaries, you will
need to either sign them yourself and enroll the key used with MOK or disable Secure Boot.

Using Secure Boot activates "lockdown" mode in the Linux kernel. This disables various features that can
be used to modify the kernel:

Loading kernel modules that are not signed by a trusted key. By default, this will block out-of-tree
modules including DKMS-managed drivers. However, you can create your own signing key for modules
and add its certificate to the trusted list using MOK.

Using kexec to start an unsigned kernel image.
Hibernation and resume from hibernation.
User-space access to physical memory and I/O ports.
Module parameters that allow setting memory and I/O port addresses.

Writing to MSRs through /dev/cpu/*/msr.

Use of custom ACPI methods and tables.
ACPI APEI error injection.

You can avoid this by disabling Secure Boot through the EFI setup program or through MOK.

Example docs from elsewhere:

https://wiki.ubuntu.com/UEFI/SecureBoot/DKMS

https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Kernel_Administration_Guide/sect-signing-kernel-modules-for-
secure-boot.html

https://www.linuxjournal.com/content/take-control-your-pc-uefi-secure-boot

Infrastructure - how signing works in Debian
If you want to know the implementation details and the current discussions on improvements, see
SecureBoot/Discussion.

Testing Secure Boot in a virtual machine
If you want to test Secure Boot in a virtual machine without having to deal with an actual machine, see
SecureBoot/VirtualMachine.

arm64 problems
Debian initially had support for UEFI Secure Boot on arm64 for buster (10.0), but we found problems and
had to abandon it for some time. It was re-enabled and functional again for the bookworm release (12.0).
Things should work so long as a system is using shim-signed version 1.39 and grub2 version 2.06-9 or
greater.

If you want to know more, here's the background:

For a long time, shim and other EFI programs were difficult to build on arm64 compared to x86 platforms.
Binutils for amd64 and i386 includes explicit support for creating programs in the PE/COFF binary format
that EFI uses, but similar support did not exist for arm64 until during the bookworm development cycle.

In the past, shim developers added some local hacks into the shim package to generate a mostly-
compliant PE/COFF EFI binary without this toolchain support, and that seemed to be sufficient for use.
Everything seemed to work. However, during the development and testing phase of shim 15.3 and 15.4,
we found found significant issues with this approach. New security features needed in
https://wiki.debian.org/SecureBoot shim (SBAT) showed up severe problems with the lack of proper
toolchain support. See https://github.com/rhboot/shim/issues/366 for more gory details. The old hacks
around binutils were no longer sustainable.

Statistics tell us that very few people attempted to use arm64 Secure Boot with Debian at the time, so in
the interests of releasing needed updates in a timely manner for other architectures we decided
temporarily to disable Secure Boot support for Debian arm64.

Binutils 2.38 introduced support for PE/COFF generation on arm64 and the problem was solved.

Alternatives to Secure Boot
Debian's mission is to provide you with a free operating system, but many people don't even think about
their proprietary boot firmware.

Free and open source boot firmware exists, such as coreboot and U-Boot, and several distributions of
these offer their own security schemes, which are comparable and sometimes arguably better than UEFI
Secure Boot; U-Boot itself can also provide its own UEFI implementation with Secure Boot, if configured
properly.

We maintain a list of FOSS boot firmware projects at Firmware/Open

These firmware distributions often replace the proprietary UEFI firmware, on specific motherboards that
they support.

Changes made after 24 July 2025 00:00 UTC are available under Creative Commons Attribution-ShareAlike 4.0 International

unless otherwise noted. Debian privacy policy, Wiki team, bugs and config. Powered by MoinMoin and Python, with hosting provided

by Metropolitan Area Network Darmstadt.

SecureBoot (last modified 2025-08-01 14:43:05)

https://wiki.debian.org/SecureBoot/Testing
https://wiki.ubuntu.com/UEFI/SecureBoot/DKMS
https://wiki.ubuntu.com/UEFI/SecureBoot/DKMS
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Kernel_Administration_Guide/sect-signing-kernel-modules-for-secure-boot.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Kernel_Administration_Guide/sect-signing-kernel-modules-for-secure-boot.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Kernel_Administration_Guide/sect-signing-kernel-modules-for-secure-boot.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Kernel_Administration_Guide/sect-signing-kernel-modules-for-secure-boot.html
https://www.linuxjournal.com/content/take-control-your-pc-uefi-secure-boot
https://www.linuxjournal.com/content/take-control-your-pc-uefi-secure-boot
https://wiki.debian.org/SecureBoot/Discussion
https://wiki.debian.org/SecureBoot/VirtualMachine
https://wiki.debian.org/SecureBoot
https://wiki.debian.org/SecureBoot
https://wiki.debian.org/SecureBoot
https://github.com/rhboot/shim/issues/366
https://github.com/rhboot/shim/issues/366
https://wiki.debian.org/Firmware/Open
https://wiki.debian.org/copyright.html
https://www.debian.org/legal/privacy
https://wiki.debian.org/Teams/DebianWiki
https://bugs.debian.org/wiki.debian.org
https://salsa.debian.org/debian/wiki.debian.org
https://moinmo.in/
https://moinmo.in/Python
https://www.man-da.de/
https://wiki.debian.org/SecureBoot?action=info

